热带西太平洋帆蜥鱼胃含物组成分析

刘攀, 戴小杰, 王杰, 高春霞, 吴峰, 王学昉

刘攀, 戴小杰, 王杰, 高春霞, 吴峰, 王学昉. 热带西太平洋帆蜥鱼胃含物组成分析[J]. 南方水产科学, 2019, 15(1): 20-30. DOI: 10.12131/20180141
引用本文: 刘攀, 戴小杰, 王杰, 高春霞, 吴峰, 王学昉. 热带西太平洋帆蜥鱼胃含物组成分析[J]. 南方水产科学, 2019, 15(1): 20-30. DOI: 10.12131/20180141
LIU Pan, DAI Xiaojie, WANG Jie, GAO Chunxia, WU Feng, WANG Xuefang. Composition of stomach contents of longnose lancetfish (Alepisaurus ferox) in western tropical Pacific Ocean[J]. South China Fisheries Science, 2019, 15(1): 20-30. DOI: 10.12131/20180141
Citation: LIU Pan, DAI Xiaojie, WANG Jie, GAO Chunxia, WU Feng, WANG Xuefang. Composition of stomach contents of longnose lancetfish (Alepisaurus ferox) in western tropical Pacific Ocean[J]. South China Fisheries Science, 2019, 15(1): 20-30. DOI: 10.12131/20180141

热带西太平洋帆蜥鱼胃含物组成分析

基金项目: 农业农村部远洋渔业观察员项目(08-25);国家自然科学基金项目(41506151)
详细信息
    作者简介:

    刘 攀(1993—),男,硕士研究生,从事渔业资源研究。E-mail: 1311656194@qq.com

    通讯作者:

    戴小杰(1966 — ),男,教授,从事渔业资源研究。E-mail: xjdai@shou.edu.cn

  • 中图分类号: S 931.1

Composition of stomach contents of longnose lancetfish (Alepisaurus ferox) in western tropical Pacific Ocean

  • 摘要:

    根据中国金枪鱼延绳钓渔业观察员于2017年9月至2018年1月在热带西太平洋(165°45′E~178°00′W,03°02′S~18°34′S)采集的138尾帆蜥鱼(Alepisaurus ferox)样本,对其胃含物组成进行了研究。结果显示,帆蜥鱼胃含物中共鉴定出61种(类)生物,分属鱼类、软体动物、甲壳类、多毛类、刺胞动物和海樽类等6大类44科。此外,还观察到了同类相食现象以及塑料垃圾。胃含物的Shannon-Wiener多样性指数(H')为2.71,Pielou均匀度指数(J')为0.67,饵料优势指数(D)为0.12。相对重要性指数(IRI)分析结果显示软体动物为帆蜥鱼的主要食物,其IRI为7 573.31,占IRI总和百分比(IRI%)为53.11%。在科一级水平上,褶胸鱼科、帆蜥鱼科、龙骨螺科、翼管螺科、单盘蛸科、爪乌贼科、刺虾科、宽腿鰯科、Eurytheneidae和浮沙蚕科为其优势饵料。

    Abstract:

    We investigated the composition of the stomach contents of 138 longnose lancetfish (Alepisaurus ferox) collected from September 2017 to January 2018 by the Chinese Longline Fisheries Observer Programme in the western tropical Pacific Ocean (165°45′E−178°00′W, 03°02′S−18°34′S). A total of 61 species from 44 families, belonging to six prey groups (Fish, Mollusca, Crustacea, Polychaeta, Cnidaria and Thaliacea) were identified. Cannibalism and plastic debris ingestion were also observed. The obtained values of Shannon-Wiener diversity index (H'), Pielou evenness index (J') and dominance index (D) of A. ferox's diet composition were 2.71, 0.67 and 0.12, respectively. The result of index of relative importance (IRI) analysis indicates that Mollusca was the dominant prey with IRI of 7 573.31 which accounted for 53.11% of total IRI. At family level, Sternoptychidae, Alepisauridae, Carinariidae, Pterotracheidae, Bolitaenidae, Onychoteuthidae, Oplophoridae, Platyscelidae, Eurytheneidae and Alciopidae were the most important preys of A. ferox.

  • 养殖水体的溶氧浓度直接影响着水生动物的生存、生长和繁殖,是决定养殖成败和养殖效益的关键因素[1-3]。当水体溶氧低于一定水平时,需要通过人工增氧方式对水体进行增氧,以维持充足和持续的溶氧供应,满足水生动物的生长需求[4-5]。近年来,随着中国水产养殖不断向深远海拓展,海上集约化养殖取得良好发展,其中,大型养殖工船集约化养殖是建设“海上粮仓”的典型代表[6] 。由于养殖密度高,养殖工船增氧显得极为重要。目前常见的增氧方式主要包括氧锥增氧、微孔曝气增氧、低压纯氧混合增氧、射流增氧等[7-11]。其中,氧锥增氧因具有较高的氧转移速率,且混合后水体溶氧饱和度高,比较适合超高密度养殖的增氧需求[12-13]

    氧锥由Speece于20世纪70年代发明,并于90年代应用于水产养殖增氧[14]。氧锥作为锥形结构气液接触发生器,其内部流动属于典型的气液两相流,流场分布直接影响到装置内各相的接触和混合效果,进而决定了装置的运行效果[15]。氧锥的几何结构尺寸、气液流速比、工作压力等参数是影响其增氧能力的重要因素。目前,对氧锥的研究主要有:陈友光等[16]研究了采用纯氧气源的氧锥增氧规律,推算出在氧锥最大氧气利用率的条件下,养鱼系统需配置的氧锥数量;房艳等[17]采用基于混合模型的流体仿真,计算分析了进气管布置在竖直管上不同距离的氧锥内部混合流速度云图,并探讨了进气管布置在竖直管上不同距离的氧锥增氧能力;Ashley等[18]研究了一定进水流速范围内,气液流速比及氧源种类对氧锥增氧性能参数的影响;杨菁等[19]运用物质平衡等原理对氧锥气液流量运行参数进行设计并通过试验验证,在满足循环养殖系统需氧量的条件下,所设计的气液流量能够实现氧锥高的溶氧效率,并有效降低系统运行能耗。王君等[20]利用单相流体仿真优化氧锥外型,并通过在养殖工船氧锥进气结构引入微孔曝气射流装置,形成二次射流效果提升增氧增氧速度。

    上述研究主要集中进气源 (空气或纯氧)、气液流量及比值、局部进气位置变化对增氧性能的影响,尚并未关注氧锥结构本身主体结构尺寸变化对氧锥内气液两相分布、气液两相流动状态和流场分布情况等的影响, 目前尚无法确定氧锥溶氧性能的关键结构参数,导致目前氧锥结构的优化设计缺乏指导;而通过改变氧锥结构尺寸来开展试验预测氧锥的增氧性能,工作量巨大、效率低。因此,本研究基于大型养殖工船高密度养殖氧锥增氧模式,以氧锥为研究对象,采用基于Euler-Euler两相流数值模拟结合增氧试验验证方法,探讨了不同结构氧锥增氧过程气液两相流动及混合溶氧性能,分析了气相体积分数分布、气液两相流速以及压力分布等流场情况,揭示了气液两相在氧锥内的流动规律,并确定了影响氧锥溶氧性能的关键结构参数,以期为氧锥结构设计提供理论支持。

    图1为深远海大型养殖工船封闭养殖舱增氧系统。与传统循环水养殖增氧相比,该系统组成基本不变,但由于养殖水体成数量级增大,以图1中中国全球首艘10万吨级养殖工船为例,单个养殖舱水体达5 600 m3,养殖密度约20 kg·m−3,每舱单位时间增氧需求量巨大[21-23],氧锥容积及氧锥泵的进水流量则更大,该氧锥设计容积为1.35 m3,氧锥泵流量为140 m3·h−1。对于氧锥的锥度、进气方式及进气管径等结构参数的设计,目前并无标准规范与相关理论研究可借鉴,因此本研究将通过对多氧锥几何模型数值计算分析,得出氧锥优化结构参数。

    图  1  大型工船养殖舱氧锥增氧系统示意图
    Figure  1.  Schematic of speece cone oxygenation system for aquaculture vessel cabin

    本研究建立了8种不同氧锥的模型,采用Creo和Mesh软件分别对氧锥进行建模与网格划分,几何模型前提条件是保持氧锥容积为1.35 m3和进出水口直径为0.15 m不变。氧锥几何模型参数与网格质量信息详见表1,其中,Case1、Case2、Case3是3种不同进气方式的计算案例,进气孔径 (d) 和氧锥锥度 (β) 均相同,其中“顶部进气”表示气体从氧锥顶部进入,与入水方向一致,“左端进气”表示气体从氧锥颈部左端进入,在出水口对面一侧,“右端进气”表示气体从氧锥颈部右端进入,与出水口同侧;Case4、Case5、Case6是3种不同锥度的计算案例,进气方式均和d相同;Case7、Case8是2种不同孔径的计算案例,进气方式均和β相同。模型网格的平均歪斜度 (Skewness) 均介于0.06~0.07,最大歪斜度均小于号1,网格质量优[24],计算精度高。

    表  1  几何模型参数与网格信息
    Table  1.  Geometric model parameters and mesh quality information
    计算案例
    Calculation case
    主要结构参数
    Primary structural parameter
    网格总数
    Total mesh number
    平均歪斜度
    Average skewness
    最大歪斜度
    Maximum skewness
    Case1 顶部进气Top inlet d=15 mm
    β=23°
    27 556 0.0 66 8 0.671
    Case2 左端进气Left inlet 26 906 0.068 3 0.669
    Case3 右端进气Right inlet 26 409 0.068 1 0.623
    Case4 β=17° d=15 mm
    顶部进气Top inlet
    28 327 0.062 2 0.690
    Case5 β=38° 28 337 0.069 1 0.806
    Case6 β=48° 28 840 0.066 3 0.853
    Case7 d=10 β=23°
    顶部进气Top inlet
    27 852 0.065 8 0.674
    Case8 d=20 27 332 0.064 9 0.735
    下载: 导出CSV 
    | 显示表格

    Euler-Euler模型也称为双流体模型,在求解气液两相流体动力学时,计算域中的主相水与次相气体均被视为连续介质,分别针对每一相建立连续性方程和动量方程,并通过压力和相间交换系数的耦合进行求解[25]。其中,连续性方程与动量守恒方程如下:

    $$ \dfrac{\partial }{\partial t}\left({\alpha }_{j}{\rho }_{j}\right){\mathrm{+}}\nabla \cdot \left({\alpha }_{j}{\rho }_{j}{u}_{j}\right){\mathrm{=}}0 $$ (1)
    $$ \begin{array}{c} \dfrac{\partial }{\partial t}\left({\alpha }_{j}{\rho _{j}}u_{j}\right){\mathrm{+}}\nabla \cdot \left({\alpha }_{j}{\rho }_{j}{u}_{j}{u}_{j}\right){\mathrm{=}}\\ {\text{−}} {\alpha }_{j}\cdot \nabla P{\mathrm{+}}\nabla \cdot ({\alpha }_{j}{\tau }_{j}){\mathrm{+}}{F}_{j}{\mathrm{+}}{\alpha }_{i}{\rho }_{i} g \end{array}$$ (2)

    气体和液体体积分数满足:

    $$ {\alpha }_{l}{\mathrm{+}}{\alpha }_{g}{\mathrm{=}}1 $$ (3)
    $$ {\alpha }_{g}{\mathrm{=}}\dfrac{{Q}_{g}}{{Q}_{g}{\mathrm{+}}{Q}_{l}} $$ (4)

    式中:j为任意相 (l代表液相,$ g $ 代表气相);ajj相的体积分数;ρjj相的密度 (kg$ \cdot $m−3);ujj相的流动速度 (m$ \cdot $s−1);t为时间(s);P为压力 (Pa);$ {\tau }_{j} $ 为湍流黏度 (Pa.s);Fj为相间作用力 (N);g为重力加速度 (m$ \cdot $s−2);$ {\alpha }_{g} $ 为氧锥内部含气率;$ {\alpha }_{l} $为氧锥内部含液率;$ {Q}_{g} $ 为气体体积流量 (m3$ \cdot $s−1);$ {Q}_{l} $ 为液体体积流量(m3$ \cdot $s−1)。

    采用标准 $ k{\text{−}}\varepsilon $ 湍流模型进行计算,分别对气液两相建立封闭的雷诺应力项方程。标准$ k{\text{−}}\varepsilon $模型通过求解湍流动能$ k $方程和湍流耗散率$ \varepsilon $方程,得到$ k $和$ \varepsilon $的解,然后再用$ k $和$ \varepsilon $的值计算湍流黏度,最终通过Boussinesq假设得到雷诺应力的解,具有很好的鲁棒性、经济性和对大范围湍流的合理预测,是目前使用最广泛的模型[26]。湍流方程为:

    $$ \dfrac{\partial }{\partial t}\left({\alpha }_{j}{\rho }_{j}{k}_{j}\right){\mathrm{+}}\nabla \cdot \left({\alpha }_{j}{\rho }_{j}{u}_{j}{k}_{j}\right){\mathrm{=}}\nabla \cdot {\alpha }_{j}\dfrac{{\mu }_{t,j}}{{\sigma }_{k}}\nabla {k}_{j}{\mathrm{+}}{\alpha }_{j}{G}_{k,j}{\text{−}}{\alpha }_{j}{\rho }_{j}{\varepsilon }_{j} $$ (5)
    $$ \begin{array}{c} \dfrac{\partial}{\partial t}\left(\alpha_j \rho_j \varepsilon_j\right)+\nabla \cdot\left(\alpha_j \rho_j u_j \varepsilon_j\right)= \\ \nabla \cdot \alpha_j \dfrac{\mu_{t, j}}{\sigma_{\varepsilon}} \nabla \varepsilon_j+\alpha_{k_{k_j}}^{\varepsilon_j}\left(\mathrm{C}_{1 \varepsilon} G_{k, \mathrm{j}}-\mathrm{C}_{2 \varepsilon} \rho_j \varepsilon_j\right) \end{array}$$ (6)

    式中:$ k $ 是湍动能 (J);$ \varepsilon $ 为湍动能耗散率 (%);$ k $ 越大表明湍流脉动长度和时间尺度越大, $ \varepsilon $ 越大则湍流脉动的长度和时间尺度越小,它们是2个制约着湍流脉动的量;$ {\mu }_{t,j} $ 为 j 相的湍流黏度 (Pa.s);$ {\sigma }_{k} $ 为 $ k $ 方程湍流普朗特数,$ {\sigma }_{k} $=1.0;$ {G}_{kj} $ 为 j相由层流速度梯度产生的湍动能 (J);$ {\sigma }_{\varepsilon } $ 为 $ \varepsilon $ 方程湍流普朗特数,$ {\sigma }_{\varepsilon } $=1.3;$ {\mathrm{C}}_{1{\varepsilon }} $、$ {\mathrm{C}}_{2{\varepsilon }} $ 为修正常数,其值分别为1.44、1.92。

    本研究所计算的8种案例中,边界条件和初始条件的设置均相同。其中,进水口、进气口为速度进口边界条件;气液出口为压力出口边界条件;水设置为主相,氧气为次相;氧锥内混合溶氧过程为瞬态计算,初始时刻,氧锥内部流道均为水相,水的体积分数为1,氧气的体积分数为0。时间步长根据库朗数进行估计,库朗数确定了流体在1个时间步长内穿越的网格数,通常取值1~10,本研究将计算时间步长设置为0.05 s,满足库朗数要求,每个时间步长内方程均方根残差小于1.0×10−4。采用有限体积法对连续性方程和动量守恒方程控制方程进行离散数值求解,压力-速度耦合求解采用压力耦合方程组的半隐式方法 (Semi-lmplicit method for pressure-linked equations,简称Simple算法)。

    为验证模拟案例中气液混合效果,通过选择表1中Case1、Case2、Case3 3组案例开展氧锥增氧性能试验,氧锥进气结构预留有3个安装位置,试验运行条件与数值模拟条件保持一致。试验系统如图2所示,使用无鱼条件下水循环系统进行试验,增氧性能试验参照SC/T6009—1999和文献 [27] 进行。当所有试验设备及材料按照图2安装就位,将除氧剂按规定量均匀加入水池中,一旦除氧剂耗尽水中的所有氧气,开启水泵,调整氧锥出口阀门开度,待溶氧出现稳定上升时开始记录并观察氧锥出口气泡情况。当每组试验结束后,先关闭进气阀门,再关闭水泵和氧锥的出口阀门。开始另一组试验时,首先安装好进气管位置,重复上述操作步骤。然后根据现场试验数据绘制溶氧浓度随时间的变化曲线,分析结构变化对氧锥溶氧性能的影响情况,说明氧锥气液两相流混合程度与增氧性能的关系。

    图  2  氧锥增氧试验系统及现场试验图
    Figure  2.  Speece cone oxygenation test system and physical test diagram

    由于对氧锥内部两相流动进行非稳态模拟计算,需要做网格无关性验证。本研究计算了多个不同氧锥二维模型。其中,一部分氧锥模型除了进气位置和进气孔尺寸参数有改变外,氧锥本体几何参数不变,由于进气结构尺寸很小,其网格变化引起的总体网格数量变化很小,几乎可以忽略;另一部分氧锥模型的进气结构及方式不变,氧锥锥度及相应的氧锥高度发生改变,由于氧锥容积不发生改变,氧锥二维模型总体网格数量变化量也很小。因此选用顶部进气方式,进气孔径为15 mm的氧锥算例作为网格无关性验证说明,划分的网格数分别为 15 517、23 816、27 556、38 325、59 526、86 923,在相同计算条件下,当流动状态稳定后,考察在相同曝气量条件下,氧锥出口气体体积分数在不同网格数下是否存在显著差异。由图3可知,网格数量由27 556增至86 923的过程中,氧锥的出口气体体积分数的变化范围在5%以内,此时网格数量对计算结果影响很小,可认为27 556网格数已达到网格无关性,故本文其他氧锥模型算例也选取27 556作为参照网格数量。

    图  3  网格数对出口气体体积分数的影响
    Figure  3.  Effect of grid number on gas volume fraction of outlet

    根据气液两相流原理可知,氧锥在工作时,增氧性能主要取决于气液接触的充分程度[28],气相体积分数能表征该程度。图4为不同进气位置下氧锥内部气相体积分数瞬态图。随着水和气体的不断射入, 两者在氧锥内混合不断加强;当气体从氧锥顶部进入时,气液混合接触面最大,气体充满整个氧锥内大部分面积;当气体从氧锥左端进入时,气液混合接触面主要集中在氧锥内部左上侧面;当气体从氧锥右端进入时,气液混合接触面主要在氧锥内部右侧面,并逐渐有气体积聚。75 s后,顶部进气方式和左端进气方式的氧锥内部气液两相流动趋于稳定,气相体积分数几乎不再变化,左侧进气方式的氧锥内部气体表面积与水的混合面积比例较小,顶部进气方式的气体与水混合程度较大,气相分布均匀;在右端进气方式中,75 s后气液两相分布仍不断变化,有较大气泡生成,并聚集成更大气团,气相分布不均。结合图5中3种不同进气位置的压力云图分析可知,顶部和左端进气方式的压力平稳,而右端进气方式的氧锥内压力波动大,流动不稳定。进一步分析图6中3种进气方式的气体流线图可知,顶部和左端进气方式的气体流速较低,且大部分气体在氧锥内均有上升和下降过程,说明气体在氧锥内部的运动路径较长,气液接触时间长,并随着混合流流出氧锥出口;右端进气方式中仅少量气体快速流出氧锥出口,大量气体未被水及时携带出去,在氧锥内集聚成较大气穴,出现了明显的回流区,阻碍了氧气向水的转移,不利于气液混合与充分溶氧。

    图  4  不同进气位置条件下的不同时刻气相体积分数图
    Figure  4.  Gas-liquid phase diagram at different time by different air inlet positions
    图  5  时压力云图 (t=150 s)
    Figure  5.  Pressure contours at t=150 s
    图  6  气体速度流线图 (t=150 s)
    Figure  6.  Gas velocity contours at t=150 s

    不同进气方式下溶氧度随时间的变化曲线如图7所示,前7 min 3种进气方式对溶氧度的变化不明显,经线性拟合发现顶端进气方式中溶氧上升斜率 (k) 为1.27,左端进气方式中k为1.19,右端进气方式中k为0.86,说明顶部进气方式对溶氧的提升速度逐渐显现,证实了采用顶端进气方式时,氧锥内气体与水混合程度更为充分,增氧效果显著,与数值模拟结果一致。

    图  7  不同进气方式下溶氧度随时间变化曲线
    Figure  7.  Changes in dissolved oxygen concentration along with time by different air inlet positions

    图8为在氧锥容积相同情况下,锥度不同时,氧锥内部气相体积分数瞬态图。锥度17°、23° 和38° 所对应的气相体积分数瞬态图相似,在75 s后气液两相分布基本不再发生变化,整个氧锥面的平均气体体积分数分别为0.153、0.15和0.146,即锥度越小,气液两相在氧锥内混合越充分。当锥度为48° 时,气相体积分数瞬态图发生了巨大变化,并在50 s后逐渐有气体积聚,气体未及时被水携裹带出氧锥。结合图9氧锥内部流场流速分布图分析,在相同氧锥容积下,锥度介于17°~38° 时,速度大小及分布基本相似,锥度越小,氧锥越高,氧气在氧锥内部运动的路径也越长,气液接触时间长,并能随水全部流出氧锥,因此锥度较小的氧锥溶氧性能也较好。但在实际应用中,需综合考虑船舱内的安装高度和现场操作性等因素。在此基础上,尽量设计较小的氧锥锥度,以提高氧锥的溶氧性能。

    图  8  不同时刻气相体积分数图 (不同锥度条件)
    Figure  8.  Gas-liquid phase diagram at different time (Under different cone angles conditions)
    图  9  不同锥度下氧锥内流场速度分布 (t=300 s)
    Figure  9.  Velocity distribution of flow field inside speece cone at different angles (t=300 s)

    图10显示了在不同进气孔尺寸、相同进气流量条件下,气液两相流不再变化时 (75 s后),氧锥内部气相体积分数的瞬时状态。不同孔径下气相体积分数分布仍相似,但是进气孔径 (d) 为10 mm时,氧锥内部几乎全部充满气液混合流体,气相分布均匀,整个氧锥面的平均气相体积分数为0.327。而当d为15和20 mm时,气液混合程度无明显差异,整个氧锥面的平均气相体积分数分别为0.246和0.229,进一步说明在计算进气孔范围内,随着进气孔径的减小,氧锥面的气相体积分数增大。结合图11中氧锥出口体积分数随时间的变化可知,随着气体不断进入氧锥,其出口平均气相体积分数在前30 s内迅速上升,随后增长逐渐放缓,并出现略微波动和下降;60 s后,气相体积分数趋于稳定,基本不再变化,此时d为10、15和20 mm所对应的氧锥出口平均气相体积分数分别为0.199、0.150和0.119;据此可得出,在相同进气方式和进气流量条件下,减小进气孔尺寸有利于气液充分混合,增加氧锥溶氧性能。

    图  10  气相体积分数图 (t=100 s)
    Figure  10.  Gas-liquid phase diagram (t=100 s)
    图  11  氧锥出口气相体积分数随时间变化
    Figure  11.  Changes of gas phase volume fraction of speece cone outlet along with time

    本研究采用Euler-Euler模型,对用于养殖工船封闭舱养的大型氧锥内部曝气溶氧过程进行了气液两相流数值模拟,通过分析不同时刻的气相体积分数分布、气液两相流速及压力分布情况,探讨了不同结构参数对氧锥内部流场与溶氧的影响。本研究发现,在进气流量一定的情况下,当进气与入水从氧锥顶部进入时,气体与水的混合程度较高,试验验证了氧锥顶端进气方式的溶氧性能优于其他2种方式;在氧锥容积相同的情况下,氧锥锥度的变化会引起气液两相的分布,当锥度较小时,氧锥的高度相对较大,氧气在氧锥内部的运动路径及混合时间增加,有利于更充分的溶氧;在相同的进气方式下,氧锥内部的气液两相分布相似,氧锥出气的体积分数随进气孔径的减小而增大,当进气孔径减小至10 mm时,氧锥内部气液混合最充分。

    本研究对研究过程作了一定简化。首先,利用数值模拟方法将气相气泡尺寸设置为相等,而氧锥内实际气液混合流动过程中会不断发生气泡聚集与破碎,生成大小不一的气泡,可进一步反应溶解性能[29-30],因此模拟计算与客观现象存在偏差。其次,氧锥作为一种耐压容器,其运行操作及内部气液混合需要一定承压能力,而可视化的材质耐压容器的制作难度大,因此,本研究未开展可视化氧锥内部流动试验,无法监测氧锥内部气液两相分布变化情况。此外,考虑不同结构氧锥模型的制作时间和经济成本,本研究只遴选其中3组模型进行氧锥增氧性能验证,未对全部仿真案例进行验证。基于此,下一步将开展大量不同结构氧锥内部流动及溶氧性能试验研究,获取氧锥的稳定高效运行参数,为深远海平台高密度养殖增氧设备的工程设计提供参考。

  • 图  1   帆蜥鱼胃含物样本采集点

    Figure  1.   Sampling sites for stomach contents of longnose lancetfish

    图  2   部分帆蜥鱼胃含物

    A. 太平洋塔乌贼;B. 短角高体金眼鲷;C. 布氏叉齿龙䲢;D. Carinaria lamarckii;E. 棘银斧鱼;F. 拟暗色褶胸鱼;G. 锤颌鱼; H. 长剃刀带鱼

    Figure  2.   Stomach contents of some longnose lancetfish

    A. Leachia pacifica; B. Anoplogaster brachycera; C. Chiasmodon braueri; D. Carinaria lamarckii; E. Argyropelecus aculeatus; F. Sternoptyx pseudobscura; G. Omosudis lowii; H. Assurger anzac

    表  1   帆蜥鱼食物种类组成

    Table  1   Food composition of longnose lancetfish

    食物种类
    food species
    数量
    number
    质量/g
    mass
    出现频次
    occurrence frequency
    鱼类 Fish 131 1 855.07 39
    褶胸鱼科 Sternoptychidae 76 303.26 31
    拟暗色褶胸鱼 Sternoptyx pseudobscura 22 155.21 13
    褶胸鱼 Sternoptyx diaphana 47 108.97 21
    棘银斧鱼 Argyropelecus aculeatus 4 32.38 3
    巨银斧鱼 Argyropelecus gigas 3 6.70 3
    灯笼鱼科 Myctophidae 4 9.33 4
    灯笼鱼 Myctophum spp. 4 9.33 4
    线鳞鲷科 Grammicolepididae 6 6.27 3
    异菱的鲷 Xenolepidichthys dalgleishi 6 6.27 3
    副海鲂科 Parazenidae 1 4.60 1
    红腹棘海鲂 Cyttopsis rosea 1 4.60 1
    帆蜥鱼科 Alepisauridae 6 1 389.35 5
    帆蜥鱼 Alepisaurus ferox 3 1 310.00 3
    锤颌鱼 Omosudis lowii 3 79.35 2
    魣蜥鱼科 Paralepididae 7 11.61 4
    裸蜥鱼 Lestidium spp. 7 11.61 4
    粗鳍鱼科 Trachipteridae 1 5.00 1
    多斑扇尾鱼 Desmodema polystictum 1 5.00 1
    双鳍鲳科 Nomeidae 1 4.88 1
    玻璃玉鲳 Psenes cyanophrys 1 4.88 1
    乌鲂科 Bramidae 5 5.90 2
    乌鲂 Brama spp. 4 4.70 2
    彼氏高鳍鲂 Pterycombus petersii 1 1.20 1
    蛇鲭科 Gempylidae 10 35.99 7
    无耙蛇鲭 Nesiarchus nasutus 6 28.55 6
    三棘若蛇鲭 Nealotus tripes 2 4.74 1
    东方新蛇鲭 Neoepinnula orientalis 2 2.70 2
    带鱼科 Trichiuridae 2 48.50 2
    长剃刀带鱼 Assurger anzac 2 48.50 2
    叉齿龙䲢科 Chiasmodontidae 2 7.21 2
    布氏叉齿龙䲢 Chiasmodon braueri 2 7.21 2
    黑犀鱼科 Melanocetidae 2 1.88 1
    黑犀鱼 Melanocetus sp. 2 1.88 1
    高体金眼鲷科 Anoplogastridae 1 10.50 1
    短角高体金眼鲷 Anoplogaster brachycera 1 10.50 1
    翻车鲀科 Molidae 3 0.42 1
    长体翻车鲀 Ranzania laevis 1 0.20 1
    翻车鲀 Mola mola 2 0.32 1
    鲆科幼体 Bothidae larva 1 5.60 1
    未鉴定鱼类 unidentified fish 3 4.77 3
    软体动物 Mollusca 457 3 155.95 47
    龙骨螺科 Carinariidae 264 711.46 33
    龙骨螺 Carinaria cristata 29 89.20 9
    Carinaria lamarckii 190 509.06 30
    Carinaria sp. 45 113.20 7
    翼管螺科 Pterotracheidae 108 533.72 22
    Pterotrachea sp. 108 533.72 22
    龟螺科 Cavoliniidae 14 12.60 7
    Cavolinia spp. 14 12.60 7
    水母蛸科 Amphitretidae 6 148.50 6
    水母蛸 Amphitretus pelagicus 6 148.50 6
    单盘蛸科 Bolitaenidae 17 269.58 11
    单盘蛸 Bolitaena pygmaea 2 9.20 2
    乍波蛸 Japetella diaphana 15 260.38 9
    僧头乌贼科 Sepiolidae 3 11.80 3
    夏威夷异鱿乌贼 Heteroteuthis hawaiiensis 3 11.80 3
    圆乌贼科 Cycloteuthidae 2 4.00 2
    圆盘乌贼 Discoteuthis discus 2 4.00 2
    帆乌贼科 Histioteuthidae 1 856.00 1
    相模帆乌贼 Histioteuthis hoylei 1 856.00 1
    小头乌贼科 Cranchiidae 5 57.56 4
    太平洋塔乌贼 Leachia pacifica 1 52.00 1
    履乌贼 Sandalops melancholicus 4 5.56 3
    手乌贼科 Chiroteuthidae 7 9.63 5
    古洞乌贼 Grimalditeuthis bonplandi 7 9.63 5
    爪乌贼科 Onychoteuthidae 16 390.60 12
    缩手乌贼 Walvisteuthis virilis 1 85.00 1
    Callimachus rancureli 13 232.30 9
    南太平洋爪乌贼 Onychoteuthis meridiopacifica 2 73.30 2
    柔鱼科 Ommastrephidae 2 32.78 2
    夏威夷双柔鱼 Nototodarus hawaiiensis 2 32.78 2
    狼乌贼科 Lycoteuthidae 1 0.82 1
    灯乌贼 Lampadioteuthis megaleia 1 0.82 1
    火乌贼科 Pyroteuthidae 2 2.70 2
    芽翼乌贼 Pterygioteuthis gemmata 2 2.70 2
    未鉴定头足类 unidentified Cephalopods 9 114.20 7
    甲壳动物 Crustacea 373 261.26 39
    礁螯虾科 Enoplometopidae 1 0.65 1
    礁螯虾 Enoplometopus sp. 1 0.65 1
    刺虾科 Oplophoridae 143 146.18 8
    典型刺虾 Oplophorus typus 143 146.18 8
    对虾科 Penaeidae 2 6.20 2
    未鉴定对虾科 unidentified Penaeidae 2 6.20 2
    樱虾科 Sergestidae 20 1.50 1
    樱虾 Sergestes sp. 20 1.50 1
    未鉴定虾类 unidentified shrimps 4 9.59 2
    蟹类幼体 crab larvae 3 0.77 2
    虾蛄科 Squillidae 1 0.50 1
    未鉴定虾蛄 unidentified Squillidae 1 0.50 1
    慎鰯科 Phronimidae 14 7.00 10
    定居慎鰯 Phronima sedentaria 14 7.00 10
    小矛鰯科 Lanceolidae 25 11.43 11
    中间小矛鰯 Lanceola intermedia 25 11.43 11
    宽腿鰯科 Platyscelidae 77 47.52 17
    卵形宽腿鰯 Platyscelus ovoides 77 47.52 17
    Eurytheneidae 81 29.02 15
    Eurythenes sp. 81 29.02 15
    多毛类 Polychaeta 359 80.96 30
    浮沙蚕科 Alciopidae 359 80.96 30
    刺胞动物 Cnidaria 8 3.40 4
    未鉴定双生水母科 unidentified Diphyidae 8 3.40 4
    海樽类 Thaliacea 26 33.85 16
    未鉴定火体虫科 unidentified Pyrosomatidae 9 24.21 6
    未鉴定纽鳃樽科 unidentified Salpidae 17 9.64 11
    其他 other 13 19.31 7
    总和 total 1 364 5 409.38 57
    下载: 导出CSV

    表  2   帆蜥鱼胃含物主要类群分布

    Table  2   Major groups of stomach contents of longnose lancetfish

    类群
    group
    数量百分比
    N%
    质量百分比
    W%
    出现频率
    F%
    相对重要性指数
    IRI
    百分比相对重要性指数
    IRI%
    鱼类 Fish 9.58 34.29 68.42 3 001.90 21.07
    褶胸鱼科 Sternoptychidae 5.56 5.61 54.39 607.24 10.13
    灯笼鱼科 Myctophidae 0.29 0.17 7.02 3.26 0.05
    线鳞鲷科 Grammicolepididae 0.44 0.12 5.26 2.93 0.05
    副海鲂科 Parazenidae 0.07 0.09 1.75 0.28 *
    帆蜥鱼科 Alepisauridae 0.44 25.68 8.77 229.16 3.82
    魣蜥鱼科 Paralepididae 0.51 0.21 7.02 5.11 0.09
    粗鳍鱼科 Trachipteridae 0.07 0.09 1.75 0.29 *
    双鳍鲳科 Nomeidae 0.07 0.09 1.75 0.29 *
    乌鲂科 Bramidae 0.37 0.11 3.51 1.67 0.03
    蛇鲭科 Gempylidae 0.73 0.67 12.28 17.17 0.29
    带鱼科 Trichiuridae 0.15 0.90 3.51 3.66 0.06
    叉齿龙科 Chiasmodontidae 0.15 0.13 3.51 0.98 0.02
    黑犀鱼科 Melanocetidae 0.15 0.03 1.75 0.32 0.01
    高体金眼鲷科 Anoplogastridae 0.07 0.19 1.75 0.47 0.01
    翻车鲀科 Molidae 0.22 0.01 1.75 0.40 0.01
    鲆科 Bothidae 0.07 0.10 1.75 0.31 0.01
    未鉴定鱼类 unidentified fish 0.22 0.09 5.26 1.62 0.03
    软体动物 Molusca 33.43 58.34 82.46 7 573.31 53.11
    龙骨螺科 Carinariidae 19.31 13.15 57.89 1 881.99 31.37
    翼管螺科 Pterotracheidae 7.90 9.87 38.60 686.42 11.44
    龟螺科 Cavoliniidae 1.02 0.23 12.28 15.47 0.26
    水母蛸科 Amphitretidae 0.44 2.75 10.53 33.53 0.56
    单盘蛸科 Bolitaenidae 1.24 4.98 19.30 120.23 2.01
    僧头乌贼科 Sepiolidae 0.22 0.22 5.26 2.31 0.04
    圆乌贼科 Cycloteuthidae 0.15 0.07 3.51 0.77 0.01
    帆乌贼科 Histioteuthidae 0.07 15.82 1.75 27.89 0.47
    小头乌贼科 Cranchiidae 0.37 1.06 7.02 10.04 0.17
    手乌贼科 Chiroteuthidae 0.51 0.18 8.77 6.06 0.10
    爪乌贼科 Onychoteuthidae 1.17 7.22 21.05 176.71 2.95
    柔鱼科 Ommastrephidae 0.15 0.61 3.51 2.64 0.04
    狼乌贼科 Lycoteuthidae 0.07 0.02 1.75 0.16 *
    火乌贼科 Pyroteuthidae 0.15 0.05 3.51 0.69 0.01
    未鉴定头足类 unidentified Cephalopod 0.66 2.11 12.28 34.03 0.57
    甲壳动物 Crustacea 27.29 4.83 68.42 2 201.50 15.42
    礁螯虾科 Enoplometopidae 0.07 0.11 1.75 0.15 *
    刺虾科 Oplophoridae 10.46 2.70 14.04 185.07 3.08
    对虾科 Penaeidae 0.15 0.11 3.51 0.92 0.02
    虾蛄科 Squillidae 0.07 0.01 1.75 0.14 *
    樱虾科 Sergestidae 1.46 0.03 1.75 2.62 0.04
    蟹类幼体 crab larvae 0.22 0.01 3.51 0.82 0.01
    慎鰯科 Phronimidae 1.02 0.13 17.54 20.28 0.34
    小矛鰯科 Lanceolidae 1.83 0.21 19.30 39.45 0.66
    宽腿鰯科 Platyscelidae 5.63 0.88 29.82 194.56 3.24
    Eurytheneidae 5.93 0.54 26.32 170.39 2.84
    未鉴定甲壳类 unidentified Crustacea 0.44 0.19 5.26 3.34 0.06
    多毛类 Polychaeta 26.26 1.50 52.63 1 464.02 10.25
    浮沙蚕科 Alciopidae 26.26 1.50 52.63 1 464.02 24.38
    刺胞动物 Cnidaria 0.59 0.06 7.02 4.56 0.03
    双生水母科 Diphyidae 0.59 0.06 7.02 4.56 0.08
    海樽类 Thaliacea 1.90 0.63 28.07 71.07 0.50
    火体虫科 unidentified Pyrosomatidae 0.66 0.45 10.53 11.66 0.19
    纽鳃樽科 Salpidae 1.24 0.18 19.30 27.49 0.46
    其他 other 0.95 0.36 12.28 16.09 0.11
     注:*. IRI%<0.01
    下载: 导出CSV

    表  3   不同海域帆蜥鱼胃含物组成比较

    Table  3   Comparison of stomach contents of longnose lancetfish from different sea areas

    研究海域
    survey sea area
    西印度洋[5]
    western Indian Ocean
    东印度洋[6]
    eastern Indian Ocean
    珊瑚海[6]
    Coral Sea
    热带西太平洋 (本研究)
    western tropical Pacific Ocean (this paper)
    北太平洋[9]
    North Pacific Ocean
    样本量 sample size 106 28 7 57 1 022
    类群 group W% N% W% N% W% N% W% N% W% N%
    鱼类 Fish 58.02 22.42 21.73 40.12 34.29 9.58 66.67 25.56
    帆蜥
    鱼科
    21.42 3.44 乌鲂科 5.49 乌鲂科 7.56 褶胸
    鱼科
    5.61 5.56 褶胸
    鱼科
    13.18 12.53
    魣蜥
    鱼科
    6.25 4.26 褶胸
    鱼科
    2.44 鲬科 4.07 帆蜥
    鱼科
    25.68 0.44 帆蜥
    鱼科
    27.56 2.46
    褶胸
    鱼科
    2.65 4.42 鲀科 2.32 大眼
    鲷科
    2.33 蛇鲭科 0.67 0.73 高体金眼鲷科 11.59 6.12
    软体动物 Mollusca 8.18 12.27 26.37 23.26 58.34 33.43 21.33 10.05
    单盘
    蛸科
    1.74 1.31 龙骨
    螺科
    15.75 翼管
    螺科
    3.49 龙骨
    螺科
    13.15 19.31 水母
    蛸科
    6.66 1.46
    柔鱼科 1.03 2.29 爪乌
    贼科
    3.17 龙骨
    螺科
    2.33 翼管
    螺科
    9.98 7.90 龙骨
    螺科
    1.98 6.27
    蛸科 0.89 2.62 龟螺科 1.10 龟螺科(爪乌
    贼科、蛸科*)
    1.74 爪乌
    贼科
    7.22 1.17 爪乌
    贼科
    2.31 0.44
    甲壳动物 Crustacean 32.59 49.92 47.37 31.98 4.83 27.29 7.94 34.15
    梭子
    蟹科
    31.16 16.04 喜鰯科 25.89 喜鰯科 12.21 刺虾科 2.70 10.46 喜鰯科 3.99 18.38
    宽腿
    鰯科
    0.64 17.51 宽腿
    鰯科
    17.70 宽腿
    鰯科
    9.30 宽腿
    鰯科
    0.88 5.63 慎鰯科 2.30 7.23
    海精
    鰯科
    0.25 9.98 慎鰯科 1.22 慎鰯科 2.33 Eurythe-neidae 0.54 5.93 宽腿
    鰯科
    0.98 4.34
    多毛类 Polychaetes 0.41 9.82 4.52 4.65 1.50 26.26 4.08 30.26
    浮沙
    蚕科
    1.50 26.26 浮沙
    蚕科
    4.08 30.26
     注:−. 无数据;*. 龟螺科、爪乌贼科和蛸科N%相同  Note: −. no data; *. Cavoliniidae, Onychoteuthidae and Octopolidae are with the same N%.
    下载: 导出CSV

    表  4   帆蜥鱼胃含物中主要被捕食者的大小

    Table  4   Size of principal preys recorded in stomachs of longnose lancetfish

    被捕食者
    prey
    头足类 (n=67,94.37%)*
    Cephalopoda
    甲壳动物 (n=355,95.17%)
    Crustacea
    鱼类 (n=126,96.18%)
    Fish
    胴长/mm
    mantle length
    体长/mm
    body length
    叉长/mm
    fork length
    长度范围 length range 12.6~125.1 17.1~84.1 8.3~702.5
    平均值±标准差 $ \overline X $±SD 45.5±23.1 30.1±10.4 68.6±97.8
     注:*. 受测的被捕食者个体数量及受测比例  Note: *. number and percentage of individuals measured for each prey
    下载: 导出CSV
  • [1] 陈素芝. 中国动物志硬骨鱼纲灯笼鱼目鲸口鱼目骨舌鱼目[M]. 北京: 科学出版社, 2002: 133-256.
    [2] 戴小杰. 世界金枪鱼渔业渔获物物种原色图鉴[M]. 北京: 海洋出版社, 2007: 204-205.
    [3]

    POTIER M, MENARD F, CHEREL Y. Role of pelagic crustaceans in the diet of the longnose lancetfish (Alepisaurus ferox) in the Seychelles waters[J]. Afr J Mar Sci, 2007, 29(1): 113-122. doi: 10.2989/AJMS.2007.29.1.10.75

    [4]

    WU F, KINDONG R, TIAN S Q, et al. The development of length-weight relationships for four pelagic fish species in the tropical northwest Pacific Ocean[J]. J Appl Ichthyol, 2018, 34(3): 717-719. doi: 10.1111/jai.2018.34.issue-3

    [5]

    ROMANOV E V, ZAMOROV V V. Regional feeding patterns of the longnose lancetfish (Alepisaurus ferox Lowe, 1833) of the western Indian Ocean[J]. J Mar Sci, 2007, 6(1): 37-56.

    [6]

    FUJITA K, HATTORI J. Stomach content analysis of longnose lancetfish, Alepisaurus ferox in the eastern Indian Ocean and the Coral Sea[J]. Jap J Ichthyol, 1976, 23(3): 133-142.

    [7]

    MATTHEWS F D, DAMKAER D M, KNAPP L W, et al. Food of western North Atlantic tunas (Thunnus) and lancetfishes (Alepisaurus)[R]. NOAA Tech Rep NMFS SSRF, 1977, 706: 1-19.

    [8]

    MOTEKI M, ARAI M, TSUCHIYA K, et al. Composition of piscine prey in the diet of large pelagic fish in the eastern tropical Pacific Ocean[J]. Fish Sci, 2001, 67(6): 1063-1074. doi: 10.1046/j.1444-2906.2001.00362.x

    [9]

    PORTNER E J, POLOVINA J J, CHOY C A. Patterns in micronekton diversity across the North Pacific Subtropical Gyre observed from the diet of longnose lancetfish (Alepisaurus ferox)[J]. Deep Sea Res Pt Ⅰ, 2017, 125: 40-51. doi: 10.1016/j.dsr.2017.04.013

    [10]

    JANTZ L A, MORISHIGE C L, BRULAND G L, et al. Ingestion of plastic marine debris by longnose lancetfish (Alepisaurus ferox) in the North Pacific Ocean[J]. Mar Pollut Bull, 2013, 69: 97-104. doi: 10.1016/j.marpolbul.2013.01.019

    [11]

    WCPFC. Tuna Fishery Yearbook 2016[R]. Pohnpei, Federated States of Micronesia: Western and Central Pacific Fisheries Commission, 2016: 142.

    [12]

    DAMBACHER J M, YOUNG J W, OLSON R J, et al. Analyzing pelagic food webs leading to top predators in the Pacific Ocean: a graph-theoretic approach[J]. Prog Oceanogr, 2010, 86(1/2): 152-165.

    [13] 陈清潮. 中国动物志无脊椎动物第二十八卷节肢动物门甲壳动物亚门端足目鰯亚目[M]. 北京: 科学出版社, 2002: 82-170.
    [14] 陈新军, 刘必林, 王尧耕. 世界头足类[M]. 北京: 海洋出版社, 2009: 132-588.
    [15] 董正之. 世界大洋经济头足类生物学[M]. 济南: 山东科学技术出版社, 1991: 38-131.
    [16] 东海水产研究所《东海深海鱼类》编写组. 东海深海鱼类[M]. 上海: 学林出版社, 1988: 95-336.
    [17]

    OKUTANI T. Cuttlefishes and squids of the world (new edition)[M]. Tokyo, Japan: Tokai University Press, 2015: 73-227.

    [18]

    CORTES E. A critical review of methods of studying fish feeding based on analysis of stomach contents: application to elasmobranch fishes[J]. Can J Fish Aquat Sci, 1997, 54: 726-738. doi: 10.1139/f96-316

    [19]

    KREBS C J. Ecological methodology[M]. 2nd ed. Petaluma: Addison Wesley Longman, 1999: 620-620.

    [20]

    ROBERTS D C, STEWART L A, STRUTHERS D C. The fishes of New Zealand Volum Two[M]. Wellington, New Zealand: Te Papa Press, 2015: 446-468.

    [21] 徐兆礼. 东海浮游翼足类(pteropods)种类组成和多样性研究[J]. 生物多样性, 2005, 13(2): 168-173. doi: 10.3321/j.issn:1005-0094.2005.02.011
    [22] 徐兆礼. 东海浮游异足类环境适应分析[J]. 中国水产科学, 2007, 14(6): 932-938. doi: 10.3321/j.issn:1005-8737.2007.06.008
    [23]

    BURRIDGE A K, GOETZE E, WALL P D, et al. Diversity and abundance of pteropods and heteropods along a latitudinal gradient across the Atlantic Ocean[J]. Prog Oceanogr, 2017, 158: 213-223. doi: 10.1016/j.pocean.2016.10.001

    [24] 林璟翔. 西印度洋大目鲔食性之研究[D]. 台北: 国立中山大学, 2012: 8-18.
    [25]

    POTIER M, MARSAC F, CHEREL Y, et al. Forage fauna in the diet of three large pelagic fishes (lancetfish, swordfish and yellowfin tuna) in the western equatorial Indian Ocean[J]. Fish Res, 2007, 83(1): 60-72. doi: 10.1016/j.fishres.2006.08.020

    [26]

    HIDAKA K, KAWAGUCHI K, TANABE T, et al. Biomass and taxonomic composition of micronekton in the western tropical-subtropical Pacific[J]. Fish Oceanogr, 2003, 12(2): 112-125. doi: 10.1046/j.1365-2419.2003.00230.x

    [27] 殷名称. 鱼类生态学[M]. 北京: 中国农业出版社, 2007: 64-71.
    [28]

    ROMANOV E V, MENARD F, ZAMOROV V V. Variability in conspecific predation among longnose lancetfish Alepisaurus ferox in the western Indian Ocean[J]. Fish Sci, 2008, 74(1): 62-68. doi: 10.1111/fis.2008.74.issue-1

    [29]

    ROMANOV E V, ZAMOROV V V. First record of a yellowfin tuna (Thunnus albacares) from the stomach of a longnose lancetfish (Alepisaurus ferox)[J]. Fish Bull, 2002, 100(2): 386-389.

    [30]

    BERTRAND A, BARD F X, JOSSE E, et al. Tuna food habits related to the micronekton distribution in French Polynesia[J]. Mar Biol, 2002, 140: 1023-1037. doi: 10.1007/s00227-001-0776-3

    [31] 耿喆, 朱江峰, 戴小杰. 东太平洋公海大青鲨的胃含物组成研究[J]. 南方水产科学, 2016, 12(6): 68-75. doi: 10.3969/j.issn.2095-0780.2016.06.009
    [32] 郑晓春, 戴小杰, 朱江峰, 等. 太平洋中东部海域大眼金枪鱼胃含物分析[J]. 南方水产科学, 2015, 11(1): 75-80. doi: 10.3969/j.issn.2095-0780.2015.01.011
    [33]

    MENARD F, POTIER M, JAQUEMET S, et al. Pelagic cephalopods in the western Indian Ocean: new information from diets of top predators[J]. Deep Sea Res Pt Ⅱ, 2013, 95: 83-92. doi: 10.1016/j.dsr2.2012.08.022

    [34]

    CHOY C A, PORTNER E, IWANE M, et al. Diets of five important predatory mesopelagic fishes of the central North Pacific[J]. Mar Ecol Prog Ser, 2013, 492: 169. doi: 10.3354/meps10518

图(2)  /  表(4)
计量
  • 文章访问数:  4860
  • HTML全文浏览量:  2135
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-24
  • 修回日期:  2018-08-15
  • 录用日期:  2018-10-22
  • 网络出版日期:  2018-12-13
  • 刊出日期:  2019-02-04

目录

/

返回文章
返回