美洲大蠊粉替代鱼粉对虹鳟幼鱼生化指标、抗病力及代谢组学的影响

Effects of dietary fishmeal replacement by Periplaneta americana meal on biochemical indexes, disease resistance and metabolomics of juvenile Oncorhynchus mykiss

  • 摘要: 美洲大蠊 (Periplaneta americana) 是一种富含蛋白质、脂肪和生物活性成分的昆虫蛋白来源,具有成为鱼粉替代源的潜力。选取初始体质量约3 g的虹鳟 (Oncorhynchus mykiss) 幼鱼为研究对象,采用美洲大蠊粉分别替代0%、50%鱼粉配制的2种等氮等能饲料,持续投喂18周,探究了美洲大蠊粉替代鱼粉对虹鳟幼鱼生长、生化指标、抗病力及代谢组学的影响。养殖实验结束后,采用嗜水气单胞菌 (Aeromonas hydrophila) 对剩余虹鳟幼鱼进行攻毒实验。结果表明:实验组幼鱼生长性能及攻毒后成活率均显著高于对照组 (P<0.05);实验组幼鱼血清中免疫球蛋白 (IgM)、总抗氧化能力 (T-AOC)、肝脏中溶菌酶 (LZM) 和头肾中过氧化氢酶 (CAT)活性均显著高于对照组 (P<0.05);代谢组学分析结果显示,两组血清中的差异代谢物主要参与甘油磷脂代谢、鞘脂代谢、缬氨酸、亮氨酸和异亮氨酸生物合成等8条生化代谢途径,其中参与甘油磷脂代谢的溶血磷脂酰胆碱 (LysoPC) 和磷脂酰胆碱 (PC) 含量均在实验组显著上调。综上,采用美洲大蠊粉替代饲料中50%的鱼粉可显著提高虹鳟幼鱼的生长性能、抗氧化能力、免疫力以及对嗜水气单胞菌的抵抗力。

     

    Abstract: Periplaneta americana is an insect protein source, rich in protein, fat and bioactive components, which may become a potential alternative source of fishmeal for development and application. In order to study the effects of dietary fishmeal replacement by P. americana meal on the growth, biochemical indexes, disease resistance and metabolomics of juvenile Oncorhynchus mykiss, we formulated two isonitrogen and equal energy diets to replace 0% and 50% of the dietary fishmeal with P. americana meal, and had fed the juveniles with an initial body mass of 3 g for 18 weeks. At the end of feeding trial, we challenged the juveniles with Aeromonas hydrophila. The results showed that: 1) The growth performance and survival rate after the challenge in the experimental group were significantly higher than those in the control group (P<0.05). 2) The levels of serum immunoglobulin (IgM), total antioxidant capacity (T-AOC), lysozyme (LZM) in liver and catalase (CAT) in head kidney in the experimental group were significantly higher than those in the control group (P<0.05). 3) The results of metabolomics analysis showed that the differential metabolites in serum mainly involved in eight biochemical metabolic pathways, including glycerophospholipid metabolism, sphinolipid metabolism, valine, leucine and isoleucine of biosynthesis and so on. The contents of lysophosphatidylcholine (LysoPC) and phosphatidylcholine (PC) which involved in glycerophospholipid metabolism were significantly up-regulated in the experimental group. In conclusion, 50% dietary fishmeal replacement with P. americana meal could improve the growth performance, antioxidant capacity, immunity and resistance to A. hydrophila of juvenile O. mykiss significantly.

     

/

返回文章
返回