Trophic niche analysis of Collichthys lucidus in Pearl River Estuary
-
摘要:
棘头梅童鱼 (Collichthys lucidus) 是重要的小型经济鱼类,为了解其营养结构和食性等特征,于2021和2022年在珠江口水域采集样本,并基于碳、氮稳定同位素 (δ13C、δ15N) 技术从营养生态位、营养结构指标、食性等角度对其进行研究。结果表明:棘头梅童鱼δ13C为 (−18.74±1.41)‰,δ15N为 (12.35±0.57)‰,营养级为 (3.25±0.17)‰。δ13C在体长小于100.00 mm时随体长增加逐渐上升,之后随体长增加而下降;δ15N在体长 <110.00 mm时随体长增加而上升,在110.00~120.00 mm时出现骤降拐点,δ15N最小,之后随体长增加而上升。在体长 <100.00 mm和 >120.00 mm两阶段的营养多样性较高,营养生态位宽幅较大;在体长100.00~120.00 mm阶段,种群冗余度与均匀度较高,群落内营养生态位分布均匀,拥有相似营养特征的个体占比高。贝叶斯混合模型溯源表明,浮游动物对棘头梅童鱼的食物贡献比例最高。研究结果可为棘头梅童鱼的资源保护与开发提供理论依据。
Abstract:Collichthys lucidus is an important small economic fish, and in order to understand its nutritional structure and dietary characteristics, we collected samples from the waters of the Pearl River Estuary in 2021 and 2022, and studied them from the perspectives of trophic niche, trophic structure index and feeding habit by on stable isotope technology. The results indicate that the δ13C and δ15N values of C. lucidus were (−18.74±1.41)‰ and (12.35±0.57)‰, respectively, with a trophic level of (3.25±0.17)‰. The δ13C value gradually increased when the body length was less than 100.00 mm, then decreased with the increase of body length. The δ15N value increased with the increase of body length when the body length was less than 110.00 mm, and the inflection point occurred at body length of 110.00–120.00 mm. The δ15N value was the lowest, and then increased with the increase of body length. When the body length was less than 100.00 mm and more than 120.00 mm, the trophic diversity was high, and the trophic niche width was large. When the body length was 100.00–120.00 mm, the redundancy and evenness were high, and the trophic niche distribution was uniform in the community, and the individuals with similar trophic characteristics accounted for the majority. Bayesian mixing model tracing reveals that the highest food contribution proportion for C. lucidus was from zooplankton. The research provides a theoretical basis for the resource conservation and management of C. lucidus.
-
Keywords:
- Collichthys lucidus /
- Stable isotope /
- Niche /
- Trophic level /
- Pearl River Estuary
-
南海是中国最大的陆缘海,跨越热带与亚热带气候区,具有丰富的海洋生物资源,为海洋渔业的发展提供了有利的天然条件。1979—2017年南海区海洋捕捞产量基本呈上升趋势,产量峰值为382.8×104 t[1]。捕捞渔具主要有拖网、刺网、围网、钓具及张网等,其中拖网产量在南海区海洋捕捞总产量中的占比曾高达约60%[2],近年来有所降低,但拖网渔业依然是南海区海洋捕捞业的主要生产方式之一。拖网属于过滤性的运动渔具,其主要依靠船舶运动的拖曳在海底或海水中移动,迫使水域中的捕捞对象进入其中。由于拖网主动灵活、适应性强,在各种水层、深度和海区均能作业[3]。拖网渔获对象非常广泛,不仅包括各种底层鱼类,还包括中上层鱼类、甲壳类、头足类和贝类等,而且不同海域渔获物组成差异也较大[4-7]。
在渔业资源丰富的二十世纪五六十年代,广大渔业技术工作者和渔民对拖网渔具进行了一系列的改造和更新,如放大网具前端网目尺寸、扩大网具规格,其主要目的是提高捕捞产量[8]。然而,至70年代末期,渔业资源开始衰退,为合理利用资源,在1981年确定了南海区拖网网囊最小网目尺寸为39 mm[9]。虽然放大了传统菱形网目网囊尺寸,但仍能捕获大量幼鱼,90年代中期开始对拖网网囊网目选择性进行试验[8]。针对拖网网囊选择性差的问题,科技工作者开展了大量的试验研究[10-14],其中菱形网目有利于扁体形鱼类的逃逸,而方形网目更有利于圆体形鱼类的逃逸,于是网囊混合网目的设计应运而生,即同一网囊中包含菱形目和方形目两种网目[12]。近年来,较多研究从渔业资源可持续发展和利用角度出发对拖网网具进行改良设计[13-15]。杨吝等[16]对南海区拖网网囊最小网目尺寸的选择性研究发现南海区拖网最好使用方形网目网囊,网目尺寸不应小于40 mm。然而,在实际生产中,仍基本使用传统的菱形网目网囊,鲜少使用方形网目网囊[17-18]。本文通过收集历史资料及结合渔业资源调查数据,对南海区拖网渔业发展状况及其对渔业资源的影响进行分析,以期为拖网渔业的发展和管理提供参考。
1. 材料与方法
1.1 南海区拖网渔业发展趋势分析
南海区拖网渔业分析数据来源于1986—2020年的《中国渔业统计年鉴》与《南海区渔业统计资料汇编》,本文综合分析南海区拖网渔业的生产投入要素 (如渔船数量、吨位、功率等) 及产量的变化趋势。
1.2 拖网对幼鱼的影响分析
根据2018年2月12日农业农村部发布的《关于实施带鱼等15种重要经济鱼类最小可捕标准及幼鱼比例管理规定的通告》,共收集了其中8种鱼类规格的生物学数据 (表1),来自1992—2020年20个航次的南海北部近海底拖网渔业资源调查,其中网囊网目为菱形目,尺寸除1998—1999年为20 mm外,其他航次均为39 mm。本文定义未达到最小可捕规格的鱼类个体为幼鱼。
表 1 8种重要经济鱼类种名及其最小可捕规格Table 1. Eight important economic fish species and their minimum catchable sizes mm种名
Species可捕规格 Catchable size 肛长
Anus
length叉长
Fork
length体长
Body
length带鱼 Trichiurus japonicus ≥230 竹荚鱼 Trachurus japonicus ≥150 刺鲳 Psenopsis anomala ≥130 蓝圆鲹 Decapterus maruadsi ≥150 短尾大眼鲷 Priacanthus macracanthus ≥160 白姑鱼 Argyrosomus argentatus ≥150 二长棘犁齿鲷 Evynnis cardinalis ≥100 黄鳍马面鲀 Thamnaconus hypargyreus ≥100 2. 结果
2.1 南海区拖网渔船数量、吨位及功率的变化趋势
根据1986—2020年广东、广西和海南三省区海洋捕捞机动渔船统计数据,南海区总渔船数在51 134~96 441艘之间波动,1986—2003年呈上升趋势,之后开始呈逐年下降趋势;总吨位在 444 906~1 982 775 t之间波动,总功率在931 510~3 981 892 kW之间波动,均呈上升趋势。其中拖网渔船数量在6 730~14 599艘之间波动,1986—2003总体呈上升趋势,之后下降至7 725艘 (2009年),2010年后基本维持在9 000艘左右;拖网渔船吨位在212 864~876 045 t之间波动,呈显著上升趋势 (r=0.974, P<0.01);拖网渔船功率在440 438~1 735 173 kW之间波动,1986—2005 年呈上升趋势,之后开始呈下降趋势。1986—2020 年南海区拖网渔船数量比在9.78%~18.27%之间波动,吨位比在43.18%~56.88%之间波动,功率比在36.87%~57.88%之间波动,拖网渔船数量、吨位和功率占该海区总渔船数量、吨位和功率的比例均呈下降趋势 (图1-a—1-c);1986—2020年拖网渔船单船平均吨位和功率分别在31.31~127.71 t 和 65.44~220.33 kW之间波动,两者均呈显著上升趋势 (r=0.884, P<0.01; r=0.929, P<0.01) (图1-d)。
2.2 南海区拖网渔业产量变化趋势
根据1986—2020年广东、广西和海南三省海洋捕捞产量数据的统计,南海区海洋总捕捞产量在94.08×104~369.05×104 t之间波动,2006年产量达到最高;拖网渔业产量在59.24×104~181.66×104 t之间波动,1999年达到最高,呈先上升后下降的变化趋势;拖网渔业产量占总捕捞产量的比例在38.35%~62.96%之间波动,呈显著下降趋势 (r=−0.979, P<0.01) (图2-a)。每千瓦拖网渔船渔获产量在0.72~1.40 t之间波动,1999年最高,之后呈显著下降趋势 (r=−0.692, P<0.01);每吨位拖网渔船渔获产量在1.18~3.90 t之间波动,1999年最高,之后也呈显著下降趋势 (r=−0.636, P<0.01) (图2-b)。
2.3 幼鱼占比
南海北部底拖网调查中8种重要经济鱼类幼鱼数量和生物量占比变化情况分别见图3和图4。从图中可以看出,幼鱼数量比和生物量比变化情况基本相同,其中生物量比较数量比低。渔获物中幼鱼数量和生物量占比均值最高为白姑鱼 (Argyrosomus argentatus),其次为带鱼 (Trichiurus japonicus) 和竹荚鱼 (Trachurus japonicus),二长棘犁齿鲷 (Evynnis cardinalis) 最低 (表2)。根据管理规定要求,2020年起渔获物中幼鱼比例低于20%才算达标,若以20%作为参照标准,1992—2020年8种重要经济鱼类的达标率由高到低依次为:刺鲳 (Psenopsis anomala) 44.44%、蓝圆鲹 (Decapterus maruadsi) 42%、二长棘犁齿鲷40%、黄鳍马面鲀 (Thamnaconus hypargyreus) 25%、竹荚鱼11.11%、带鱼10%、白姑鱼9.09%、短尾大眼鲷 (Priacanthus macracanthus) 0%。在2020年的2个航次调查中,带鱼、短尾大眼鲷和白姑鱼均未达标,其他5种鱼类1个航次达标。
表 2 8 种重要经济鱼类幼鱼占比Table 2. Proportion of juveniles of eight important economic fish species种名
Species数量占比 Quantity proportion/% 生物量占比 Biomass proportion/% 范围 Range 均值 Mean 范围 Range 均值 Mean 带鱼 Trichiurus japonicas 20.63~99.58 79.30±18.42 8.59~97.88 56.57±24.46 短尾大眼鲷 Priacanthus macracanthus 32.50~98.00 70.37±19.57 22.80~90.13 49.19±20.21 竹荚鱼 Trachurus japonicas 3.36~100 76.27±26.62 1.02~100 62.40±28.39 刺鲳 Psenopsis anomala 0.81~96.00 40.83±30.12 0.42~92.14 28.82±26.50 蓝圆鲹 Decapterus maruadsi 0~92.77 46.14±32.26 0~86.48 31.71±27.41 白姑鱼 Argyrosomus argentatus 43.28~100 89.84±17.08 17.12~100 84.28±26.20 二长棘犁齿鲷 Evynnis cardinalis 0~94.71 40.09±27.84 0~85.75 24.35±23.33 黄鳍马面鲀 Thamnaconus hypargyreus 22.00~100 63.55±30.08 16.80~100 52.62±32.26 3. 讨论
拖网是南海海洋渔业生产的主要作业类型之一。数据分析显示,目前南海区拖网渔业呈现出捕捞强度大、生产效益低的特点。其中,拖网渔业捕捞强度大主要体现在渔船数量、吨位及功率等的增加及助渔技术更加先进等方面,2003年的渔船数量是1986年的2.17倍,虽然之后船数减少,但渔船吨位和功率却在不断上升,其中2020年拖网渔船吨位是1986年的4.12倍,而功率是1986年的3.24倍,说明捕捞强度成倍增加。传统渔民靠海水观测鱼群,靠指南针辨别方向,现如今渔船基本配置了探渔仪、GPS导航及起重设备等先进仪器设备,从而极大地提升了捕捞效率。1986—2020年南海区拖网渔船单船平均功率和吨位不断增加,但单位产量自1999年后却呈下降趋势,表明捕捞效率降低,加之2005年后柴油价格持续上涨[19],渔业生产成本不断上升,因此,拖网捕捞生产效益不断下降。
拖网渔业最大的问题是网具网目尺寸不合规、捕捞选择性不强,致使渔获物组成多样性和幼鱼渔获率均非常高[20]。据相关调查,有的拖网渔业幼鱼和低值渔获率占比高达70%[21],黄梓荣[22]采用404◇/200 mm底拖网在南海北部进行渔业资源调查发现,渔获中未达到可捕规格的幼鱼比例超过30%。虾拖网为单船底拖网的一种,是副渔获最高的网具之一,其虾与副渔获的质量比高达1∶3.9,而副渔获中幼鱼渔获比例高达57%以上[23]。本研究也发现在底拖网渔获物中,8种重要经济鱼类幼鱼生物量占比均值高于24%,有的甚至高达84%,数量占比则更高。拖网过度捕捞也是造成渔业资源种群结构变化的重要原因[24],尤其是底层经济鱼类。由于这些种类体型相对较大,生命周期较长,性成熟较晚,其种群恢复能力相对较差,因此,长期高强度的捕捞作业导致这些种类数量大幅下降[25]。如底栖鱼类红笛鲷 (Lutjanus sanguineus)、大头狗母鱼 (Trachiocephalus myops) 、摩鹿加绯鲤 (Upeneus moluccensis) 和断斑石鲈 (Pomadasys hasta),20世纪60年代在北部湾底拖网渔获物中占比分别为14.45%、5.9%、4.93%和2.39%,然而至90年代这些种类在渔获物中的占比大幅下降,有些种类甚至难寻踪迹[26]。
此外,底拖网作业会对海洋生态环境造成较大破坏,主要包括直接或间接地影响海床、生境、营养级及生物多样性等。由于拖网通常装配较重的沉纲,尤其是虾拖网为了驱赶海底的虾类还装配了铁链,在捕捞过程中横扫海底,严重破坏了海底生态环境,对海洋生物的栖息、生长和繁殖产生严重的负面影响[2,21]。Paradis等[27]研究发现拖网渔具与海床的连续接触导致海底侵蚀,破坏沉积环境,进而影响底层生物群落的营养状态。长期的底拖网作业会导致渔场及其邻近海域大型底栖生物丰度显著降低[28],底栖生物群落功能组成发生变化[29]。而底栖生物的生物量和多样性的降低以及体型的减小,可能对底层鱼类的摄食产生负面影响,进而影响鱼类的身体状况和产量[30]。de Leo 等[31]研究发现中等程度的拖网区域底栖生物群落物种丰富度最高,表明适当程度的拖网作业对底层生态环境有一定的积极作用。
4. 南海区拖网渔业发展建议
4.1 完善渔业管理制度
目前,海洋伏季休渔制度是为保护中国周边海域鱼类等资源在夏季生长繁殖而采取的措施,这也是当前中国最重要和最有效的渔业资源管理措施之一,最新的海洋伏季休渔制度已于2017年颁布实施。严利平等[32]通过拖网调查分析发现,由于提前并延长休渔时间,东、黄海主要经济渔业资源—带鱼和小黄鱼得到了进一步保护,资源增殖效果相对明显。延长伏季休渔时间,有利于海洋环境自我修复,相对减轻拖网作业带来的负面影响。因此,应严格执行伏季休渔制度,严厉打击非法捕捞和在禁渔区线内非法拖网作业,同时还应严格执行捕捞网具最小网囊网目尺寸及可捕标准等相关管理规定。由于拖网时下纲会不可避免地与海底接触,对海底的破坏相当严重。鉴于拖网是南海传统捕捞类型,对于提供优质动物蛋白有一定的积极作用。因此,可通过采取控制拖网渔船数量、拖网时间及海域等方法措施,达到既利用海洋底层渔业资源又保护海洋生态环境的目的。
4.2 加大科技创新
为促使南海拖网渔业的良性发展,还应加强相关领域的科技支撑,如创新网囊网目的设计、研发选择性装置、改良拖网网具下纲、开发柔性网板及拖网渔具自动化和智能化等。王永进等[33]认为扩大网具前部网目尺寸、改进网目结构能够减少阻力,提高网口垂直高度,扩大网具规模,从而提高拖网渔具的性能。有研究发现选择性渔具的开发和应用能有效减少虾拖网作业的副渔获[34-35],其中最直接、有效的技术手段为放大网囊网目尺寸和应用选择性装置[36-37]。Sala等[38]研究指出方形网目能大大提高捕捞选择性,然而该种网目不太适宜像比目鱼这种扁平鱼类的逃逸。杨炳忠等[12]发现35 mm方目+25 mm菱目在兼顾生产效益和保护渔业资源方面效果最佳。也有研究发现柔性网板具有轻便、对海底环境破坏小和阻力小等优点[39]。拖网渔具的自动化和智能化对拖网作业水平和捕捞效率将有质的提升,是提高海洋渔业科技水平的关键[40]。海洋渔具的发展变革与渔业资源的盛衰有着密切关系,因此,建议从渔业资源可持续发展和利用的角度出发,加大拖网网具的研发力度,大力推广使用选择性强、经济节能、生产效益高及环境友好型的网具。
4.3 加快渔民转产转业
由于近海渔业资源衰退,生产成本增加,拖网渔船效益降低,如何加快推进渔民转产转业,实现产业升级,已成为渔业管理亟待解决的问题。一方面应加强渔民就业技能培训,努力增加转型就业机会;另一方面要加大捕捞压力向外海转移力度,发展外海渔业。张俊等[41]对南海外洋性渔业资源进行的评估分析显示,南海深水区蕴藏着丰富的大洋性渔业资源,大型金枪鱼、鲣类、鲹类、日本乌鲂 (Brama japonica) 和鸢乌贼 (Sthenototeuthis oualaniensis)的资源量分别为22.8×104、85×104、54.3×104、27.4×104和457×104 t,表明南海外海渔业资源具有较大的开发潜力。因此,应逐步淘汰功率小、效益低的拖网渔船,建造适合远洋作业及生态友好的大型渔船,引导有条件的渔船往外海发展,将捕捞压力逐渐转向外海。
-
表 1 棘头梅童鱼体长组划分及其稳定同位素特征
Table 1 Classification of body length groups and stable isotope characteristics of C. lucidus
体长
Body length (L)/mm样本数
Number of samples/尾平均体长
Average length/mm营养级
Trophic levelδ15N/‰ δ13C/‰ L≤90 11 64.43±17.31 3.21±0.15 12.21±0.52ab −20.69±1.81a 90<L≤100 23 96.36±2.19 3.28±0.14 12.45±0.47a −17.78±0.82d 100<L≤110 34 104.71±2.34 3.28±0.12 12.46±0.40a −17.89±0.79d 110<L≤120 40 114.97±3.17 3.19±0.12 12.15±0.40a −18.43±0.81c 120<L≤130 35 123.84±2.51 3.25±0.19 12.34±0.65ab −19.36±1.23b 130<L 15 137.04±12.39 3.34±0.28 12.65±0.94a −20.06±1.56a 注:同列不同字母表示组间差异显著 (P<0.05)。 Note: Values with different letters within the same column are significantly different (P<0.05). 表 2 棘头梅童鱼各体长组的营养结构指标
Table 2 Trophic structure indexes of each body length group of C. lucidus
体长
Body length (L)/mmδ13C差值
CRδ15N差值
NR平均离心距离
CD平均最邻近距离
MNND平均最邻近距离标准差
SDNND多边形总面积
TA矫正后的标准椭圆面积
SEAcL≤90 5.79 1.87 1.59 0.61 0.52 5.93 2.92 90<L≤100 4.17 2.01 0.60 0.27 0.65 2.86 0.97 100<L≤110 3.53 1.75 0.65 0.20 0.27 3.18 0.78 110<L≤120 2.96 1.76 0.77 0.21 0.18 3.84 0.99 120<L≤130 5.33 3.71 1.09 0.26 0.35 8.35 1.88 130<L 5.13 3.41 1.52 0.55 0.42 6.45 2.73 Note: CR. δ13C range; NR. δ15N range; CD. Mean distance to centroid; MNND. Mean nearest neighbor distance; SDNND. Standard deviation of nearest neighbor distance; TA. Total area; SEAc. Corrected standard ellipse area. 表 3 棘头梅童鱼各体长组营养生态位椭圆重叠面积比率
Table 3 Ratio of overlap area of trophic niche ellipses in each body length group of C. lucidus
体长
Body length (L)/mmL≤90 90<L≤100 100<L≤110 110<L≤120 120<L≤130 130<L L≤90 2.92 0.00% 0.00% 4.76% 32.30% 34.23% 90<L≤100 0.00% 0.97 75.24% 13.21% 0.00% 0.00% 100<L≤110 0.00% 93.24% 0.78 22.54% 0.00% 0.00% 110<L≤120 14.09% 12.94% 17.82% 0.99 58.44% 33.56% 120<L≤130 50.12% 0.00% 0.00% 30.66% 1.88 83.42% 130<L 36.58% 0.00% 0.00% 12.13% 57.46% 2.73 注:加粗字表示该体长组标准椭圆面积(SEAc),右上角数据和左下角数据均表示两个体长组SEAc占左列体长组SEAc的百分比。 Note: Bold represents the standard elliptical area (SEAc) of the body length group. The data in the upper right corner and lower left corner both represent the percentage of the two body length groups' SEAc to the left column body length group's SEAc. -
[1] ZHANG S, LI M, ZHU J F, et al. An integrated approach to determine the stock structure of spinyhead croaker Collichthys lucidus (Sciaenidae) in Chinese coastal waters[J]. Front Mar Sci, 2021, 8: 693954. doi: 10.3389/fmars.2021.693954
[2] 熊朋莉, 陈作志, 侯刚, 等. 珠江河口棘头梅童鱼生物学特征的年代际变化[J]. 南方水产科学, 2021, 17(6): 31-38. [3] 区又君, 廖锐, 李加儿, 等. 利用耳石日轮研究珠江口棘头梅童鱼的产卵期及生长[J]. 台湾海峡, 2012, 31(1): 85-88. [4] SONG N, YIN L N, SUN D R, et al. Fine-scale population structure of Collichtys lucidus populations inferred from microsatellite markers[J]. J Appl Ichthyol, 2019, 35(3): 709-718. doi: 10.1111/jai.13902
[5] 黄良敏, 谢仰杰, 李军, 等. 闽江口及附近海域棘头梅童鱼的生物学特征[J]. 集美大学学报(自然科学版), 2010, 15(4): 8-13. [6] 农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2022中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2022: 59-64. [7] 农业部渔业渔政管理局. 2014中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2014: 59-63. [8] WANG Y Y, ZHANG H A, CHEN Y W, et al. Trophic niche width and overlap of three benthic living fish species in Poyang Lake: a stable isotope approach[J]. Wetlands, 2019, 39(1): 17-23. doi: 10.1007/s13157-018-1028-3
[9] WANG J, JIANG R J, XIAO Y, et al. Trophic niche partitioning of five Sciaenidae species sampled in Zhoushan Archipelago waters via stable isotope analysis[J]. Front Mar Sci, 2022, 9: 880123. doi: 10.3389/fmars.2022.880123
[10] WANG S Q, WANG X F, XU L X, et al. Feeding habits and trophic niche of rainbow runner Elagatis bipinnulata in the western and central Pacific Ocean[J]. Environ Biol Fishes, 2022, 105(1): 139-149. doi: 10.1007/s10641-021-01200-w
[11] KVAAVIK C, OSKARSSON G J, PÉTURSDÓTTIR H, et al. New insight into trophic niche partitioning and diet of mackerel (Scomber scombrus) and herring (Clupea harengus) in Icelandic waters[J]. ICES J Mar Sci, 2021, 78(4): 1485-1499. doi: 10.1093/icesjms/fsaa100
[12] CHENG J, MA G Q, MIAO Z Q, et al. Complete mitochondrial genome sequence of the spinyhead croaker Collichthys lucidus (Perciformes, Sciaenidae) with phylogenetic considerations[J]. Mol Biol Rep, 2012, 39(4): 4249-4259. doi: 10.1007/s11033-011-1211-6
[13] MA Q Y, TIAN S Q, HAN D Y, et al. Growth and maturity heterogeneity of three croaker species in the East China Sea[J]. Reg Stud Mar Sci, 2021, 41: 101483.
[14] LIU H B, JIANG T, HUANG H H, et al. Estuarine dependency in Collichthys lucidus of the Yangtze River Estuary as revealed by the environmental signature of otolith strontium and calcium[J]. Environ Biol Fish, 2015, 98(1): 165-172. doi: 10.1007/s10641-014-0246-7
[15] 高世科, 黄金玲, 于雯雯, 等. 吕泗渔场两种石首鱼科鱼类营养生态学特征: 来自稳定同位素的证据[J]. 应用海洋学学报, 2021, 40(3): 413-420. [16] 贺舟挺, 薛利建, 金海卫. 东海北部近海棘头梅童鱼食性及营养级的探讨[J]. 海洋渔业, 2011, 33(3): 265-273. [17] 王建锋, 赵峰, 宋超, 等. 长江口棘头梅童鱼食物组成和摄食习性的季节变化[J]. 应用生态学报, 2016, 27(1): 291-298. [18] 杨纪明. 渤海鱼类的食性和营养级研究[J]. 现代渔业信息, 2001(10): 10-19. [19] 宋业晖, 薛莹, 徐宾铎, 等. 海州湾3种石首鱼的食物组成和生态位重叠[J]. 水产学报, 2020, 44(12): 2017-2027. [20] 王军, 苏永全, 柳建英, 等. 罗源湾五种石首鱼类的食性研究[J]. 厦门水产学院学报, 1994(2): 34-39. [21] 王静. 舟山群岛海域四种经济鱼类的摄食生态研究[D]. 舟山: 浙江海洋大学, 2022: 25-39. [22] POST D M. Using stable isotopes to estimate trophic position: models, methods, and assumptions[J]. Ecology, 2002, 83(3): 703-718. doi: 10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2
[23] LAYMAN C A, ARRINGTON D A, MONTAA C G, et al. Can stable isotope ratios provide for community-wide measures of trophic structure?[J]. Ecology, 2007, 88(1): 42-48. doi: 10.1890/0012-9658(2007)88[42:CSIRPF]2.0.CO;2
[24] JACKSON A L, INGER R, PARNELL A C, et al. Comparing isotopic niche widths among and within communities: SIBER-Stable Isotope Bayesian Ellipses in R[J]. J Anim Ecol, 2011, 80(3): 595-602. doi: 10.1111/j.1365-2656.2011.01806.x
[25] 石焱. 基于碳氮稳定同位素的闽江口常见鱼类营养生态位季节性变化[D]. 厦门: 集美大学, 2018: 26-33. [26] 叶学瑶, 任泷, 匡箴, 等. 基于稳定同位素技术的阳澄湖鱼类群落营养结构研究[J]. 中国水产科学, 2021, 28(6): 703-714. [27] 赖丽华, 张申增, 陆丽仪, 等. 2017—2020年珠江口棘头梅童鱼的种群特征[J]. 应用生态学报, 2022, 33(5): 1413-1419. [28] PAULY D, PALOMARES M L. Fishing down marine food web: it is far more pervasive than we thought[J]. Bull Mar Sci, 2005, 76(2): 197-211.
[29] JENNINGS S, GREENSTREET S P R, HILL L, et al. Long-term trends in the trophic structure of the North Sea fish community: evidence from stable-isotope analysis, size-spectra and community metrics[J]. Mar Biol, 2002, 141(6): 1085-1097. doi: 10.1007/s00227-002-0905-7
[30] 郑德锋, 赵金良, 周文玉, 等. 我国沿海棘头梅童鱼(Collichthys lucidus)群体遗传结构的AFLP分析[J]. 海洋与湖沼, 2011, 42(3): 443-447. [31] QUILLFELDT P, EKSCHMITT K, BRICKLE P, et al. Variability of higher trophic level stable isotope data in space and time: a case study in a marine ecosystem[J]. Rapid Commun Mass Spectrom, 2015, 29(7): 667-674. doi: 10.1002/rcm.7145
[32] 廖建基, 郑新庆, 杜建国, 等. 基于氮稳定同位素的九龙江口鱼类营养级研究[J]. 海洋学报, 2015, 37(2): 93-103. [33] 高春霞, 戴小杰, 田思泉, 等. 基于稳定同位素技术的浙江南部近海主要渔业生物营养级[J]. 中国水产科学, 2020, 27(4): 438-453. [34] 何雄波, 李波, 王锦溪, 等. 不同时期北部湾日本带鱼营养生态位差异[J]. 应用生态学报, 2021, 32(2): 683-690. [35] 银利强, 孔业富, 吴忠鑫, 等. 南海中西部海域春季三种金枪鱼类的营养生态位比较[J]. 生态学杂志, 2020, 39(12): 4121-4130. [36] 闫光松, 张涛, 赵峰, 等. 基于稳定同位素技术对长江口主要渔业生物营养级的研究[J]. 生态学杂志, 2016, 35(11): 3131-3136. [37] 王淼, 徐开达, 梁君. 杭州湾北部棘头梅童鱼繁殖群体生物学特征初步分析[J]. 上海海洋大学学报, 2018, 27(5): 781-788. [38] GUL G, DEMIREL N. Ontogenetic shift in diet and trophic role of Raja clavata inferred by stable isotopes and stomach content analysis in the Sea of Marmara[J]. J Fish Biol, 2022, 101(3): 560-572. doi: 10.1111/jfb.15123
[39] 操亮亮, 刘必林, 李建华. 基于稳定同位素技术的东南太平洋公海茎柔鱼摄食生态分析[J]. 大连海洋大学学报, 2022, 37(1): 120-128. [40] ZHOU F, WU H P, JIA S S, et al. Ontogenetic variation of trophic habitat for sympatric benthic octopods in East China Sea derived from isotopic analysis on beaks[J]. Fish Res, 2021, 238: 105902. doi: 10.1016/j.fishres.2021.105902
[41] 郭家彤, 王腾, 陈得仿, 等. 大亚湾黑棘鲷的摄食习性[J]. 中国水产科学, 2021, 28(8): 1041-1050. [42] BARNES C L, BEAUDREAU A H, YAMADA R N. The role of size in trophic niche separation between two groundfish predators in Alaskan waters[J]. Mar Coast Fish, 2021, 13(1): 69-84. doi: 10.1002/mcf2.10141
[43] PARK H J, KWAK J H, LEE Y J, et al. Trophic structures of two contrasting estuarine ecosystems with and without a dike on the temperate coast of Korea as determined by stable isotopes[J]. Estuar Coast, 2020, 43(3): 560-577. doi: 10.1007/s12237-019-00522-4
[44] 杨蕊, 韩东燕, 高春霞, 等. 浙江南部近海前肛鳗营养生态位变化研究: 基于稳定同位素技术[J]. 生态学报, 2022, 42(23): 9796-9807. [45] 黄佳兴, 龚玉艳, 徐姗楠, 等. 南海中西部海域鸢乌贼中型群和微型群的营养生态位[J]. 应用生态学报, 2019, 30(8): 2822-2828. [46] 殷宝法, 淮虎银, 张镱锂, 等. 可可西里地区藏羚羊、藏原羚和藏野驴的营养生态位[J]. 应用生态学报, 2007, 18(4): 766-770. doi: 10.3321/j.issn:1001-9332.2007.04.010 [47] 徐超, 王思凯, 赵峰, 等. 长江口水生动物食物网营养结构及其变化[J]. 水生生物学报, 2019, 43(1): 155-164. [48] 曾艳艺, 赖子尼, 杨婉玲, 等. 珠江河口渔业生物稳定同位素营养级分析[J]. 生态学杂志, 2018, 37(1): 194-202. [49] ZHANG Y L, ZHANG C L, XU B D, et al. Impacts of trophic interactions on the prediction of spatio-temporal distribution of mid-trophic level fishes[J]. Ecol Indic, 2022, 138(2/3): 108826.
[50] AYELEN T, FRANCO C, ANÍBAL G N, et al. Trophic niche partitioning of five skate species of genus Bathyraja in northern and central Patagonia, Argentina[J]. J Fish Biol, 2020, 97(3): 656-667. doi: 10.1111/jfb.14416
[51] 李振华, 徐开达, 蒋日进, 等. 东海中北部小眼绿鳍鱼的食物组成及摄食习性的体长变化[J]. 中国水产科学, 2011, 18(1): 185-193. -
期刊类型引用(4)
1. 蔡润基,彭小红,叶双福,张天晨,高月芳,吕俊霖. 基于前后端生成概率密度图模型的虾苗自动计数. 南方水产科学. 2025(01): 173-184 . 本站查看
2. 俞圣池,李佳康,熊鑫泉,贺刘刚,何瑞麟,戴阳. 基于线激光三角测距法的鱼体测距研究. 渔业现代化. 2024(01): 80-89 . 百度学术
3. 张佳泽,张胜茂,王书献,杨昱皞,戴阳,熊瑛. 基于3-2D融和模型的毛虾捕捞渔船行为识别. 南方水产科学. 2022(04): 126-135 . 本站查看
4. 张胜茂,孙永文,樊伟,唐峰华,崔雪森,伍玉梅. 面向海洋渔业捕捞生产的深度学习方法应用研究进展. 大连海洋大学学报. 2022(04): 683-695 . 百度学术
其他类型引用(3)