Study on relationship between body length and blood index of juvenile yellowfin tuna (Thunnus albacores)
-
摘要: 为积累人工养殖黄鳍金枪鱼 (Thunnus albacores) 幼鱼基础生理指标数据,该研究测定了不同体长黄鳍金枪鱼幼鱼 (20G组: 20~30 cm; 30G组: 30~40 cm; 40G组: 40~50 cm) 血液钾离子 (K+)、钙离子 (Ca2+)、氯离子 (Cl−)、氢离子 (H+)、pH、葡萄糖、乳酸、钠离子 (Na+) 和总血红蛋白浓度以及红细胞比容和渗透压。结果显示,黄鳍金枪鱼幼鱼K+、Ca2+、Cl−、H+、pH、葡萄糖、红细胞比容数据组间差异不显著 (P>0.05)。20G组的乳酸和总血红蛋白均显著高于其他两组 (P<0.05);30G组的标准化Ca2+显著高于其他两组 (P<0.05);Na+浓度随着体长的增加逐渐下降,相邻两组间差异不显著 (P>0.05)。结果表明,黄鳍金枪鱼幼鱼在3个体长组中血液指标较稳定,在30G和40G两组之间差异较小,20G组与其他两组差异相对较大,随着体长的增加,血液指标趋于更稳定。Abstract: In order to accumulate the basic physiological index data for juvenile yellowfin tuna (Thunnus albacores), we evaluated the blood potassium ion (K+), calcium ion (Ca2+), chloride ion (Cl−), hydrogen ion (H+), pH, glucose, lactic acid, sodium ion (Na+) and total hemoglobin concentration and hematocrit, osmotic pressure of the juveniles of different body lengths (20G: 20−30 cm, 30G: 30−40 cm, 40G: 40−50 cm). Results indicate that the blood parameters of the juveniles were relatively stable in the three body length groups. K+, Ca2+, Cl−, H+, pH, glucose and hematocrit were not significantly different between groups (P>0.05). The content of lactic acid and total hemoglobin concentration in the 20G group was significantly higher than the other two groups (P<0.05). The standardized calcium ion in the 30G group was significantly higher than the other two groups (P<0.05). The sodium ion content decreased with the increase of body length gradually, and the difference between the adjacent two groups was not significant (P>0.05). The results show that the juveniles had a small difference between the 30G and 40G groups. The 20G group was relatively different from the other two groups. As body length increased, blood indicators tended to be more stable.
-
Keywords:
- Yellowfin tuna (Thunnus albacores) /
- Body length /
- Blood index /
- Blood gas analysis
-
我国盐碱水面积大,广泛分布于东北、西北、华北等内陆地区,水质类型多样,以碳酸盐型居多[1]。过高的碳酸盐碱度对鱼类有强烈的毒害作用,如环境中氢氧根离子 (OH−)、碳酸氢根离子 (HCO3−)、碳酸根离子 (CO3 2−) 等直接作用于鱼类的鳃上皮细胞,造成器质性损伤[2];鱼类鳃内二氧化碳分压 (pCO2) 随碳酸盐碱度的升高维持在较低水平,导致低碳酸血症和呼吸性碱中毒[3-4];鱼体内的氨气 (NH3) 不能与氢离子 (H+) 结合排出体外,发生氨中毒等[5]。鱼类可以通过改变鳃组织的形态、调整含氮产物的代谢和排泄等方式适应高碱度环境[6-8],基因的差异表达也是鱼类应答碱胁迫的途径之一[9-11]。不同鱼类对碳酸盐碱度的耐受性不同,目前国内外已有对包括青海湖裸鲤 (Gymnocypris przewalskii) 在内的20多种鱼类碱耐受性的报道[7-8,12-23],但多数是在极端高碱环境下经过进化具有生存优势的鱼类,如马加迪湖罗非鱼[7](Oreochromis alcalicus grahami)、金字塔湖克拉克大麻哈鱼[8] (Oncorhynchus clarki henshawi)、凡湖塔氏卡拉白鱼[12] (Chalcalburnus tarichi) 等,且研究过程中往往胁迫方式比较单一、统计处理也比较简单。
尼罗罗非鱼 (O. niloticus) 生长速度快,是世界上最广泛养殖的鱼类之一,2019年我国养殖产量为1.64×104 t[24]。尼罗罗非鱼也是一种广盐性鱼类,具有在盐碱水域中养殖推广的潜力。有关尼罗罗非鱼对氯化钠 (NaCl) 盐度耐受性的研究较多[25-28],但对碳酸盐碱度耐受性的报道较少。雷衍之等[29]发现当水体总碱度为48.2 me·L−1时,相较于鲢 (Hypophthalmichthys molitrix)、鳙 (H. nobilis)、草鱼 (Ctenopharyngodon idella) 等淡水鱼,尼罗罗非鱼存活时间更长,但该碱度计量单位目前使用较少;赵岩等[30]发现,尼罗罗非鱼在4和6 g·L−1的碳酸盐碱水体中胁迫48 h无死亡个体,10 g·L−1碱环境下的开始死亡时间明显早于8 g·L−1,但并未计算准确的半致死浓度 (LC50)。此外,在对尼罗罗非鱼进行耐盐碱新品种的选育过程中,为了优化选育和驯化方案,也需要对其盐碱耐受性进行全面深入的评估。
本研究以体质量差异3倍以上的大、小2种规格的尼罗罗非鱼幼鱼为对象,用碳酸氢钠 (NaHCO3) 配置不同浓度的碱性水体,通过高浓度碱胁迫致死、急性碱胁迫和慢性碱驯化3种不同的胁迫方法,系统研究了尼罗罗非鱼对碳酸盐碱度的耐受性能,为其盐碱选育和盐碱水养殖提供参考资料。
1. 材料与方法
1.1 实验材料
实验自2020年10月1日起于上海海洋大学罗非鱼种质资源试验站进行。实验用鱼为新吉富罗非鱼品系后代。挑选同年繁殖且大、小2种规格 [ 大:(21.56±0.27) g,小:(5.92±0.03) g] 的鱼进行实验。正式实验前暂养24 h,暂养期间不投喂,选取体质健康、活力较强、大小均匀的个体。实验用水提前配置,根据水族箱 (46 cm×38 cm×31.5 cm) 体积计算所需NaHCO3 (分析纯) 的质量,将相应NaHCO3加至完全曝气的自来水中,均匀搅拌,连续充氧,待其稳定后使用。
1.2 实验设计
1.2.1 高浓度碱胁迫致死实验
将大、小规格实验鱼由淡水分别直接移入碳酸盐碱度为30和22 g·L−1水体中。发现死鱼立即捞出,记录每尾鱼的死亡时间。每组每种鱼设3个重复,每个重复30尾。
1.2.2 急性碱胁迫实验
根据预实验,大规格实验组设置8、9、10 g·L−1 3个碱度梯度,小规格实验组设置6、7、8 g·L−1 3个碱度梯度。将暂养后的实验鱼直接放入不同碱度组的水箱内,每组40尾,设3个平行,充分曝气的自来水组为对照,进行96 h急性碱胁迫实验。实验开始后,每4 h观察记录死亡情况。
1.2.3 慢性碱驯化实验
水体起始碱度为0 g·L−1,分别以+2、+4、+6 g·(L·d)−1的速度增加碳酸盐碱浓度来进行实验。每组40尾鱼,3个重复。实验开始后,每12 h观察记录死亡情况。实验期间用气泵不间断充氧,水温19~24 ℃,不喂食不换水,用虹吸管吸出粪便以保持水体清洁。以实验鱼静卧水箱底部、呼吸停止、用玻璃棒触碰无反应为死亡标准。
1.3 数据分析
利用MATLAB 8.4、Systat Sigma Plot 10.0和DPS软件对所得实验数据进行统计分析。
1.3.1 高浓度碱胁迫致死实验
计算平均存活时间 (Mean surviving time, MST, min),以“平均值±标准差 (
$ \overline { X}\pm { \rm {SD}} $ )”表示。1.3.2 急性碱胁迫实验
绘制随时间-碱度变化的累计死亡率观察值图;将累计死亡率转换成概率单位后,用线性回归模型拟合碱度与累计死亡率的回归方程,求出96 h LC50;用互补重对数模型 (Complementary log-log model, CLL) 拟合不同碱度处理下大、小规格鱼各时间区间的累计死亡率曲面,模型拟合在DPS数据处理系统下进行[31]。
其中实验鱼在时间tj (j=12, 24,···, J) 被作用因子 (NaHCO3) 的剂量di (i=6, 7,···, I) 致死的概率可表达为:
$$ {p_{ij}} = 1 - {\rm{exp }}\{ - {\rm{exp }}[{\tau _j} + \beta {\rm{lg}}\left( {{d_i}} \right)]\} $$ (1) 式中:β为描述剂量效应的待估参数;τj为至时间tj的时间效应参数;pij为剂量di在0到j个时间单位内产生的累计死亡概率 (Cumulative mortality);剂量di使受试个体在时间区间 [tj−1,tj] 内可能遭受的死亡率称为条件死亡概率 (Conditional mortality),可表示为:
$$ {q_{ij}} = 1 - {\rm{exp }}\{ - {\rm{exp }}[{\gamma _j} + \beta {\rm{lg}}\left( {{d_i}} \right)]\} $$ (2) 式 (2) 中β的含义与式 (1) 相同。γj为描述时间区间 [tj−1, tj] 内时间效应的待估参数,与τj在时间上的含义有所区别。γj和β通过二项分布最大似然函数逼近获得。对模型的拟合值与实测值之间的差异,分别采用Pearson卡方检验及Hosmer-Lemoshow统计量来检验模型的拟合度高低。
1.3.3 慢性碱驯化实验
绘制随时间-碱度变化的累计死亡率观察值图;用Logistic模型拟合累计死亡率和胁迫时间的关系曲线,分别求出致死碱度范围和LC50。
2. 结果
2.1 高浓度碱胁迫致死实验
将实验鱼分别移入碳酸盐碱水体中,3 h内均全部死亡,但大规格鱼在高胁迫浓度下,MST为 (136.92±3.72) min,仍长于小规格鱼 [(114.08±4.36) min]。
2.2 急性碱胁迫实验
实验期间,对照组呼吸与游动保持正常,水质较清澈,全程未出现死亡个体,而碱胁迫组实验鱼陆续死亡。大规格鱼在碳酸盐碱度为8 g·L−1时,无强烈应激表现,前24 h未出现死亡,随时间延长累计死亡率上升较平缓,96 h内不足20%;碳酸盐碱度为9 g·L−1时,前72 h累计死亡率为22.5%,72 h后迅速上升,胁迫96 h达到52.5%;碳酸盐碱度为10 g·L−1时,第12小时即出现死亡,前60 h累计死亡率小幅增长,60~72 h骤增,72 h死亡数达一半以上,96 h后仅剩少量存活 (图1-a);小规格鱼在碳酸盐碱度6 g·L−1时,胁迫48 h未出现死亡,96 h累计死亡率不足50%;碳酸盐碱度为7 g·L−1时,前24 h累计死亡率为0,24~72 h呈匀速变化 (6%, 14%, 22%, 30%),72 h后迅速增至64%;碳酸盐碱度为8 g·L−1时,胁迫前期即开始死亡,出现急游冲撞、窜出水面、眼睛突出、眼白出血、呼吸运动加快等现象,胁迫60 h死亡已超半数,96 h后累计死亡率超过85% (图1-b),且死亡个体大多具有眼部凸起发黑、身体僵硬、腹腔积水等特征;同时水质浑浊较快,含有大量泡沫。
基于线性回归模型拟合碱度与累计死亡率的回归方程,大、小规格急性胁迫96 h的LC50分别为8.95和6.25 g·L−1 (表1)。
表 1 基于线性回归模型尼罗罗非鱼累计死亡率的相关性分析Table 1. Correlation analysis of cumulative mortality of Nile tilapia by linear regression model组别
Group胁迫时间
Stress time/h回归方程
Regression equation相关系数
Correlation coefficientP 半致死浓度
LC50/(g·L−1)大规格鱼 Large size fish 96 y=0.329x−2.445 0.999 0.016 8.95 小规格鱼 Small size fish 96 y=0.200x−0.750 0.998 0.028 6.25 进行各碱度各时间段累计死亡率的CLL模型拟合 (图2)。在实验设置的时间与碱度范围内,模拟的死亡概率是一个曲面,曲面的高度和变化均与观察值曲面相近。CLL模型下,大、小规格实验鱼急性胁迫96 h的LC50分别为9.01和6.35 g·L−1 (表2)。条件死亡率效应参数 (γ) 和累计死亡率效应参数 (τ) 估计值均随胁迫时间的延长而增大;模型经Pearson卡方检验及Hosmer & Lemeshow统计量检验均显著相关;模型系数β、γj经t检验相关极显著 (P<0.01,表2)。
表 2 尼罗罗非鱼互补重对数模型的参数估计及其显著性检验Table 2. Estimated and tested parameters of complementary log-log model of Nile tilapia组别
Group半致死浓度
LC50/(g·L−1)条件死亡率模型
Conditional mortality model累计死亡率模型
Cumulative mortality model参数
Parameter系数
Coefficient标准误
Standard errort 检验
t testP 参数
Parameter系数
Coefficient大规格鱼 Large size fish 9.01 β 21.401 1 0.150 7 142.015 9 0.000 1 β 21.401 1 γ48 −23.677 6 1.892 5 12.511 3 0.000 1 τ48 −22.710 7 γ96 −21.714 4 3.050 7 7.117 8 0.000 1 τ96 −20.800 2 Pearson卡方检验值 Pearson's chi square test 11.529 08<χ2 0.05=25.00,df=15,P=0.775 71>0.05
Hosmer & Lemeshow 拟合度卡方统计量 Hosmer & Lemeshow statistic value 4.900 0<χ2 0.05=15.51,df=8,P=0.768 21>0.05小规格鱼 Small size fish 6.35 β 11.405 9 2.138 8 5.332 8 0.000 1 β 11.405 9 γ48 −12.630 2 1.894 3 6.667 5 0.000 1 τ48 −11.353 7 γ96 −10.923 7 1.814 3 6.021 0 0.000 1 τ96 −9.524 9 Pearson卡方检验值 Pearson's chi square test 23.255 01<χ2 0.05= 25.00,df=15,P=0.107 09>0.05
Hosmer & Lemeshow 拟合度卡方统计量 Statistic value 13.002 9<χ2 0.05= 15.51,df=8,P=0.111 75>0.05注:P>0.05表示模型拟合效果好。 Note: P>0.05 indicates that the model shows the best performance. 2.3 慢性碱驯化实验
大规格鱼在3种碱变化速度下,累计死亡率波峰不显著 (图3-a);小规格鱼在3种碱变化速度下,其累计死亡率出现3个明显的峰值,按时间先后分别为+6、+4和+2 g·(L·d)−1组 (图3-b)。实验中以2 g·(L·d)−1的幅度增加碱度,大、小规格实验鱼胁迫96 h均未出现死亡,碳酸盐碱度达12 g·L−1时累计死亡率均为100%;+4 g·(L·d)−1组在碱度达12 g·L−1时,大规格鱼累计死亡半数以上,小规格鱼全部死亡;+6 g·(L·d)−1组在碱度达12 g·L−1时,大规格鱼累计死亡24%,小规格鱼累计死亡率从0升至100%。
利用Logistic模型将尼罗罗非鱼的累计死亡率和胁迫时间按照不同碳酸盐碱度变化速度进行统计拟合 (图4),得出慢性碱驯化过程中实验鱼的致死碱度范围及半致死碱度 (表3)。
表 3 慢性碱驯化下尼罗罗非鱼累计死亡率相关分析Table 3. Correlation Analysis of cumulative mortality of Nile tilapia with gradual alkalinity组别
Group碱度变化速度
Rate of alkaline
change/[g·(L·d)−1]成活时间
Survival time/h死亡碱度下限
Lower limit of
dead alkalinity/(g·L−1)生存碱度上限
Upper limit of
survival alkalinity/(g·L−1)半致死浓度
LC50/(g·L−1)相关系数
Correlation
coefficient大规格鱼 Large size fish +2 144 8.20 12.00 10.55 0.999 +4 92 7.21 15.92 11.59 0.997 +6 68 6.64 17.07 13.03 0.997 小规格鱼 Small size fish +2 140 8.01 11.50 9.91 0.999 +4 68 6.91 11.98 8.87 0.997 +6 52 5.90 15.23 8.54 0.999 3. 讨论
LC50是衡量盐碱水体对鱼毒害影响的指标[9]。常见鱼类的96 h LC50 [13-21]见表4。本实验急性碱胁迫96 h大规格尼罗罗非鱼的LC50为106.55×10−3 mol·L−1,小规格的为74.40×10−3 mol·L−1 (不同文献中碱度单位有差异,此处统一按1 g·L−1=84×10−6 mol·L−1计算)。可见尼罗罗非鱼的耐碱能力虽弱于青海湖裸鲤、卡拉白鱼等耐高碱鱼类,但仍强于大多淡水养殖鱼类。另外,当慢性驯化实验中碱度为12 g·L−1时,+2 g·(L·d)−1组累计死亡率均达100%;+4 g·(L·d)−1组大规格鱼累计死亡半数以上,小规格鱼全部死亡;+6 g·(L·d)−1组小规格鱼累计死亡率从0升至100%。推测碳酸盐碱度12 g·L−1可能是尼罗罗非鱼碱耐受能力的拐点。
表 4 常见鱼类急性胁迫96 h的半致死浓度Table 4. 96 h LC50 values of alkalinity of common fish species种类
Species规格
Size半致死浓度
LC50/(mol·L−1)文献
Reference青海湖裸鲤 Gymnocypris przewalskii (12.52±0.32) g 150.18×10−3 [13] 达里湖高原鳅 Triplophysa dalaica (8.72±1.20) g 120.0×10−3 [13] 威海卡拉白鱼 Chalcalburnus chalcoides aralensis 2.60~4.62 g 112.23×10−3 [14] 大鳞副泥鳅 Paramisgurnus dabryanus (47.32±0.88) g 88.83×10−3 [13] 黄鳝 Monopterus albus (11.82±1.51) g 75.94×10−3 [15] 黑龙江泥鳅 Misgurnus mohoity (Dybowski) (16.3±0.53) g 72.62×10−3 [13] 异育银鲫 Carassiusauratus gibelio (28.20±3.91) g 70.368×10−3 [16] 达里湖鲫 Carassius auratus Linnacus (4.16±0.47) cm 63.42×10−3 [17] 彭泽鲫 Carassius auratus var. pengzesis 3.26~3.68 g 59.87×10−3 [18] 花鲈 Lateolabrax maculatus (3.19±0.21) cm 46.18×10−3 [19] 叶尔羌高原鳅 Triplophysa yarkandensis 4.64~11.39 g 35.143×10−3 [20] 欧鲇 Silurus glurnis Linnaeus (0.32±0.11)~(0.73±0.12) g 5.099×10−3 [21] 大规格鱼的高浓度致死MST、急性碱胁迫96 h LC50 [(136.92±3.72) min, 8.95 g·L−1] 均高于小规格 [(114.08±4.36) min, 6.25 g·L−1];慢性碱驯化下,大规格鱼LC50均高于10 g·L−1,小规格鱼的低于10 g·L−1;大规格的生存碱度上限比小规格高1~4 g·L−1,死亡碱度下限与小规格差异不显著。上述结果说明体质量会影响鱼类对环境的耐受性。在幼鱼阶段,体质量增加3倍以上的罗非鱼对碳酸盐碱胁迫的耐受性显著增强。值得注意的是,慢性碱驯化实验中大规格鱼LC50随碱变化速度的增大而上升,小规格鱼则随碱变化速度的增大而下降,究其原因有2个:1) 慢性碱驯化实验中,小规格鱼累计死亡率出现3个明显的峰值,而大规格鱼死亡变化平缓,在碳酸盐碱度达12 g·L−1时,小规格鱼较大规格死亡情况更集中;2) 实际操作中碱度以脉冲式增加,碱度的拟合值较实测值准确度可能较低,拟合曲线并未穿过全部数据点。
本研究在慢性碱驯化实验中发现,同规格鱼在不同碱变化速度下的存活时间不同。+2 g·(L·d)−1组实验鱼的存活时间较长 (大:144 h,小:140 h),+6 g·(L·d)−1组实验鱼较短 (大:68 h,小:52 h)。+4 g·(L·d)−1组实验鱼存活时间 (大:92 h,小:68 h) 和+6 g·(L·d)−1组差异不显著。尽管在较高的碱变化速度下,生存碱度上限、死亡碱度下限发生变化,但实际该数值变化并不会提高耐受性。因此认为在碱驯化过程中,碱度日增加2 g·L−1对尼罗罗非鱼的存活更加友好,养殖中可通过2 g·(L·d)−1的碱增加使其耐受更高浓度的碳酸盐碱水体。另外,可以推测碱度日增加1 g·L−1时罗非鱼存活时间更长,但驯化时间和成本也会相应增加。
碱度对鱼类的毒性具有剂量效应和时间效应[17]。CLL模型最先应用在不同昆虫的化学及生物杀虫剂毒力测定的数据分析上,优点在于可以揭示时间与剂量间的互作效应,使实验数据更充分更完整[31]。本研究引入CLL模型用于急性碱胁迫下尼罗罗非鱼的“时间-碱度-死亡率”分析。结果发现,和线性回归相比,CLL模型可直接反映不同时间区间的死亡变化情况,拟合程度更高,且胁迫过程中的时间效应在数值上表现为逐渐增强 (大:−23.677 6<−21.714 4,−22.710 7<−20.800 2;小:−12.630 2<−10.923 7,−11.353 7<−9.524 9),不仅解释了胁迫后期实验鱼死亡数量骤增现象,同时也说明在有效的胁迫时间、碱度范围内,CLL模型适于此类数据的分析。但对于慢性碱驯化而言,时间因子和碱度因子并非2个独立变量,存在线性关系,两者共同作用导致累计死亡率的特定变化,不满足CLL模型基于双独立变量的要求。此外,笔者也试图利用双变量Logistic模型[32]解释慢性碱驯化下碱度、时间对尼罗罗非鱼的致死影响,但由于双变量Logistic模型多应用于温度等连续变化的作用因子,实验点较多,和本实验浓度变化明显不同,因此并不适合。
-
图 1 黄鳍金枪鱼幼鱼主要离子浓度与体长关系
Osm为渗透单位;不同字母表示差异显著 (P<0.05),反之差异不显著 (P>0.05),后图同此。
Figure 1. Relationship between main ion concentration and body length of juvenile yellowfin tuna
Osm is the unit of penetration; different and the same letters indicate significant difference (P<0.05) and insignificant difference (P>0.05). The same in the following figures.
-
[1] 陈金玲. 全自动生化分析仪与血气分析仪电解质测定结果比较[J]. 中国医疗器械信息, 2020, 26(22): 31-32. doi: 10.3969/j.issn.1006-6586.2020.22.015 [2] 范小萍, 叶旭芳, 毛月燕, 等. 新生儿GBS感染败血症患儿血乳酸和血清炎症指标水平及临床意义[J]. 中国妇幼保健, 2020, 35(24): 4764-4766. [3] 蔡英蔚, 蔡铁良, 沈七襄, 等. 马拉松比赛前后血糖、血乳酸、血液酸碱度和血尿素的变化与分析[J]. 临床军医杂志, 2010, 38(3): 386-388. doi: 10.3969/j.issn.1671-3826.2010.03.022 [4] 王忠民, 李治勋, 王先科. 鲤鱼健康鱼与暴发性疫病病鱼血清分析[J]. 科学养鱼, 2010(11): 43. [5] 李肖楠. 血清离子水平与东北地区老年心力衰竭患者的相关性研究[D]. 长春: 吉林大学, 2019: 13-25. [6] 李琴娜. 儿童热性惊厥与血清离子及微量元素的相关性分析[D]. 呼和浩特: 内蒙古医科大学, 2019: 7-10. [7] 李志军. 血清钾离子和血清镁离子水平变化对急性脑梗死患者预后的影响[J]. 医学理论与实践, 2019, 32(7): 1060-1061. [8] WILSON M W, LAURENT P. Fish gill morphology: inside out[J]. J Exp Zool, 2002, 293(3): 192-213. doi: 10.1002/jez.10124
[9] 熊莹槐, 杨静雯, 董双林, 等. 虹鳟和硬头鳟早期幼鱼渗透生理及能量平衡的比较研究[J]. 中国海洋大学学报 (自然科学版), 2019, 49(3): 47-56. [10] 于娜, 李加儿, 区又君, 等. 不同盐度下鲻鱼幼鱼鳃和肾组织结构变化[J]. 生态科学, 2012, 31(4): 424-428. doi: 10.3969/j.issn.1008-8873.2012.04.014 [11] FOSKETT J K, BERN H A, MACHEN T E. Chloride cells and the hormonal control of teleost fish osmoregulation[J]. J Exp Biol, 1983, 106(4): 255-281.
[12] MCCORMICK S D. Hormonal control of gill Na+, K+-ATPase and chloride cell function[J]. Fish Physiol Biochem, 1995, 14(1): 285-315.
[13] MCCORMICK S D, SAKAMOTO T, HASEGAWA S, et al. Osmoregulatory actions of insulin-like growth factorI inrainbow trout (Oncorhynchus mykiss)[J]. J Endocrinol, 1991, 130(2): 87-92.
[14] 吴萍, 宋学宏, 蔡春芳, 等. pH对黄颡鱼红细胞脆性及血红蛋白含量的影响[J]. 水利渔业, 2002(1): 21-23. doi: 10.3969/j.issn.1003-1278.2002.01.013 [15] 魏然. 盐度对牙鲆非特异性免疫功能的影响和文昌鱼抗氧化酶的活性[D]. 青岛: 中国海洋大学, 2004: 7-27. [16] 廖雅丽, 张晨捷, 彭士明, 等. 盐度对云纹石斑鱼抗氧化酶及溶菌酶活性的影响[J]. 上海海洋大学学报, 2016, 25(2): 169-176. [17] 杨健, 陈刚, 黄建盛, 等. 温度和盐度对军曹鱼幼鱼生长与抗氧化酶活性的影响[J]. 广东海洋大学学报, 2007(4): 25-29. doi: 10.3969/j.issn.1673-9159.2007.04.006 [18] 刘亚娟, 胡静, 周胜杰等. 急性氨氮胁迫对尖吻鲈稚鱼消化酶及抗氧化酶活性的影响[J]. 南方农业学报, 2018, 49(10): 2087-2095. doi: 10.3969/j.issn.2095-1191.2018.10.27 [19] NAKAMURA Y N, ANDO M, SEOKA M, et al. Changes of proximate and fatty acid compositions of the dorsal and ventral ordinary muscles of the full-cycle cultured Pacific bluefin tuna Thunnus orientalis with the growth[J]. Food Chem, 2007, 103(1): 234-241. doi: 10.1016/j.foodchem.2006.07.064
[20] 党莹超, 戴小杰, 吴峰. 北太平洋金枪鱼延绳钓钓钩垂直分布及浸泡时间对渔获物的影响[J]. 南方水产科学, 2020, 16(3): 86-93. doi: 10.12131/20190252 [21] 徐国强, 许柳雄, 周成, 等. 金枪鱼围网下纲提升特性的研究[J]. 南方水产科学, 2015, 11(3): 22-28. doi: 10.3969/j.issn.2095-0780.2015.03.004 [22] 周胜杰, 杨蕊, 于刚, 等. 美济礁附近海域3种金枪鱼肌肉成分检测与营养评价[J]. 南方水产科学, 2021, 17(2): 51-59. doi: 10.12131/20210005 [23] 孟晓梦, 叶振江, 王英俊, 等. 世界黄鳍金枪鱼渔业现状和生物学研究进展[J]. 南方水产科学, 2007, 3(4): 74-80. doi: 10.3969/j.issn.2095-0780.2007.04.013 [24] 张鹏, 陈森, 李杰, 等. 灯光罩网渔船兼作金枪鱼延绳钓捕捞试验[J]. 南方水产科学, 2016, 12(4): 110-116. doi: 10.3969/j.issn.2095-0780.2016.04.014 [25] 洪鹏志, 杨萍, 章超桦, 等. 金枪鱼头的营养成分及其蛋白酶解物的应用[J]. 食品研究与开发, 2007(5): 140-143. doi: 10.3969/j.issn.1005-6521.2007.05.046 [26] 刘书成, 章超桦, 洪鹏志, 等. 酶解法从黄鳍金枪鱼鱼头中提取鱼油的研究[J]. 福建水产, 2007(1): 46-50. doi: 10.3969/j.issn.1006-5601.2007.01.012 [27] 于刚, 张洪杰, 杨少玲, 等. 金枪鱼保鲜方法及其贮藏期品质变化研究进展[J]. 食品工业科技, 2013, 34(21): 381-384, 389. [28] MA Z H, WU S S, MENG X J, et al. Feeding depths of wild caught yellowfin tuna Thunnus albacores juveniles and skipjack tuna Katsuwonus pelamis in sea cages[J]. J Aquacult, 2017, 69: 1379-1383.
[29] 方伟, 周胜杰, 赵旺, 等. 黄鳍金枪鱼5月龄幼鱼形态性状对体质量的相关性及通径分析[J]. 南方水产科学, 2021, 17(1): 52-58. doi: 10.12131/20200158 [30] 马振华, 周胜杰, 杨蕊, 等. 青干金枪鱼野生幼鱼陆基驯养技术[J]. 科学养鱼, 2020(2): 57-58. doi: 10.3969/j.issn.1004-843X.2020.02.033 [31] 牟啸东, 窦瑜贵, 孙玮, 等. 血清微量元素与甲状腺疾病的相关性研究[J]. 中国地方病防治, 2020, 35(4): 420-422. [32] 廖娟, 任亢宗, 张频, 等. 急性ST段抬高型心肌梗死病人血清电解质水平与GRACE评分、室性心律失常的关系[J]. 中西医结合心脑血管病杂志, 2021, 19(1): 164-167. doi: 10.12102/j.issn.1672-1349.2021.043 [33] 赵冬芹, 朱莹漫, 蔡昭林, 等. 碱性钙离子水对大鼠血液酸碱度、血钙浓度及免疫功能的影响[J]. 华南师范大学学报 (自然科学版), 2011, 143(2): 129-132, 142. [34] 杜武杰. 血钙、镁、磷测定项目的标准化探讨及评价[J]. 中国医疗器械信息, 2006(6): 22-23. doi: 10.3969/j.issn.1006-6586.2006.06.005 [35] MCCORMICK S D. Effects of growth hormone and insulin-likegrowth factor I on salinity tolerance and gill Na+, K+-ATPase in Atlantic salmon (Salmo salar): interaction with cortisol[J]. Gen Comp Endocrinol, 1996, 101(1): 3-11. doi: 10.1006/gcen.1996.0002
[36] HAVIRD J C, HENRY R P, WILLSON A E. Altered expression of Na+/K+-ATPase and other osmoregulatory genes in the gills of euryhaline animals in response to salinity transfer: a meta-analysis of 59 quantitative PCR studies over 10 years[J]. Comp Biochem Physiol D, 2013, 8(2): 131-140.
[37] BOEUF G, PAYAN P. How should salinity influence fast greenth?[J]. Comp Biochem Physiol C, 2012, 410(1): 130-140.
[38] EVANS D H, PIERMARINI P M, CHOE K P. The multifunctional fishgill: dominant site of gas exchange, osmoregulation, acid-baseregulation, and excretion of nitrogen waste[J]. Physiol Zool, 2005, 85(1): 97-117.
[39] 胡敏, 盛伟松. Apgar评分及脐带血pH值对足月新生儿窒息的预测价值及其与严重程度的相关性[J]. 临床误诊误治, 2021, 34(1): 67-70. doi: 10.3969/j.issn.1002-3429.2021.01.015 [40] 韩春艳, 何晓琳, 李安文, 等. 酸碱胁迫对奥尼罗非鱼幼鱼鳃组织结构及Na+-K+-ATP酶活力的影响[J]. 安徽农业科学, 2016, 44(11): 273-276. doi: 10.3969/j.issn.0517-6611.2016.11.093 [41] 刘辉. 池塘水质理化指标变化与鱼病发生的关系[J]. 渔业致富指南, 2020(1): 60-62. [42] 强俊, 王辉, 李瑞伟, 等. 酸碱胁迫对不同体质量尼罗罗非鱼幼鱼能量代谢的影响[J]. 应用生态学报, 2011, 22(9): 2438-2446. [43] 许品诚, 曹萃禾. 湖泊围养鱼类血液学指标的初步研究[J]. 水产学报, 1989, 13(4): 346-352. [44] 文娟, 王文菊, 赵仕玉, 等. 老年慢性心衰患者红细胞压积、总血红蛋白水平与左心室功能的相关性[J]. 心血管康复医学杂志, 2020, 29(6): 660-664. doi: 10.3969/j.issn.1008-0074.2020.06.03 [45] 张莉, 刘超, 许晓辉. 血清NSE、血红蛋白和铁代谢的联合检测在帕金森病中的诊断意义[J]. 实验与检验医学, 2020, 38(5): 915-917, 931. doi: 10.3969/j.issn.1674-1129.2020.05.029 -
期刊类型引用(2)
1. 刘鸿雁,付正祎,于刚,马振华. 黄鳍金枪鱼幼鱼体质量与血液指标关系研究. 南方水产科学. 2023(01): 173-178 . 本站查看
2. 戴世明,周胜杰,于刚,马振华. 金枪鱼养殖研究进展. 中国渔业质量与标准. 2023(01): 51-59 . 百度学术
其他类型引用(0)