Effect of carbonate alkalinity on embryonic development and larval vitality of Pramisgurnus dabryanus
-
摘要:
为探究大鳞副泥鳅 (Paramisgurnus dabryanus) 胚胎及仔鱼对碳酸盐碱度的适应性,将发育至囊胚期的胚胎分别放置于碳酸盐碱度为0、10、20、30 和40 mmol·L−1的水体中培养,记录胚胎的孵化率、孵化时间,统计仔鱼的畸形率、成活率、特定成长率及卵黄囊吸收率,并测定初孵仔鱼的不投饵存活系数 (Survival activity index, SAI)。结果显示:1) 碳酸盐碱度为10 mmol·L−1时,胚胎孵化率最高,但与对照组差异不显著 (P>0.05),碳酸盐碱度在10~20 mmol·L−1时,孵化时间显著短于对照组 (P<0.05);2) 初孵仔鱼的畸形率随碳酸盐碱度的增加而逐渐升高,3日龄 (Days after hatching, dah) 仔鱼成活率则随碳酸盐碱度的增加逐渐降低;3) 初孵仔鱼全长随碳酸盐碱度的增加先下降后上升,而3 dah仔鱼全长随碳酸盐碱度的增加先上升后下降,其特定生长率及卵黄囊吸收率均呈先升后降的趋势;4) 随着碳酸盐碱度的增加,仔鱼SAI先升后降,其中10 mmol·L−1组达到最大值。结果表明,碳酸盐碱度在0~10 mmol·L−1范围内适宜大鳞副泥鳅的胚胎发育及仔鱼生长。
Abstract:To investigate the adaptation of the embryos and larvae of Paramisgurnus dabryanus to carbonate alkalinity, we cultured the embryos which had developed to the blastocyst stage in water at carbonate alkalinities of 0, 10, 20, 30 and 40 mmol·L−1, so as to investigate the hatching period, hatching rate, abnormality rate, survival rate, specific growth rate (SGR), yolk sac absorption and survival activity index (SAI). The results show that: 1) The embryo hatching rate was highest at carbonate alkalinity of 10 mmol·L−1 without significant difference compared with that of the control group (P>0.05). The hatching period was significantly shorter than that of the control group at carbonate alkalinities of 10 and 20 mmol·L−1 (P<0.05). 2) The abnormality rate of the newly hatched larvae ascended gradually with the increase of carbonate alkalinity, while the survival rate of larvae of 3 dah (Days after hatching) gradually decreased. 3) The total length of newly hatched larvae decreased and then increased, while the total length of larvae of 3 dah increased and then decreased with the increase of carbonate alkalinity. The SGR and yolk sac absorption rate showed an increasing and then decreasing tendency. 4) The larval SAI first increased and then decreased with the increase of carbonate alkalinity and reached the maximum in 10 mmol·L−1 group. It is indicated that the optimal carbonate alkalinity for the embryonic development and larval growth of P. dableanus is 0–10 mmol·L−1.
-
-
图 1 不同碳酸盐碱度对大鳞副泥鳅仔鱼畸形率和成活率的影响
注:同一系列方柱上不同字母表示差异显著 (P<0.05)。图3—图4同此。
Figure 1. Effects of different carbonate alkalinities on abnormality rate and survival rate of P. dabryanus larvae
Note: Different letters on the same series of columns represent significant difference (P<0.05). The same case in Fig. 3−Fig. 4.
图 2 不同碳酸盐碱度对大鳞副泥鳅仔鱼发育的影响
A. 正常仔鱼 (对照组,0日龄);B. 30 mmol·L−1组,0日龄,a. 围心腔水肿,b. 尾部弯曲,c. 尾部溃烂;C. 20 mmol·L−1组,0日龄,d. 脊柱弯曲,e. 尾部弯曲,f. 尾部溃烂;D. 30 mmol·L−1组,0日龄,g. 围心腔水肿,h. 短小、尾部弯曲;E. 40 mmol·L−1组,1日龄,i. 围心腔水肿,j. 脊柱弯曲,k. 尾部弯曲;F. 40 mmol·L−1组,1日龄,l. 尾部弯曲,m. 尾部溃烂;G. 30 mmol·L−1组,2日龄,n. 脊柱弯曲成“C”型;H. 10 mmol·L−1,2日龄,o. 脊柱畸形成“V”型;I. 20 mmol·L−1,3日龄,p. 围心腔水肿,q. 脊柱弯曲。
Figure 2. Effects of different carbonate alkalinities on development of P. dabryanus larvae
A. Normally developed larvae (Control group, 0 dah); B. 30 mmol·L−1 group, 0 dah, a. Pericardiac edema, b. Curled tail, c. Erosion tail; C. 20 mmol·L−1 group, 0 dah, d. Spine curve, e. Curled tail, f. Erosion tail; D. 30 mmol·L−1 group, 0 dah, g. Pericardiac edema, h. Smaller size and curled tail; E. 40 mmol·L−1 group, 1 dah, i. Pericardiac edema, j. Spine curve, k. Curled tail; F. 40 mmol·L−1 group, 1 dah, l. Curled tail, m. Erosion tail; G. 30 mmol·L−1 group, 2 dah, n. Spine curved a "C" shape; H. 10 mmol·L−1, 2 dah, o. Spine deformities a "V" shape; I. 20 mmol·L−1, 3 dah, p. Pericardiac edema, q. Spine curve.
表 1 不同碳酸盐碱度下大鳞副泥鳅胚胎的孵化时间和孵化率
Table 1 Incubation time and hatching rate of P. dabryanus with different carbonate alkalinities
指标
Index碱度组 Alkalinity group 对照Control 10 mmol·L−1 20 mmol·L−1 30 mmol·L−1 40 mmol·L−1 孵化率 Hatching rate/% 75.33±3.79bc 80.33±1.53c 77.00±2.65bc 71.00±3.61b 56.67±4.51a 孵化时间 Incubation time/h 27.06±0.17B 25.83±0.09A 26.23±0.25A 28.67±0.14C 30.18±0.28D 注:同行中不同字母表示差异显著 (P<0.05)。 Note: Values with different letters within the same column have significant differences (P<0.05). -
[1] 梁利群, 任波, 常玉梅, 等. 中国内陆咸(盐碱)水资源及渔业综合开发利用[J]. 中国渔业经济, 2013, 31(4): 138-145. [2] 徐伟, 耿龙武, 姜海峰, 等. 浅析盐碱水域的鱼类养殖开发利用[J]. 水产学杂志, 2015, 28(4): 44-47. [3] 王信海, 姜爱兰, 蔺玉华, 等. 不同盐度和碱度对卡拉白鱼精子活力和受精率的影响[J]. 江西农业学报, 2020, 32(5): 93-98. [4] 姚娜, 王帅, 陈生熬, 等. 叶尔羌高原鳅仔鱼对盐碱的耐受性[J]. 贵州农业学报, 2016, 44(1): 117-120. [5] 程亚美, 赵金良, 宋凌元, 等. 盐度、碱度对尼罗罗非鱼生长和肌肉品质的影响[J]. 水产科学, 2020, 39(3): 341-349. [6] LI H, LAI Q F, YAO Z L, et al. Ammonia excretion and blood gas variation in naked carp (Gymnocypris przewalskii) exposed to acute hypoxia and high alkalinity[J]. Fish Physiol Biochem, 2020, 46(6): 1-10.
[7] 衣晓飞, 来琦芳, 史健全, 等. 高碱环境下青海湖裸鲤氮废物排泄及相关基因的表达规律[J]. 中国水产科学, 2017, 24(4): 681-689. [8] 高珊, 赵雪飞, 常玉梅, 等. 不同NaHCO3碱度对瓦氏雅罗鱼肾和肠组织显微结构的影响[J]. 水产学杂志, 2020, 33(3): 24-30. [9] 高珊, 常玉梅, 赵雪飞, 等. 不同NaHCO3碱度对瓦氏雅罗鱼鳃组织结构的影响[J]. 水生生物学报, 2020, 44(4): 736-743. [10] SHANG X C, GENG L W, YANG J, et al. Transcriptome analysis reveals the mechanism of alkalinity exposure on spleen oxidative stress, inflammation and immune function of Luciobarbus capito[J]. Ecotoxicol Environ Saf, 2021(225): 112748.
[11] 徐敏, 王思泽, 耿龙武, 等. NaCl盐度和NaHCO3碱度对松浦镜鲤、方正鲫的孵化及其仔鱼存活的影响[J]. 动物学杂志, 2015, 50(4): 643-648. [12] 姜秋俚, 蔺玉华, 王信海, 等. 咸海卡拉白鱼胚胎及仔鱼对盐碱耐受性的研究[J]. 吉林农业大学学报, 2008, 30(2): 219-225, 228. [13] 吕富, 黄金田, 王爱民. 碱度对异育银鲫摄食·生长和存活的影响[J]. 安徽农业科学, 2007, 35(22): 6789-6790. [14] 王念民, 杨合霖, 丰超杰, 等. 碳酸盐碱度对3月龄杂交鲟 (Huso dauricus♀×Acipenser schrenckii♂) 生长与血清生化指标的影响[J]. 上海海洋大学学报, 2023, 32(1): 98-107. [15] 逯冠政, 幺宗利, 来琦芳. 高盐碱环境下大口黑鲈幼鱼生长性能、血液生理指标与质构特征研究[J]. 渔业科学进展, 2022, 43(4): 1-11. [16] 张慧, 王银肖, 杨慧兰, 等. 中国泥鳅属和副泥鳅属鱼类的分类整理[J]. 水生生物学报, 2021, 45(2): 414-427. [17] 陈鸿禄, 易少奎, 李军涛, 等. 我国七大流域大鳞副泥鳅形态学比较[J]. 华中农业大学学报, 2021, 40(3): 230-237. [18] ZHANG N, LUO W, CHEN P Y, et al. A novel fish behavior: "Floating" of Paramisgurnus dabryanus loaches[J]. Appl Anim Behav Sci, 2022, 246: 105510. doi: 10.1016/j.applanim.2021.105510
[19] WU L Y, LI W P, NI Y G, et al. Study on the mud swimming motion of Paramisgurnus dabryanus[J]. Simulation, 2022, 98(8): 665-675. doi: 10.1177/00375497211068808
[20] 李福贵, 程林慧, 何珅, 等. 基于COI基因序列的泥鳅、大鳞副泥鳅选育群体杂交子代遗传多样性分析[J]. 水产科技情报, 2023, 50(1): 20-28. [21] XIA X H, LIANG N, MA X Y, et al. Inhibition of the NF-κB signaling pathway affects gonadal differentiation and leads to male bias in Paramisgurnus dabryanus[J]. Theriogenology, 2023, 207: 82-95.
[22] 周美玉, 李达, 李安东, 等. 野生和养殖大鳞副泥鳅营养成分比较分析[J]. 湖北农业科学, 2022, 61(6): 134-138. [23] 王自蕊, 李永安, 周秋白, 等. 鄱阳湖区大鳞副泥鳅和泥鳅不同部位营养成分分析[J]. 饲料工业, 2022, 43(2): 56-64. [24] 王伟, 王亚军, 李立杰, 等. 三苯基锡和聚苯乙烯微塑料联合暴露对大鳞副泥鳅的急性毒性效应[J]. 淡水渔业, 2022, 52(4): 106-112. [25] XIA X H, GUO W W, MA X Y, et al. Reproductive toxicity and cross-generational effect of polyethylene microplastics in Paramisgurnus dabryanus[J]. Chemosphere, 2022, 313: 137440.
[26] 武鹏飞, 耿龙武, 姜海峰. 三种鳅科鱼对 NaCl 盐度和 NaHCO3碱度的耐受能力[J]. 中国水产科学, 2017, 24(2): 248-257. [27] 汪帆, 杨瑞斌, 樊启学. 东方高原鳅的胚胎与胚后发育观察[J]. 华中农业大学学报, 2017, 36(6): 89-98. [28] GAO L, DUAN M, CHENG F, et al. Ontogenetic development in the morphology and behavior of loach (Misgumus anguillicaudatus) during early life stages[J]. Chin J Oceanol Limnol, 2014, 32(5): 973-981. doi: 10.1007/s00343-014-3302-4
[29] 赵明, 陈超, 柳学周, 等. 盐度对七带石斑鱼胚胎发育和卵黄囊仔鱼生长的影响[J]. 渔业科学进展, 2011, 32(2): 16-21. [30] 么宗利, 应成琦, 周凯, 等. 碳酸盐碱度胁迫下凡纳滨对虾基因的差异表达[J]. 中国水产科学, 2012, 19(1): 1-12. [31] RANDALL D J, TSUI T K N. Tribute to R. G. Boutilier: acid-base transfer across fish gills[J]. J Exp Biol, 2006, 209(7): 1179-1184. doi: 10.1242/jeb.02100
[32] GODFREY E W, SANDERS G E. Effect of water hardness on oocyte quality and embryo development in the African clawed frog (Xenopus laevis)[J]. Comp Med, 2004, 54(2): 170-175.
[33] 陈生熬. 叶尔羌高原鳅早期发育及盐碱适应生理机制[D]. 武汉: 华中农业大学, 2019: 11-76. [34] 李勃, 解玉浩. 温度、盐度、碱度对池沼公鱼胚胎发育的影响[J]. 生态学杂志, 1992(2): 18-21, 23-24. [35] 林浩然. 鱼类生理学[M]. 广州: 广东高等教育出版社, 2004: 116-216. [36] 潘鲁青, 刘志, 姜令绪. 盐度、pH变化对凡纳滨对虾鳃丝Na+-K+-ATPase活力的影响[J]. 中国海洋大学学报 (自然科学版), 2004(5): 787-790. [37] 许友卿, 张仁珍, 丁兆坤. pH对鱼类繁育及生长发育的影响[J]. 水产科学, 2014, 33(2): 133-136. [38] 潘正军, 安然, 徐艳婷, 等. 影响西藏卤虫无节幼体在淡水中存活时间的几个因素分析[J]. 水生生物学报, 2020, 44(6): 1270-1277. [39] YAO Z, LAI Q F, ZHOU K, et al. Developmental biology of medaka fish (Oryzias latipes) exposed to alkalinity stress[J]. J Appl Ichthyol, 2010, 26(3): 397-407. doi: 10.1111/j.1439-0426.2009.01360.x
[40] 刘金兰, 龚望宝, 王金凤. 孵化水体pH值对异育银鲫胚胎发育的影响[J]. 湖北农学院学报, 2003(2): 105-107. [41] 孙艳秋, 刘鉴毅, 庄平, 等. 温度、盐度和pH对多纹钱蝶鱼胚胎发育的影响[J]. 南方水产科学, 2021, 17(6): 122-129. doi: 10.12131/20210109 [42] 王充. 盐度、pH值和碱度对凡纳滨对虾受精卵孵化率的影响[J]. 江西水产科技, 2020(3): 9-12. [43] 殷名称. 鱼类仔鱼期的摄食和生长[J]. 水产学报, 1995(4): 335-342. [44] LIMA F D, LEITE T S, HAIMOVICI M, et al. Population structure and reproductive dynamics of Octopus insularis (Cephalopoda: Octopodidae) in a coastal reef environment along northeastern Brazil[J]. Fish Res, 2014, 152: 86-92. doi: 10.1016/j.fishres.2013.08.009
[45] 刘阳, 温海深, 李吉方, 等. 盐度与pH对花鲈孵化、初孵仔鱼成活及早期幼鱼生长性能的影响[J]. 水产学报, 2017, 41(12): 1867-1877. [46] 宋振鑫, 陈超, 吴雷明, 等. 盐度与pH对云纹石斑鱼胚胎发育和仔鱼活力的影响[J]. 渔业科学进展, 2013, 34(6): 52-58.