金枪鱼延绳钓力学性能研究进展

宋利明, 李轶婷

宋利明, 李轶婷. 金枪鱼延绳钓力学性能研究进展[J]. 南方水产科学, 2020, 16(2): 121-127. DOI: 10.12131/20190183
引用本文: 宋利明, 李轶婷. 金枪鱼延绳钓力学性能研究进展[J]. 南方水产科学, 2020, 16(2): 121-127. DOI: 10.12131/20190183
SONG Liming, LI Yiting. Research progress of mechanical property of tuna longline gear[J]. South China Fisheries Science, 2020, 16(2): 121-127. DOI: 10.12131/20190183
Citation: SONG Liming, LI Yiting. Research progress of mechanical property of tuna longline gear[J]. South China Fisheries Science, 2020, 16(2): 121-127. DOI: 10.12131/20190183

金枪鱼延绳钓力学性能研究进展

基金项目: 国家高技术研究发展计划 (863计划) 项目 (2012AA092302);高等学校博士学科点专项科研基金联合项目 (20113104110004);上海市教育委员会科研创新项目 (12ZZ168);农业部远洋渔业资源探捕项目 (D8006138016)
详细信息
    作者简介:

    宋利明 (1968—),男,博士,教授,从事金枪鱼渔业和渔具数值模拟研究。E-mail: lmsong@shou.edu.cn

  • 中图分类号: S 973.3+1

Research progress of mechanical property of tuna longline gear

  • 摘要:

    延绳钓的力学性能直接影响渔获效率与能源消耗。文章总结了国内外金枪鱼延绳钓力学性能由最初的海上实测到动水槽模型试验再到数值模拟研究的相关研究方法与成果。结果显示:1) 延绳钓的力学分析已从静态分析发展为动态分析;2) 进行小尺度延绳钓模型试验,目的是验证特定情况下数值模拟分析的准确性;3) 根据数值模拟和实测结果确定了延绳钓干线垂直阻力系数 (CN90) 为1.12和惯性力系数 (Cm) 为3。建议今后对延绳钓力学性能研究为:1) 研究渔具材料刚度、阻尼对数值模拟精度的影响;2) 结合金枪鱼的行为特征研究其上钩后的水动力,并将其考虑到模型之中,使模型与实际作业状态更加接近;3) 对于渔具与海流、渔船、绞机和渔获物之间的相互作用机理进行深入的数值模拟研究。

    Abstract:

    The mechanical property of longline gear affects fishing efficiency and energy consumption directly. The paper summarizes relevant research methods and progress on the mechanical property of tuna longline gear, including the initial measurement at sea, the model test in the flume tank, and the numerical simulation. Results show that: 1) the theoretical analysis of mechanical property of longline gear have developed from static analysis to dynamic analysis; 2) the model test of longline could only be carried out on a small scale in order to verify the accuracy of numerical simulation analysis under specific circumstances; 3) the perpendicular drag coefficient (CN90) and inertia coefficient (Cm) were determined to be 1.12 and 3, respectively. It is suggested that the future studies on longline gear mechanical property should: 1) foucus on the effects of the stiffness and damping of fishing gear materials on the numerical simulation accuracy; 2) combine the behavioral characteristics of tuna to study the hydrodynamic force after hooking and take it into account in the model, so that the model can match the actual operation state; 3) further numerically simulate the interaction among the fishing gear, current, fishing boat, line hauler and catches.

  • 黄鳍金枪鱼 (Thunnus albacares) 属硬骨鱼纲、辐鳍鱼亚纲、鲈形目、鲭亚目、鲭科、金枪鱼属,是名贵的海洋暖水性上层鱼类。因其背鳍和臀鳍呈黄色 (成年后尤为明显) 而得名,属于金枪鱼中产量最高的一种。黄鳍金枪鱼具有高度洄游的特性,广泛分布于世界三大洋的热带和温带水域,最大体长可达3 m,体质量可达225 kg。因营养价值丰富、味道鲜美可口而深受消费者喜爱[1]。目前,关于黄鳍金枪鱼的研究主要集中在营养成分、捕捞、鱼群分布、开发利用、保鲜运输等方面。澳大利亚、日本、墨西哥、巴拿马等国已开展黄鳍金枪鱼的网箱养殖作业并取得良好效果[2-9]。我国关于黄鳍金枪鱼养殖研究的公开报道较少。Ma等[10]研究了美济礁深水网箱养殖的黄鳍金枪鱼幼鱼驯化过程中摄食水深的变化;方伟等[11]开展了5月龄黄鳍金枪鱼幼鱼形态性状对体质量的相关性及通径分析。目前黄鳍金枪鱼养殖方式主要为网箱养殖,养殖所需幼鱼主要来自于野生苗种诱捕。我国黄鳍金枪鱼网箱及陆基循环水驯化养殖技术仍处于起步阶段[12]

    高价值经济鱼类新品种的开发需要详细的基础研究数据,体质量能反映同批鱼苗的生长状况,通常用作优质品种选育的常规手段[13-16]。鱼类为低等变温脊椎动物,特异性免疫力较低,主要依靠非特异性免疫对外来入侵病原生物、异物或机体产生的有害物质进行清除[17],因此非特异性免疫对其生存具有重要意义[18]。而免疫相关酶的活性变化能够有效反映黄鳍金枪鱼幼鱼免疫能力的变化。鱼体肠道在营养物质的消化和吸收中发挥着重要作用,消化酶活性与鱼类消化系统的功能相适应[19],在一定程度上反映了鱼体消化道的生理状态,鱼体内消化酶活性及其肠道的形态结构受到多种因素影响[20]。有研究表明,投喂策略、投喂饵料种类、发育阶段等均会影响鱼体内的消化酶活性[20-21]。因此测定不同体质量黄鳍金枪鱼幼鱼的各种消化酶活性对研究其食性偏好有重要意义。目前关于黄鳍金枪鱼幼鱼陆基循环水养殖的基础数据较少,尚未见不同体质量黄鳍金枪鱼幼鱼酶活指标差异的研究。本研究测定了不同体质量黄鳍金枪鱼幼鱼的基础数据,为其陆基养殖积累基础数据,有利于构建设施化金枪鱼养殖技术体系,为我国后续开展金枪鱼深远海养殖和陆基循环水养殖推广奠定基础。

    黄鳍金枪鱼幼鱼共60尾,由中国水产科学研究院深远海养殖技术与品种开发创新团队于2020年11月—2021年2月在海南陵水黎族自治县新村镇附近海域诱捕,并转运至基地后进行驯化养殖,驯养池规格为长8.6 m×宽5.6 m×高2.8 m。各项水质指标为:水温 (22.5±0.5) ℃,溶解氧质量浓度>8.50 mg·L−1,pH 7.93±0.12,盐度33,氨氮<0.1 mg·L−1,亚硝态氮质量浓度<0.1 mg·L−1,实验用鱼体质量410~2 580 g。驯化期间投喂新鲜杂鱼。

    经过1个月的驯养,野生黄鳍金枪鱼幼鱼能正常摄食人工投料视为驯化成功。驯化成功后,将其按照体质量分为4组 [500 g (250~750 g)、1 000 g (750~1 250 g)、1 500 g (1 250~2 000 g)、2 500 g (2 000~3 000 g)],每组15尾,每组随机抽取5尾进行麻醉。黄鳍金枪鱼幼鱼使用丁香酚 (10~30 μg·L−1) 麻醉后,用一次性注射器 (注射器用抗凝剂肝素润洗) 从幼鱼尾部抽取血液样品 (每尾取血4 mL) 并按照比例加入抗凝剂 [(每mL血液肝素用量为(15±2.5) U],于4 ℃保存并静置30 min,然后用台式高速冷冻离心机 (型号EXPERT 18K-R) 4 ℃、3 000 r·min−1离心10 min。提取上清液后测定血液样品酶活。采血完成后的黄鳍金枪鱼幼鱼解剖取肌肉、胃、前肠、肝脏等组织用于样品测定。测定酸性磷酸酶 (ACP)、碱性磷酸酶 (AKP)、淀粉酶、脂肪酶、蛋白酶等数据,数据精确到小数点后两位。

    称量各实验组样品后,与0.2 mol·L−1生理盐水按指定比例进行研磨,研磨液2 ℃,研磨后4 ℃、15 000 r·min−1离心10 min,取上清,置于−80 ℃备测,各消化酶及免疫酶活性分别采用相关试剂盒进行测定 (南京建成生物工程研究所)。本实验中酶活性以每毫克可溶解蛋白酶活性值 (U·mg−1)、每克可溶解蛋白酶活性值 (U·g−1)、每升可溶解蛋白酶活性值 (U·L−1) 表示。

    采用Excel 2010软件整理数据并作图,利用SPSS 19.0软件进行显著性差异分析,P<0.05为差异显著。

    不同体质量的黄鳍金枪鱼幼鱼不同组织中的ACP活性存在一定差异,均表现为肠道>肌肉>肝脏>血清 (图1)。血清中的ACP活性在体质量500 g时达到最高 [(1 655.99±194.95) U·L−1],而后随着体质量的增加逐渐降低,而当体质量达1 500 g时降至最低 [(763.67±38.14) U·L−1],当体质量达2 500 g时又轻微回升 [(929.64±86.85) U·L−1],且相邻两组之间差异显著 (P<0.05) 。仅在体质量为1000 g时,肠组织中ACP活性 [(420 382.21±37 313.08) U·L−1],显著低于其余体质量组 (P<0.05) ,其余组间差异不显著 (P>0.05)。肌肉组织和肝脏中ACP活性在不同体质量组间差异不显著 (P>0.05),未见规律性变化。

    图  1  黄鳍金枪鱼幼鱼不同组织中酸性磷酸酶活性差异
    Figure  1.  Difference of ACP activity in various tissues of juvenile T. albacares

    不同体质量黄鳍金枪鱼幼鱼各组织中AKP活性存在差异,均表现为肠道>肝脏>肌肉>血清 (图2)。血清中AKP活性在体质量为500、1 000、1 500 g 组中差异不显著,当体质量为2 500 g时血清中AKP活性骤降 [(29.97±3.56) U·g−1],与其他体质量组之间差异显著 (P<0.05)。肠组织中AKP活性在体质量为1 000 g时有所下降 [(29.97±3.56) U·g−1],与其他体质量组之间差异显著 (P<0.05),其他各组间差异不显著 (P>0.05)。肌肉组织中AKP活性随着体质量的增加呈先下降后逐渐稳定的趋势,500 g体质量组中AKP活性 [(411.62±49.32) U·g−1] 显著高于1 000和2 500 g组 (P<0.05),1 500 g体质量组与其他各组间差异不显著 (P<0.05)。肝脏中AKP活性随着体质量的增加呈先轻微下降后缓慢增加的趋势,当体质量为1 000 g时,活性最低[(74 883.05±991.00) U·g−1],体质量为2 500 g时活性最高 [(116 359.06±1 295.10) U·g−1],相邻两组间差异显著 (P<0.05)。

    图  2  黄鳍金枪鱼幼鱼不同组织中碱性磷酸酶活性差异
    Figure  2.  Difference of AKP activity in various tissues of juvenile T. albacares

    随着体质量的增加,黄鳍金枪鱼幼鱼消化器官中各消化酶活性出现一定波动,但整体较稳定 (图3)。肠道中3种消化酶活性依次为胰蛋白酶>淀粉酶>脂肪酶;胃中2种消化酶活性为淀粉酶>胃蛋白酶。黄鳍金枪鱼幼鱼各体质量之间肠道淀粉酶、肠道脂肪酶、胃淀粉酶、胃蛋白酶活性差异均不显著 (P>0.05)。肠道胰蛋白酶活性呈波动性变化,体质量为500 g时活性最高 [(3 230.51±628.91) U·mg−1],显著高于体质量1 000和2 500 g 组 (P<0.05),其他3组间差异不显著 (P>0.05)。

    图  3  黄鳍金枪鱼幼鱼不同器官中消化酶活性差异
    Figure  3.  Difference of digestive enzyme activities in various tissues of juvenile T. albacares

    磷酸酶包括ACP和AKP 两种,是重要的磷代谢酶,具有促进含磷 (P) 物质消化吸收、代谢、转化、转运、再利用等的功能,同时是重要的免疫反应酶及重要的解毒酶类[22]。有研究表明,ACP和AKP是细胞磷酸化和去磷酸化可逆性调节机制的重要参与者,也是细胞增殖启动的重要参与者[23-24],因此其活性高低可有效反映鱼类对P或含P物质的分解、吸收、再利用、转运等功能的有效性,反映对外来入侵物的分解能力,起到免疫的效果[25]

    ACP是溶酶体的标志酶之一,其反应颗粒分布之处表明溶酶体和其他水解酶的存在,细胞内消化过程在此处进行[18]。4个体质量组4种组织中ACP活性均表现为肠道>肌肉>肝脏>血清。研究结果与茴鱼 (Thymdlus grube) 相似 (肾脏>肌肉>肝脏),且活性均高于茴鱼[18]。说明本实验中黄鳍金枪鱼幼鱼溶酶体和其他水解酶丰富,细胞内消化过程活跃,其中肠道、肌肉和肝脏代谢速率较高,对含P物质的分解、吸收和利用效率高,对外来入侵物质或入侵生物的清理能力强。外在表现为免疫力强、生长速度快和运动量大。其中肠道的ACP活性在所有质量组中均最高,表明本实验中肠道ACP更活跃,而其高活性代表对含P物质分解、消化和吸收能力更强。可能因为肠道是与食物直接接触的重要器官,需要更强的免疫力来分解细菌、病毒或有毒有害物质,保证自身的内环境稳态。而肌肉和肝脏中ACP活性较高可能是因为在本实验中黄鳍金枪鱼幼鱼处于快速生长阶段,需要大量的营养物质参与机体构建,因此通过提高ACP活性的方式提高细胞对含P物质的吸收利用能力。而血清中ACP活性最低,可能与血液的主要功能为转运有关。肠道、肌肉、肝脏3种组织中的ACP活性保持稳定,同时血清中ACP活性稳步地降低,表明无明显的外界刺激,黄鳍金枪鱼内环境稳定,养殖过程中生活环境及饵料供给较稳定,未发生突发性疾病印证了这一点。

    AKP是一种重要的免疫反应酶,直接参与磷酸基团的转移,具有重要的调控功能,其活性在机体代谢中起着非常关键的作用,在临床医学中通常作为诊断外来病原入侵或环境毒素入侵等的重要指示[26-28]。在本研究中,AKP活性在所有体质量组中均表现为肠道>肝脏>肌肉>血清,这与长丝鲈 (Osphronemus goramy)、茴鱼及草鱼 (Ctenopharyngodon idella) 的研究结果类似,均为肝>肌肉[29-30]。且在本研究中,肠道及肝脏中AKP活性值远大于肌肉和血清 (相差3个数量级),表明与外界食物直接接触的肠道和重要的免疫器官肝脏需要更高活性的AKP来提高免疫能力。同时肠道是含P物质重要的分解、吸收、转运起点,肝脏是磷酸基团重要的中间存储转化合成器官和免疫器官,对AKP活性均有较高的需求。随着体质量的增加,黄鳍金枪鱼幼鱼肠道和肝脏的AKP活性轻微上升,而血清和肌肉中的则逐渐下降。这可能是因为随着体质量的增加,黄鳍金枪鱼幼鱼器官组织发育程度逐渐完善,组织器官功能的定位及功能分化愈发清晰。同时,养殖条件下黄鳍金枪鱼幼鱼摄食难度低,运动量必然小于野生状态,这可能是导致肌肉AKP活性轻微下降的原因之一。在体质量为2 500 g时,血清中AKP活性骤降,且误差值较小,表明活性数值稳定,受突发性环境因素干扰的可能性较小,应与所处生长发育阶段有关,具体机理有待进一步研究。

    AKP和ACP活性在肠道和肝脏中均较高,表明黄鳍金枪鱼对P具有较强的分解和合成能力,对氨基酸、核苷酸等大分子物质具有较好的分解和再利用能力;对外源物质和自身废弃物有较强的分解和再利用能力;对外界环境因子变化和病原体入侵具有较强的免疫能力和抗逆性。血清中AKP和ACP活性的降低可能与免疫器官逐步发育完善有关。

    蛋白酶、脂肪酶和淀粉酶等是参与营养物质消化和吸收的主要酶类,是评估消化吸收能力及功能的重要指标[31]。淀粉酶可将淀粉催化分解成单糖以便吸收利用[32];脂肪酶能够将食物中的脂肪分解为脂肪酸和甘油分子以便吸收利用[33];蛋白酶可将食物中的蛋白质水解为可供机体吸收的氨基酸[34]。因此测定消化器官中各种消化酶的活性,有助于了解养殖鱼类对所摄食饵料的消化状态[35]。鱼类消化酶活性受多种因素影响,包括发育阶段、季节变化、饵料变化、投喂策略、环境变化等。有研究表明鱼类在不同的发育阶段,其口径有较大变化,导致其摄食饵料的种类也发生变化,为充分吸收利用足够的营养,各种消化酶活性随着摄入饵料种类的变化而改变,例如大弹涂鱼 (Boleophthalmus pectinirostris) 幼鱼、成鱼消化酶活性有显著差异[36]。本研究中,不同体质量的黄鳍金枪鱼幼鱼,口径和体型存在一定差异,测定消化酶活性可有效反映其不同体质量之间生理生化及所需营养的变化。本研究中,黄鳍金枪鱼幼鱼消化器官中各消化酶活性随体质量的增加出现一定波动,但整体较稳定。不同体质量之间肠道淀粉酶、肠道脂肪酶、胃淀粉酶、胃蛋白酶活性均无显著差异 (P>0.05)。肠道蛋白酶活性呈波动性变化,体质量为500 g时活性最高 [(3 230.51±628.91) U·mg−1],显著高于体质量为1 000 g和2 500 g两组 (P<0.05),其他体质量组之间差异不显著 (P>0.05)。有研究表明,脂肪酶活性在肉食性鱼类中较高,淀粉酶活性在草食性鱼类中较高[37],如在青鱼 (Mylopharyngodon piceus) 肠道中发现类似的结果,即胰蛋白酶活性>脂肪酶活性>淀粉酶活性[38]。本研究结果与之不同,黄鳍金枪鱼幼鱼肠道中3种消化酶活性排序为胰蛋白酶>淀粉酶>脂肪酶。与青鱼相比,黄鳍金枪鱼的淀粉酶活性更高、胰蛋白酶活性相似、脂肪酶活性较低,表明黄鳍金枪鱼幼鱼对蛋白类营养物质和淀粉类营养物质有较好的吸收利用能力,而对脂肪的需求量相对较少;与大弹涂鱼对比发现,本研究中黄鳍金枪鱼胃蛋白酶、淀粉酶活性更高,而脂肪酶活性差异较小[36],表明黄鳍金枪鱼对蛋白类和淀粉类食物有更好的消化吸收能力。有研究指出黄鳍金枪鱼肌肉脂肪含量较低[4],对脂肪的消化吸收能力相对较差,可能是导致肌肉的脂肪含量较低的原因。而降低对脂肪类食物的消化吸收速率,保持较高的蛋白酶、淀粉酶消化吸收速率,有利于降低体脂率,保持更好的运动能力。

    本研究表明,黄鳍金枪鱼幼鱼在陆基循环水养殖条件下不同体质量之间存在免疫酶和消化酶活性差异。AKP和ACP活性在肠道和肝脏中均较高,黄鳍金枪鱼在重要的外源物质接触器官和重要的免疫器官对P或含P类营养物质具有较强的分解、吸收和合成利用的能力,对外源入侵物具有较高的免疫能力。肌肉ACP活性高于AKP,表明肌肉对P的利用功能大于转运。ACP和AKP活性随着体质量的增加在黄鳍金枪鱼幼鱼不同组织中的表达量有所变化。黄鳍金枪鱼幼鱼消化酶活性整体稳定,随着体质量的变化小范围地增加或降低,差异较小。蛋白酶活性最高表明其摄食偏好肉类。黄鳍金枪鱼2种免疫相关酶活性及其相关指标随体质量增加的变化规律有所差异,这可能与免疫器官的逐步发育完善有关,具体机理有待进一步研究。黄鳍金枪鱼幼鱼对蛋白类营养物质和淀粉类营养物质有较好的吸收利用能力,而对脂肪的需求量相对较少,内在原因及机理有待进一步探索。

  • 表  1   海上实测研究状况

    Table  1   Progress of measurement at sea

    研究人员
    Researcher
    所用仪器
    Instrument
    结果
    Result
    存在问题
    Existing problem
    Boggs[15] 微型深度温度仪 (TDR) 影响钓钩深度的因素是流剪切力 预测深度与实际测量深度相差较大
    Mizuno等[16] TDR 空间形态受水流和剪切力的影响 测量区域渔具出现大幅度上浮
    Mizuno等[17] GPS系统 空间形态受垂直水流的变化影响 实际短缩率比理论短缩率低
    Miyamoto等[18] 浮子系统与GPS系统 测试系统可用于研究钓钩深度与水下形态变化 定位系统精度不高
    宋利明和高攀峰[19] TDR 建立了钓钩深度预测模型 对于环境因子如何影响钓钩深度的机理未作分析
    Bach等[20] TDR 实测深度通常比预测的要小 未研究延绳钓变浅的因素
    张艳波等[21] TDR 钓钩深度平均上浮率为13.5% 未研究钓钩深度与海洋环境因子的关系,实测深度仅65个
    沈智宾[22] TDR、多普勒三维海流计 三维海流影响钓钩深度 未考虑延绳钓渔获物分布情况对钓钩深度的影响
    李杰等[23] TDR、多普勒三维海流计 获得13 d、28 枚钓钩的实测深度数据 未考虑海流对钓钩深度的影响
    下载: 导出CSV

    表  2   延绳钓的力学理论分析状况

    Table  2   Progress of mechanical theoretical analysis of longline gear

    研究人员
    Researcher
    原理/公式
    Principle/Formula
    结果
    Result
    存在问题
    Existing problem
    Bigelow等[24] 悬链线公式 得出了钓钩深度计算经验公式 未考虑渔具结构、海面风速及洋流对钓钩深度的影响
    吴因文和吴殷书[25] 抛物线与悬链线理论 得出理论钓钩深度大于实际深度 未考虑海流对钓钩深度的影响
    Lee等[26] 柔性系统简化为质点弹簧 建立了延绳钓渔具动力学模型 未考虑复杂海洋环境对钓钩深度的影响
    Bigelow等[27] 悬链线公式 得出赤道潜流和水流剪切力使钓钩深度变浅 延绳钓干线垂度在变化,无法量化表达
    Bach等[20] 广义加性、广义线性模型 干线的形状等可预测钓钩深度 环境变量对钓钩深度的影响没有考虑
    马家志等[28] 悬链线公式 得到实测的钓钩深度 未考虑海洋环境变量对钓钩深度的影响
    栾松鹤等[29] 悬链线公式 得到钓钩深度 未考虑影响上浮率的具体因素
    冯波等[30] 悬链线原理、最小二乘法 得到渔获深度分布状况 直接使用悬链线钓钩深度
    刘莉莉等[31] 悬链线公式 得到最优捕获深度 钓钩深度上浮率精度低
    下载: 导出CSV

    表  3   延绳钓数值模拟研究状况

    Table  3   Progress of numerical simulation of longline gear

    研究人员
    Researcher
    原理/方法
    Principle/Method
    结果
    Result
    存在问题
    Existing problem
    Wan等[32] 非线性有限元方法 研究延绳钓的空间形状可用数值模拟的方法 未考虑海流的影响
    Lee等[26,34] 模拟过程考虑海流及短缩率变化 利用模拟的结果可以提高捕捞效率 未考虑材料的物理性质、海流为均匀流
    Wan等[36] 数值模拟,迭代求解方程 得到渔具张力分布与形状的数值解 未考虑材料的物理性质、海流为均匀流
    周际[37] 有限元原理和牛顿迭代法 垂直于两浮子连线的海流影响干线的形状 为静力学模型
    Balash等[38] 集中质量法模拟 传统的无量纲参数不能很好地量化特殊系数 未确定质量附加系数
    宋利明等[39] 最小势能原理与有限元方法 预测钓钩深度并可视化渔具形状 为静力学模型
    宋利明等[40] 有限元方法 得到模拟深度与实测深度无显著性差异 为静力学模型
    曹道梅[14] 假设渔具不承受扭矩和挤压力、动力学方法 得出钓钩深度,通过模型计算节点张力变化 未考虑海流、渔船、绞机和渔获物之间的相互作用
    Zhang等[41] 全隐式算法和虚拟神经点阵求解 方法高效可靠 未测量实际海流状态进行模拟
    Cao等[42] 有限元方法 阻力系数 (CN90) 介于1.08~1.16 为静力学模型
    Song等[43] 集中质量法建模、欧拉-梯形法求解 减少节点方程可提高计算速度 模型求解中个别情况计算出现发散
    沈智宾[22] 动力学方法、干线上的拉力设置为恒定值模拟起绳过程 起绳过程可用数值模拟方法 个别钓钩实测与模拟的沉降时间差较大
    Song等[44] 集中质量法建立动力学模型 起绳过程模型可用于分析海流、渔船、绞机和渔获物之间的相互作用、优化绞机的设计 未充分考虑海流、渔船、绞机和渔获物的影响
    下载: 导出CSV
  • [1] 宋利明. 渔具测试[M]. 北京: 中国农业出版社, 2017: 85-88.
    [2] 官文江, 朱江峰, 高峰. 印度洋长鳍金枪鱼资源评估的影响因素分析[J]. 中国水产科学, 2018, 25(5): 1102-1114.
    [3] 官文江, 朱江峰, 田思泉. 应用贝叶斯生物量动态模型评估印度洋黄鳍金枪鱼资源[J]. 中国水产科学, 2018, 25(3): 621-631.
    [4]

    SANTOS R C, SILVA-COSTA A, SANT'ANA R A, et al. Improved line weighting reduces seabird bycatch without affecting fish catch in the Brazilian pelagic longline fishery[J]. Aquat Conserv, 2019, 29(3): 442-449. doi: 10.1002/aqc.3002

    [5]

    TASKER M. Educational and training material for use in reducing seabird by catch[C]//Indian Ocean Tuna Commission, Victoria, Seychelles. 2nd Session of The Working Party on Environment and Bycatch. IOTC-2006-WPBy-INF05, 2006:1-2.

    [6] 邵化斌. 海洋动物保护的国际管理机制研究[D]. 上海: 上海海洋大学, 2018: 1-4.
    [7] 庄之栋. 大西洋金枪鱼延绳钓重要兼捕种类的生物学研究[D]. 上海: 上海海洋大学, 2011: 1-8.
    [8] 姜润林, 戴小杰, 许柳雄. 热带大西洋金枪鱼延绳钓兼捕鲨鱼种类组成和渔获率及其与表温的关系[J]. 海洋渔业, 2009, 31(4): 389-394. doi: 10.3969/j.issn.1004-2490.2009.04.008
    [9] 杨胜龙, 张忭忭, 唐宝军, 等. 基于GAM模型分析水温垂直结构对热带大西洋大眼金枪鱼渔获率的影响[J]. 中国水产科学, 2017, 24(4): 875-883.
    [10] 周成. 东太平洋公海长鳍金枪鱼延绳钓渔获特征的研究[C]//中国水产学会, 四川省水产学会. 2016年中国水产学会学术年会论文摘要集, 2016: 438-439.
    [11]

    BEVERLY S, CURRAN D, MUSYL M, et al. Effects of eliminating shallow hooks from tuna longline sets on target and non-target species in the Hawaii-based pelagic tuna fishery[J]. Fish Res, 2009, 96(2/3): 281-288.

    [12] 刘勇, 程家骅. 渔业多鱼种综合开捕网目尺寸和捕捞努力量管理目标确定方法探讨[J]. 渔业科学进展, 2015, 36(6): 1-7. doi: 10.11758/yykxjz.20150601
    [13] 许友伟, 戴小杰, 陈作志. 大西洋延绳钓渔获物常见种类的生态风险评估[J]. 上海海洋大学学报, 2015, 24(3): 441-448.
    [14] 曹道梅. 金枪鱼延绳钓渔具动力学模拟[D]. 上海: 上海海洋大学, 2011: 16-28.
    [15]

    BOGGS C H. Depth, capture time, and hooked longevity of longline caught pelagic fish[J]. Fish Bull, 1992, 90(4): 642-658.

    [16]

    MIZUNO K, OKAZAKI M, NAKANO H, et al. Estimation of underwater shape of tuna longline by using micro-BTs[J]. Bull Nat Res Ins Far Seas Fish, 1997, 34(1): 1-24.

    [17]

    MIZUNO K, OKAZAKI M, MIYABE N. Fluctuation of longline shortening rate and its effect on underwater longline shape[J]. Bull Nat Res Ins Far Seas Fish, 1998, 35(1): 155-164.

    [18]

    MIYAMOTO Y, UCHIDA K, ORII R, et al. Three-dimensional underwater shape measurement of tuna longline using ultrasonic positioning system and ORBCOMM buoy[J]. Fish Sci, 2006, 72(1): 63-68. doi: 10.1111/j.1444-2906.2006.01117.x

    [19] 宋利明, 高攀峰. 马尔代夫海域延绳钓渔场大眼金枪鱼的钓获水层、水温和盐度[J]. 水产学报, 2006, 30(3): 335-340.
    [20]

    BACH P, GAERTNER D, MENKES C, et al. Effects of the gear deployment strategy and current shear on pelagic longline shoaling[J]. Fish Res, 2009, 95(1): 55-64. doi: 10.1016/j.fishres.2008.07.009

    [21] 张艳波, 戴小杰, 朱江峰, 等. 东南太平洋金枪鱼延绳钓主要渔获种类垂直分布[J]. 应用生态学报, 2015, 26(3): 912-918.
    [22] 沈智宾. 金枪鱼延绳钓渔具作业过程数值模拟[D]. 上海: 上海海洋大学, 2016: 11-14.
    [23] 李杰, 晏磊, 杨炳忠, 等. 罩网兼作金枪鱼延绳钓的钓钩深度与渔获水层分析[J]. 海洋渔业, 2018, 40(6): 660-669. doi: 10.3969/j.issn.1004-2490.2018.06.003
    [24]

    BIGELOW K A, HAMPTON J, MIYABE N. Application of a habitat-based model to estimate effective longline fishing effort and relative abundance of Pacific bigeye tuna (Thunnus obesus)[J]. Fish Oceanogr, 2002, 11(3): 143-155. doi: 10.1046/j.1365-2419.2002.00196.x

    [25] 吴因文, 吴殷书. 悬链线和抛物线理论在金枪鱼延绳钓渔业中的应用[J]. 海洋渔业, 2005, 27(1): 1-9. doi: 10.3969/j.issn.1004-2490.2005.01.001
    [26]

    LEE C W, LEE J H, CHA B J, et al. Physical modeling for underwater flexible systems dynamic simulation[J]. Ocean Eng, 2005, 32(3/4): 331-347.

    [27]

    BIGELOW K, MUSYL M K, POISSON F, et al. Pelagic longline gear depth and shoaling[J]. Fish Res, 2006, 77(2): 173-183. doi: 10.1016/j.fishres.2005.10.010

    [28] 马家志, 虞聪达, 郑基, 等. 北大西洋公海金枪鱼延绳钓渔具渔法及其性能调查研究[J]. 浙江海洋学院学报(自然科学版), 2015, 34(3): 287-292.
    [29] 栾松鹤, 戴小杰, 田思泉, 等. 中西太平洋金枪鱼延绳钓主要渔获物垂直结构的初步研究[J]. 海洋渔业, 2015, 37(6): 501-509. doi: 10.3969/j.issn.1004-2490.2015.06.003
    [30] 冯波, 龚超, 钟子超, 等. 南海金枪鱼延绳钓作业参数优化[J]. 渔业现代化, 2018, 45(4): 64-69. doi: 10.3969/j.issn.1007-9580.2018.04.010
    [31] 刘莉莉, 周成, 虞聪达, 等. 钓钩深度和浸泡时间对东太平洋公海长鳍金枪鱼延绳钓渔获性能的影响研究[J]. 中国海洋大学学报(自然科学版), 2018, 48(1): 40-48.
    [32]

    WAN R, HU F, TOKAI T, et al. A method for analyzing the static response of submerged rope systems based on a finite element method[J]. Fish Sci, 2002, 68(1): 65-70. doi: 10.1046/j.1444-2906.2002.00390.x

    [33] 万荣, 宋协法, 唐衍力, 等. 渔具模型空间形状的计测方法[J]. 水产学报, 2004, 28(4): 443-449.
    [34]

    LEE J H, LEE C W, CHA B J. Dynamic simulation of tuna longline gear using numerical methods[J]. Fish Sci, 2005, 71(6): 1287-1294. doi: 10.1111/j.1444-2906.2005.01095.x

    [35] 张新峰, 胡夫祥, 许柳雄, 等. 网渔具计算机数值模拟的研究进展[J]. 海洋渔业, 2015, 37(3): 277-287. doi: 10.3969/j.issn.1004-2490.2015.03.011
    [36]

    WAN R, CUI J H, SONG X F, et al. A numerical model for predicting the fishing operation status of tuna longlines[J]. 水产学报, 2005, 29(2): 238-245.

    [37] 周际. 印度洋金枪鱼延绳钓钓钩深度模型[D]. 上海: 上海海洋大学, 2008: 1-93.
    [38]

    BALASH C, COLBOURNE B, BOSE N, et al. Aquaculture net drag force and added mass[J]. Aquacult Eng, 2009, 41(1): 14-21. doi: 10.1016/j.aquaeng.2009.04.003

    [39] 宋利明, 张智, 袁军亭, 等. 基于最小势能原理的延绳钓渔具作业状态数值模拟[J]. 中国水产科学, 2011, 18(5): 1170-1178.
    [40] 宋利明, 张智, 袁军亭, 等. 基于有限元分析的漂流延绳钓渔具作业状态数值模拟[J]. 海洋与湖沼, 2011, 42(2): 256-261. doi: 10.11693/hyhz201102014014
    [41]

    ZHANG X F, CAO D M, SONG L M, et al. Application of whole-implicit algorithm and virtual neural lattice in pelagic longline modeling[C]//IEEE. 9th International Conference on Fuzzy Systems and Knowledge Discovery, Sichuan, China, 2012: 2603-2606.

    [42]

    CAO D M, SONG L M, LI J, et al. Determining the drag coeffcient of a cylinder perpendicular to waterflow by numerical simulation and field measurement[J]. Ocean Eng, 2014, 85(1): 93-99.

    [43]

    SONG L M, LI J, XU W Y, et al. The dynamic simulation of the pelagic longline deployment[J]. Fish Res, 2015, 167(1): 280-292.

    [44]

    SONG L M, QI Y K, LI J, et al. Dynamic simulation of pelagic longline retrieval[J]. J Ocean Univ China, 2019, 18(2): 455-466. doi: 10.1007/s11802-019-3990-7

    [45]

    TRIANTAFYLLOU M S, HOWELL C T. Dynamic response of cables under negative tension: an ill-posed problem[J]. J Sound Vib, 1994, 173(4): 433-447. doi: 10.1006/jsvi.1994.1239

    [46]

    FROST G, COSTELLO M. Improved deployment characteristics of a tether-connected munition system[J]. J Guid Control Dyn, 2001, 24(3): 547-554. doi: 10.2514/2.4745

  • 期刊类型引用(4)

    1. 刘雪娇,李洁,郸彩霞,海强,刘浩,刘哲,朱利瑞,王建福. 氨氮胁迫对虹鳟幼鱼IHNV易感性的影响. 中国水产科学. 2025(02): 246-257 . 百度学术
    2. 张宁璐,周胜杰,陈成勋,于刚,马振华,孙金辉. 急性低盐胁迫对黄鳍金枪鱼幼鱼渗透调节影响研究. 天津农学院学报. 2024(04): 55-65+73 . 百度学术
    3. 刘鸿雁,付正祎,于刚,马振华. 黄鳍金枪鱼幼鱼体质量与血液指标关系研究. 南方水产科学. 2023(01): 173-178 . 本站查看
    4. 王文雯,胡静,周胜杰,杨蕊,马振华. 小头鲔幼鱼不同消化器官中消化酶活性分析. 天津农学院学报. 2023(04): 27-31 . 百度学术

    其他类型引用(3)

表(3)
计量
  • 文章访问数:  5334
  • HTML全文浏览量:  2845
  • PDF下载量:  67
  • 被引次数: 7
出版历程
  • 收稿日期:  2019-09-12
  • 修回日期:  2019-10-30
  • 录用日期:  2020-01-10
  • 网络出版日期:  2019-11-27
  • 刊出日期:  2020-04-04

目录

/

返回文章
返回