2015—2017年南海海域伏季休渔制度实施效果评价

苏莹佳, 陈国宝, 周艳波, 马胜伟, 吴洽儿

苏莹佳, 陈国宝, 周艳波, 马胜伟, 吴洽儿. 2015—2017年南海海域伏季休渔制度实施效果评价[J]. 南方水产科学, 2019, 15(2): 20-28. DOI: 10.12131/20180149
引用本文: 苏莹佳, 陈国宝, 周艳波, 马胜伟, 吴洽儿. 2015—2017年南海海域伏季休渔制度实施效果评价[J]. 南方水产科学, 2019, 15(2): 20-28. DOI: 10.12131/20180149
SU Yingjia, CHEN Guobao, ZHOU Yanbo, MA Shengwei, WU Qia'er. Assessment of impact of summer fishing moratorium in South China Sea during 2015−2017[J]. South China Fisheries Science, 2019, 15(2): 20-28. DOI: 10.12131/20180149
Citation: SU Yingjia, CHEN Guobao, ZHOU Yanbo, MA Shengwei, WU Qia'er. Assessment of impact of summer fishing moratorium in South China Sea during 2015−2017[J]. South China Fisheries Science, 2019, 15(2): 20-28. DOI: 10.12131/20180149

2015—2017年南海海域伏季休渔制度实施效果评价

基金项目: 农业部财政项目海洋捕捞基础信息动态采集网络“南海海洋捕捞生产结构调查” (20161640);农业农村部外海渔业开发重点实验室2018年度开放基金课题 (LOF 2018-05)
详细信息
    作者简介:

    苏莹佳(1991— ),女,硕士研究生,从事渔业法规、制度及管理研究。E-mail: suey102@163.com

    通讯作者:

    吴洽儿(1966— ),男,硕士,研究员,从事渔业资源开发战略及管理研究。E-mail: wqe66@163.com

  • 中图分类号: S 937.3

Assessment of impact of summer fishing moratorium in South China Sea during 2015−2017

  • 摘要:

    根据2015—2017年南海海域海洋捕捞生产结构调查数据,选取休渔前后渔船日均产量、日均产值、单位捕捞努力量渔获量(catch per unit effort,CPUE)、拖网渔获率等指标,应用显著性检验与增长幅度综合分析休渔效果。结果表明,2015年、2016年和2017年休渔后渔船日均产量比休渔前分别增加19.21%、49.99%和114.64%;日均产值分别增加0.40%、16.06%和49.14%;CPUE分别增加7.12%、73.30%和110.90%。休渔制度对渔船日均产量影响显著(P<0.05),对渔船日均产值、CPUE、渔获率与渔获结构影响有限(P>0.05)。总体评价,南海海域伏季休渔制度的实施对渔民增产效果显著,对改善资源群落结构效果有限,2017年休渔效果优于2015年和2016年。

    Abstract:

    Based on the data of marine fishing production structure in the South China Sea during 2015−2017, we investigated the effect of summer fishing moratorium by studying the indicators such as daily yield, daily output value, catch per unit effort (CPUE) and trawl fishing rate before and after summer fishing moratorium, with differential test and growth rate analysis. Compared with the data before the moratorium, the daily yields of fishing boats after summer fishing moratorium increased by 19.21%, 49.99% and 114.64% in 2015, 2016 and 2017, respectively; the average daily output values increased by 0.40%, 16.06% and 49.14%, respectively; CPUE increased by 7.12%, 73.30% and 110.90%, respectively. The fishing moratorium system had a significant impact on the daily output of fishing vessels (P<0.05), but a limited impact on the daily output value, CPUE, catch rate and fishing structure (P>0.05). To sum up, summer fishing moratorium in the South China Sea affects the yield increment significantly, but affects the resource community structure not so much. The effect in 2017 is better than that in 2015 and 2016.

  • 大型海藻广泛分布于海岸线潮间带及潮间带以下的透光层,它们在不到海洋面积百分之一的情况下却提供着百分之十的初级生产力[1]。海藻自身具有食用、医用、工业和环境等方面的应用价值,而且还具有净化沿岸水质,吸收利用水体的氮(N)、磷(P)营养盐等功能,增殖海藻是延缓水体富营养化行之有效的措施之一[2-3],同时还具有为海洋生物提供栖息场所[4]等生态功能。秦传新等[5]研究了孔石莼(Ulva pretusa)和角叉菜(Pelvetia siliquosa)对硝酸氮(NO3--N)和P的吸收及组成,证实2种大型海藻对高浓度营养盐有较好的吸收作用;杨宇峰和费修绠[6]、YU和YANG[7]认为龙须菜(Gracilaria lemaneigormis)等大型海藻大规模增养殖是降低富营养化海区水质的有效手段;对海藻场内水流、水温[8]、溶解氧(DO)、pH[9]的分布变化具有缓冲作用。但是高密度的增养殖会产生大量海藻脱落物,其在重力的作用下沉积在海底,腐烂后发生分解。

    由于大型海藻场海藻种类普遍单一化,而且其叶片会减缓水流的冲刷,势必会造成外侧的海藻脱落,较缓的水流和不断积累的海藻会通过机械沉降作用下沉入海底后形成泥沙底质,腐烂后的海藻会释放出N、P营养盐,不断吸收水体DO,造成二次污染[10]。2008年4月以来在黄海海域出现了浒苔(Enteromorpha proligera)、孔石莼爆发式增殖情况[11]。因此研究大型海藻脱落物对于海洋水质的影响有着重要的意义。目前国内外主要研究工作集中在大型海藻对沿岸海水净化效果与其最适生长环境方面[12-14],海藻脱落后对海藻场影响的报道较少,因此文章筛选了在广东海域广泛增殖的江蓠(G.confervoides)作为实验对象,通过人工模拟的方法,在实验室中模拟藻类植物沉积、腐烂过程,探讨不同质量海藻脱落物在不同季节对上覆水理化性质的影响,为确定大型海藻的增殖密度以及科学管理等提供参考依据。

    实验在中国水产科学研究院南海水产研究所深圳试验基地进行,实验用底泥沉积物采自深圳大亚湾(114.66°E,22.76°N)。在天气情况相近的低潮时,在采样点选取3 m×3 m沉积物相对均匀底泥面,用高度30 cm、内径5 cm的有机玻璃管采集沉积物柱状样4个,供实验室培养用。在运输途中将采集好的底泥放入泡沫箱中,加入冰袋冰冻保存,运回实验室冷冻备用;实验用上覆水采自大亚湾(114.66°E,22.76°N),所采集的海水不做处理,实验期间海水盐度为29~30;实验海藻为广东沿海常见大型海藻江蓠,采自广东汕头南澳海域(116.94°E,23.41°N)。

    实验装置为高30 cm,内径5 cm的透明有机玻璃管。管盖有一个可控速的搅拌器插口。搅拌器扇距沉积物—水界面深度约5 cm,搅拌速度为60~80 r·min-1,以保证培养管内水体均匀混合且不会搅动沉积物。上面是可滤过海藻的出水口,用于收集上覆水(图 1)。

    图  1  实验装置图
    Figure  1.  Experimental apparatus

    大亚湾南澳海域年平均流速为0.24 m·s-1,将位于培养管管口搅拌器转速设置为模拟天然海域流速。模拟天然海藻的脱落物状态,添加天然海藻藻体,分为无海藻区(对照组)、3 g·m-2(低丰度组)、5 g·m-2(中丰度组)和10 g·m-2(高丰度组)。实验在光照培养箱中进行,保持24 h光照,并依照大亚湾常年季节特点,春秋季20 ℃、夏季28 ℃、冬季15 ℃平均水温设置光照培养箱温度。每个季节温度设置1个对照组,3个处理组。实验前将江蓠置于烘箱中80 ℃烘干,干湿质量比例为0.304:1,对照组中不加入烘干海藻,处理组中分别在低丰度组加入0.91 g,中丰度组加入1.52 g,高丰度组加入3.04 g烘干后江蓠,进入培养管进行实验,每组设置3个重复。共培养72 h,定时采集上覆水,采集之后加入等量海水补充。采集后的上覆水在真空抽滤机抽滤冷冻保存。

    用YSI参数测量仪测量水中溶氧并记录,分别用靛酚蓝法测定铵态氮(NH4+-N)、重氮-偶氮光度法测定亚硝态氮(NO2--N)、锌-镉还原法测定NO3--N、抗坏血酸还原钼蓝法测定活性磷(PO43--P),联合消化法测定上覆水中总氮(TN)、总磷(TP),参照《海洋监测规范》(GB12763.4—2007)。

    实验数据采用Origin 8.0绘图,并应用SPSS 17.0进行数据分析和方差分析,使用LSD多重比较,P<0.05为差异显著。

    不同温度环境对DO质量浓度的影响见图 2。不同温度下各组ρ(DO)差异显著,高温环境(28 ℃)ρ(DO)下降超过低温(15 ℃)环境。15 ℃环境各组中ρ(DO)在第36小时达到底值,中丰度组与高丰度组差异不显著(P>0.05),对照组与低丰度组差异显著(P<0.05)。20 ℃环境各组水体ρ(DO)在第24小时达到底值,而高丰度组ρ(DO)随时间变化逐渐下降至最低0.35 mg·L-1,对照组与低丰度组差异不显著(P>0.05),中丰度组与高丰度组差异不显著(P>0.05)。28 ℃环境除对照组ρ(DO)随时间改变不明显外,其余各组均在8 h后ρ(DO)急剧下降,低丰度组在第12小时降至最低(0.21 mg·L-1),低丰度组、中丰度组和高丰度组ρ(DO)随时间变化均无显著差异(P>0.05)。

    图  2  不同温度下溶解氧质量浓度变化
    Figure  2.  Variation of DO concentration at different temperatures

    1) NH4+-N。不同温度环境对NH4+-N质量浓度的影响见图 3。不同温度条件下水体ρ(NH4+-N)显著不同,3个温度下水体ρ(NH4+-N)呈现出先上升后下降趋势,最终下降到与初始值持平或更小。各组中加入江蓠的质量对水体中ρ(NH4+-N)有显著影响(P<0.05)。低温条件(15 ℃)下水体ρ(NH4+-N)持续上升,并且出现峰值时间晚于高温条件(20 ℃和28 ℃)。15 ℃下对照组与低丰度组无显著差异(P>0.05),中丰度组与高丰度组无显著差异(P>0.05),水体ρ(NH4+-N)在12~24 h达到峰值;20 ℃下对照组与另外3组体质量均呈显著影响(P<0.05);28 ℃下对照组中ρ(NH4+-N)与另外3组差异显著(P<0.05)。

    图  3  不同温度下铵态氮质量浓度变化
    Figure  3.  Variation of NH4+-N concentration at different temperatures

    2) NO2--N、NO3--N。不同温度环境对NO2--N、NO3--N质量浓度的影响见图 4图 5。NO2--N、NO3--N表现出较高一致性。水体温度对ρ(NO2--N)、ρ(NO3--N)有显著影响,且低温(15 ℃)ρ(NO2--N)、ρ(NO3--N)出现峰值时间晚于高温(28 ℃),处在峰值时,ρ(NO2--N)、ρ(NO3--N)和添加江蓠的质量呈正相关,高丰度组>中丰度组>低丰度组>对照组。15 ℃下NO2--N对照组与低丰度组无显著差异(P>0.05),中丰度组与高丰度组无显著差异(P>0.05)(图 4);20 ℃下对照组与低丰度组、中丰度组和高丰度组呈较高一致性(P>0.05);28 ℃下低丰度组与另外3组差异显著(P<0.05),对照组与另外3组差异显著(P<0.05),但中丰度组与高丰度组差异不显著(P>0.05)。

    图  4  不同温度下亚硝态氮质量浓度变化
    Figure  4.  Variation of NO2--N concentration at different temperatures
    图  5  不同温度下硝态氮质量浓度变化
    Figure  5.  Variation of NO3--N concentration at different temperatures

    15 ℃下,ρ(NO3--N)高丰度组与其余3组差异显著(P<0.05),12~36 h出现峰值(图 5);20 ℃下低丰度组与另外3组差异显著(P<0.05),8~12 h浓度出现峰值;28 ℃下低丰度组与另外3组差异显著(P<0.05),8~12 h浓度出现峰值。

    3) TN。不同温度环境对TN质量浓度的影响见图 6。TN释放早于无机氮,低温(15 ℃)时ρ(TN)在4~8 h达到峰值,此后开始逐渐下降,对照组与低丰度组无显著差异(P>0.05),中丰度组与高丰度组无显著差异(P>0.05);20 ℃时在2~4 h达到峰值,对照组与低丰度组无显著性差异(P>0.05),中丰度组与高丰度组无显著差异(P>0.05);28 ℃时对照组在第72小时ρ(TN)达到峰值,低丰度组、中丰度组和高丰度组在2~4 h达到峰值,其中对照组与其余3组差异显著(P<0.05)。

    图  6  不同温度下总氮质量浓度变化
    Figure  6.  Variation of TN concentrations at different temperatures

    1) PO43--P。不同水温条件时水体PO43--P质量浓度变化见图 7。15 ℃、20 ℃和28 ℃下ρ(PO43--P)的变化趋势均为2~4 h出现峰值,显著早于N元素的释放。对照组中峰值出现较晚,后逐渐降低,在第8小时小浮动浓度升高,后逐渐下降至略高于起始值,3个温度环境下均与实验组差异显著(P<0.05)。低温下(15 ℃),中丰度组ρ(PO43--P)为10.61 mg·L-1,显著高于高温条件(28 ℃)下水体浓度,而且加入的江蓠质量与上覆水浓度呈正相关关系。

    图  7  不同温度下活性磷质量浓度变化
    Figure  7.  Variation of PO43--P concentration at different temperatures

    2) TP。不同水温条件时水体TP质量浓度变化见图 8。3个温度下的ρ(TP)在2~4 h达到峰值,显著高于TN达到峰值时间。对照组峰值出现稍晚于实验组,之后水体营养盐浓度快速下降,至第48小时浓度略有升高,最终至实验结束时浓度略高于起始值。ρ(TP)与加入的江蓠体质量呈正比。水温控制在15 ℃时对照组与各实验组呈显著差异(P<0.05);实验温度20 ℃时对照组晚于实验组出现峰值,之后水体营养盐浓度迅速下降,至第72小时浓度略高于第0小时。4组实验呈显著差异(P<0.05),且对照组与低丰度组无显著差异,低丰度组、中丰度组无显著差异,中丰度组、高丰度组无显著差异;水温控制在28 ℃时对照组在第24小时出现峰值,晚于各实验组,对照组与实验组呈显著差异(P<0.05)。

    图  8  不同温度下总磷质量浓度变化
    Figure  8.  Variation of TP concentrations at different temperatures

    大型海藻脱落死亡后,失去生物活性,经过机械沉降作用沉至海底,在微生物的作用下腐烂分解。水生植物的分解较为复杂,包括水生植物的水解、有机成分的酶解、矿质成分的分解、可溶性有机质的溶解、生物的降解和各类有机成分的酶解、微小颗粒的逸散等[15],腐烂后的藻类会对水体产生多方面的影响。沉积物中的有机质发生矿化后耗氧,厌氧代谢的中间产物NO2--N、NO3--N逐渐积累,协同矿化后产生的NH4+-N向水层扩散,P元素不断的积累,导致水体富营养化的发生,进而导致溶解氧的过度消耗,因此大型海藻脱落后对底质的影响得到了越来越多的重视。

    自然状态下水中DO与大气中氧气存在着动态平衡,而江蓠腐烂导致平衡被打破,DO下降。孙连鹏等[16]指出,厌氧环境使污泥中的N、P等营养物质得到了较大程度释放。此实验表明,当ρ(DO)达到最低值,此时的ρ(NO2--N)、ρ(NO3--N)同时达到峰值,并且峰值时间等同于ρ(NH4+-N)达到峰值时间。周劲风等[17]指出,NH4+-N经过硝化和亚硝化等的矿化作用转变为不能直接被海藻吸收的NO2--N和NO3--N,此过程消耗氧气,NO2--N属于中间产物极不稳定,反硝化细菌活跃将他们转化为氮(N2)等气体。而NH4+-N持续上升,是因为底泥中的有机氮分解需要浮游动植物的参与,NH4+-N同时是沉积物需氧量的重要贡献者[18],当水体DO降低,矿化速率减缓,沉积物中的氮以NH4+-N形式溶出[19]。综上所述江蓠腐烂后最直接产物NH4+-N有3支可能的出路:1)进入到水界面直接被藻类吸收;2)发生硝化转变为NO3--N,之后取决于氧气的参与可能发生反硝化,生成N2不会被大多数水生植物所利用;3)进入沉积物铵态氮库中。

    在DO降低时,此时的TN、TP也处在较低水平。林旭丹等[20]指出,DO影响着水体环境中不同微生物的呼吸作用,当DO浓度高时,好氧微生物如亚硝化细菌和硝化细菌活跃,浓度低时,厌氧微生物如反硝化细菌活跃。实验显示当DO充足时,江蓠腐烂释放出的有机氮迅速转化为无机氮,ρ(TN)在2~4 h达到峰值,之后快速下降,最终至实验结束时略高于起始值,浓度与加入的江蓠质量呈正相关关系,印证了实验结论。

    通过实验模拟各个季度上覆水营养盐改变,在冬季时ρ(NH4+-N)显著低于夏季,而P元素浓度在冬季显著高于夏季。张亚克等[21]认为夏季蓝绿藻种群占优,与水体NH4+-N变化显著相关,而在冬季时水体硅藻种群增加,与水体P元素增加具有一定相关性。冬季时随着水体悬浮颗粒沉淀,N、P元素浓度较高[22],气温较低限制了藻类的生长,而到次年春季时气温回升,水体中N、P资源丰富,在自然光照下,为机会主义藻类爆发做了准备,爆发式增长的藻类进一步吸收水体中DO,导致局部水域环境恶化。

    海藻丰度对无机氮的影响也表现出差异。冬季(15 ℃)和春秋季(20 ℃)时,ρ(NO2--N)、ρ(NO3--N)最大值均随江蓠丰度的增加而增大,夏季(28 ℃)则相反。高温时,主要限制为DO。随江蓠丰度的增加,DO较长时间保持在极低值。故28 ℃时ρ(NO2--N)、ρ(NO3--N)最大值随江蓠丰度的增加而减小。15 ℃和20 ℃时DO下降较慢,所以变化相反。赵志梅[23]指出溶解氧和温度主要是通过改变硝化-反硝化细菌的活性从而影响硝酸盐的通量,论证了实验结论。

    TN与PO43--P均在2~4 h营养盐浓度达到峰值,冬季P元素浓度普遍高于夏季。相关研究证实,P元素的释放早于N元素释放[24-28],因为P元素存在于植物体内的生物活性物质内,这些物质更容易分解。植物体内的ATP、核酸等可直接水解为磷酸,无需经过复杂的矿化作用[29],所需时间较短。而PO43--P为藻类的限制因子,夏季时大型海藻场脱落后的藻类会在短时间内释放出PO43--P,可造成甲藻、蓝藻快速生长,而蓝藻通过改变水体pH,而引发底泥沉积物中大量的磷释放,反过来又会促使藻类爆发式生长,竞争水体DO,导致局部水域富营养化加重,从而造成反馈式破坏。而在冬季时气温较低,限制富营养化的爆发,脱落后的藻类逐渐腐烂,营养盐沉积入底泥,在次年春季底泥中营养盐再次扩散入上覆水中又将会刺激藻类的爆发式增长。

    综上所述,大型海藻场的沉积物是许多溶解性物质和颗粒性物质的来源,上覆水与沉积物间的营养盐交换活动,直接影响着海藻场的营造。虽然大型海藻场的营造是好的,但是如果海藻密度过高致使海藻脱落,在重力的作用下下沉到海底,会使上覆水TP、TN增加,沉水植物体内的N、P元素70%以上会在较短时间内被释放进入水体,参与水体营养的再生和循环[30],沉积物中的无机物释放至上覆水后会造成水体富营养化,可能招致某些机会主义海藻爆发。如2008年6月~7月,胶州湾浒苔的爆发,导致海藻场不仅没有达到增殖的目的,反而破坏了海藻场海域水质[31]。因此合理地控制海藻密度,并且根据不同海藻季节变化和生活习性,交替进行吊养或放养江蓠、龙须菜、条斑紫菜(P.yezoensis)等经济价值高环境价值高的品种,吸收水体营养盐,既可以满足经济利益,又具有环保价值[6]

  • 图  1   2015—2017年渔船采集站点分布

    Figure  1.   Sampling sites of fishing boats during 2015−2017

    图  2   南海海域20年间 (1997—2016年) 捕捞产量变化

    Figure  2.   Fishing yield in South China Sea over past 20 years (1997−2016)

    表  1   2015—2017年休渔前后渔船日均产量统计结果

    Table  1   Statistical results of average daily yield before and after summer fishing moratorium during 2015−2017 ${\overline {\mathit{\boldsymbol{X}}}} \pm {\bf SD}$

    201505 201508 增长率/%
    growth rate
    201605 201608 增长率/%
    growth rate
    201704 201708 增长率/%
    growth rate
    单拖 single trawler 626.74±674.67a 851.48±790.56b 35.86 634.10±726.81a 1 145.44±1 419.11b 80.64 655.14±845.97a 1 159.57±1 545.25b 77.00
    双拖 bull trawler 2 773.50±1 833.75b 6 247.66±4 955.02a 125.26 4 512.46±4 257.73b 6 757.35±5 120.26a 49.75 3 211.07±2 709.62b 5 880.07±5 572.79b 83.12
    桁杆拖虾 beam trawling 213.49±177.26b 243.03±218.68b 13.84 187.31±101.98b 423.28±501.54b 125.98 179.42±112.87b 536.36±429.28a 198.94
    围网 purse seine 1 462.98±1 664.32ab 1 293.63±2 394.50bc –11.58 1 689.56±2 425.14abc 3 582.12±6 366.51a 112.01 1 933.52±4 208.51c 4 224.16±7 486.65a 118.47
    流刺网 gill net 123.85±202.40a 101.45±173.27ab –18.09 115.05±216.32ab 78.75±201.03ab –31.55 45.97±55.52b 78.72±114.06a 71.24
    钓具 fishing tackle 133.17±221.25ab 121.82± 190.21b – 8.52 137.02±196.59ab 169.47±251.34ab 23.68 129.08±182.61ab 185.04±236.86a 43.35
    其他 other 102.92±123.89a 156.06±510.95a 51.63 79.35±91.59a 159.89±560.15a 101.50 121.08±145.45a 380.79±1 330.72a 214.49
     注:不同上标字母表示某一作业类型的日均产量在不同时间差异显著(P<0.05),下表同此  Note: Different lowercase letters indicate significant difference (P<0.05). The same case in the following tables.
    下载: 导出CSV

    表  2   2015—2017年南海海域渔船日均产量、日均产值和CPUE均值

    Table  2   Average values of daily yield, daily production value and CPUE of fishing boats in South China Sea during 2015−2017

    201505 201508 增长率/%
    growth rate
    201605 201608 增长率/%
    growth rate
    201704 201708 增长率/%
    growth rate
    日均产量/t daily yield 47 445.04c 56 561.28b 19.21 54 049.62c 81 070.71a 49.99 42 504.74d 91 233.06a 114.64
    日均产值/百万元 daily production value/million Yuan 317.33c 318.60c 0.40 320.56c 372.03b 16.06 302.27c 450.80a 49.14
    单位捕捞努力量渔获量/[kg·(kW·d)–1 CPUE 216 080.46c 231 468.31c 7.12 219 578.73c 380 524.81b 73.30 185 794.37d 391 835.35a 110.90
    下载: 导出CSV

    表  3   2015—2017年休渔前后渔船日均产值统计结果

    Table  3   Statistical results of average daily production value before and after summer fishing moratorium during 2015−2017 ${\overline {\mathit{\boldsymbol{X}}}} \pm {\bf SD}$

    作业类型
    type of fishing vessels
    201505 201508 增长率/%
    growth rate
    201605 201608 增长率/%
    growth rate
    201704 201708 增长率/%
    growth rate
    单拖 single trawler 5 763.49±2 860.79c 7 746.87±3 701.79b 34.41 6 230.31±2 470.67c 8 355.57±4 888.65b 34.11 6 286.32±3 257.39c 9 660.15±5 149.16a 53.67
    双拖 bull trawler 14 055.21±10 375.48ab 20 943.16±15 242.59ab 49.01 15 082.40±9 090.37b 19 438.78±10 601.54a 28.88 16 375.87±8 845.72ab 23 580.17±16 977.61c 43.99
    桁杆拖虾 beam trawling 3 392.19±1 973.87b 4 305.07±4 713.02b 26.91 3 092.06±1 777.26b 5 331.26±4 538.99b 72.42 3 037.33±1 701.58b 8 040.85±5 343.70a 164.73
    围网 purse seine 8 348.29±8 310.18a 5 154.69±9 763.42b –38.25 9 428.75±14 645.69a 8 635.25±11 685.94a –8.42 11 934.76±20 451.73a 10 608.54±9 966.25a –11.11
    流刺网 gill net 1 535.84±1 912.44ab 1 374.93±2 232.75a –10.48 1 543.25±1 915.26a 1 276.68±2 118.26a –17.27 1 248.45±1 740.08a 1 727.16±2 637.69a 38.34
    钓具 fishing tackle 4 042.12±5 802.27ab 3 447.60±5 047.25a –14.71 4 105.74± 4 660.40a 4 732.23±6 306.55a 15.26 4 048.59±5 001.51a 5 757.97±6 766.10a 42.22
    其他 other 1 163.73±2 418.94a 2 863.54±6 620.41a 146.07 2 800.96±3 783.53a 2 838.89±5 002.60a 1.35 3 381.70±6 550.63a 5 069.43±10 006.12a 49.91
    下载: 导出CSV

    表  4   2015—2017年休渔前后各作业类型CPUE统计结果

    Table  4   Statistical results of CPUE of each type of fishing vessels before and after summer fishing moratorium during 2015−2017 ${\overline {\mathit{\boldsymbol{X}}}} \pm {\bf SD}$

    作业类型
    type of fishing vessels
    201505 201508 增长率/%
    growth rate
    201605 201608 增长率/%
    growth rate
    201704 201708 增长率/%
    growth rate
    单拖 single trawler 2.55±1.67b 4.11±2.67a 61.18 2.89±2.17b 4.69 ±4.08a 62.28 2.78±2.57b 4.79 ±4.64a 72.30
    双拖 bull trawler 8.63±5.00c 15.65±8.46a 81.34 11.47±6.63bc 13.98±5.19ab –93.61 8.69± 6.51c 11.57± 3.98b 33.14
    桁杆拖虾 beam trawling 1.89±1.51bc 2.01±1.32b 6.35 1.60±1.06bc 2.82±2.55a 76.25 1.31±0.97c 3.20±2.08a 144.27
    围网 purse seine 8.23±8.85b 6.50±11.76c –99.99 9.37±11.00b 27.57±39.54a 194.24 10.49±21.72c 29.80±41.47a 184.08
    流刺网 gill net 2.33±3.10b 2.27±2.62b –2.58 2.53±3.59b 2.08±2.01b –17.79 1.72±1.96b 2.82±3.47a 63.95
    钓具 fishing tackle 1.93±1.91ab 2.03±1.55ab 5.18 1.92±1.38ab 2.28±1.82ab 18.75 1.63±1.23b 2.19±1.51a 23.00
    下载: 导出CSV

    表  5   单拖渔船情况

    Table  5   Trawling survey boats information

    年份
    year
    月份
    month
    船次
    Voy. No.
    马力
    horsepower
    出海天数
    days at sea
    2015 5 134 40 858 930
    8 154 42 087 1 043
    2016 5 126 35 537 686
    8 140 41 247 906
    2017 4 165 46 882 1 351
    8 136 39 121 629
     注:船次为所有调查渔船该月出海总次数,存在同艘渔船该月多次出海情况  Note: Voy. No. is the total number of fishing boats going out at sea that month, and there are some fishing boats going out several times within that month.
    下载: 导出CSV

    表  6   2015—2017年主要渔获种类渔获率与渔获结构

    Table  6   Fishing rate and fishing structure of main fish species during 2015−2017

    种类
    species
    渔获率/kg·(kW·d)–1 catch rate 渔获结构/% fishing structure
    2015年 2016年 2017年 2015年 2016年 2017年
    5月 8月 5月 8月 4月 8月 5月 8月 5月 8月 4月 8月
    蓝子鱼 Siganus 0.00 0.00 0.00 0.01 0.00 0.52 1.22 0.36 0.08 0.44 0.44 21.15
    鲹类 Carangidae 0.00 0.16 0.01 0.92 0.02 0.14 1.45 11.67 0.97 53.17 2.79 5.67
    二长棘鲷 Paerargyrops edita 0.01 0.06 0.00 0.08 0.00 0.07 2.69 4.72 0.47 4.58 0.38 3.02
    带鱼 Trichiurus haumela 0.05 0.19 0.05 0.16 0.09 0.32 26.64 14.08 7.63 9.41 10.88 13.29
    金线鱼 Nemipterus virgatus 0.00 0.13 0.01 0.03 0.00 0.02 2.03 9.37 1.49 1.70 0.22 0.78
    刺鲳 Psenopsis anomala 0.01 0.03 0.00 0.04 0.00 0.02 4.65 2.15 0.76 2.04 0.10 0.69
    鱿鱼 Loligo chinensis 0.00 0.05 0.01 0.03 0.01 0.07 1.54 3.50 1.65 1.55 0.66 2.92
    下载: 导出CSV
  • [1] 李云凯, 禹娜, 陈立侨, 等. 东海南部海区生态系统结构与功能的模型分析[J]. 渔业科学进展, 2010, 31(2): 30-39. doi: 10.3969/j.issn.1000-7075.2010.02.005
    [2] 刘勇, 程家骅. 东海、黄海秋季渔业生物群落结构及其平均营养级变化特征初步分析[J]. 水产学报, 2015, 39(5): 691-702.
    [3] 农业部产业政策与法规司. 农业部关于在东海, 黄海实施新伏季休渔制度的通知[EB/OL]. http://www.moa.gov.cn/zwllm/zcfg/nybgz/200806/t20080606_1057144.htm,2008-06-06/2018-11-16.
    [4] 农业部产业政策与法规司. 农业部关于在南海海域实行伏季休渔制度的通知[EB/OL]. http://jiuban.moa.gov.cn/zwllm/zcfg/nybgz/200806/t20080606_1057142.htm, 2008-06-06/2018-11-16.
    [5] 农业部渔业局. 农业部关于调整海洋伏季休渔制度的通告[EB/OL]. http://www.moa.gov.cn/govpublic/YYJ/201701/t20170120_5460478.htm,2017-01-20/2018-11-16.
    [6] 杨伯华, 邹建伟. 2012年南海伏季休渔效果评价——基于拖网、围网、刺网渔船生产对比[J]. 中国水产, 2013(2): 73-75. doi: 10.3969/j.issn.1002-6681.2013.02.026
    [7] 严利平, 刘尊雷, 李圣法, 等. 东海区拖网新伏季休渔渔业生态和资源增殖效果的分析[J]. 海洋渔业, 2010, 32(2): 186-191. doi: 10.3969/j.issn.1004-2490.2010.02.012
    [8] 丁峰元, 程家骅. 东、黄海水团动态与夏季休渔效果间的关系[J]. 生态学报, 2007, 27(6): 2342-2348. doi: 10.3321/j.issn:1000-0933.2007.06.025
    [9] 严利平, 凌建忠, 李建生, 等. 应用Ricker动态综合模型模拟解析东海区伏季休渔效果[J]. 中国水产科学, 2006, 13(1): 85-91. doi: 10.3321/j.issn:1005-8737.2006.01.014
    [10] 余景, 胡启伟, 袁华荣, 等. 基于遥感数据的大亚湾伏季休渔效果评价[J]. 南方水产科学, 2018, 14(3): 1-9. doi: 10.3969/j.issn.2095-0780.2018.03.001
    [11] 邹建伟, 黄俊秀, 王强哲. 北部湾北部沿岸渔场2015年伏季休渔效果评价[J]. 渔业信息与战略, 2016, 31(2): 132-138.
    [12] 邹建伟, 王强哲, 黄俊秀, 等. 南海北部大陆架渔场2016年伏季休渔效果评价[J]. 水产科技情报, 2016, 43(6): 318-323.
    [13] 刘勇, 程家骅. 东海、黄海底层鱼类数量分布季节变化的因子分析[J]. 海洋学报(中文版), 2008, 30(4): 123-130. doi: 10.3321/j.issn:0253-4193.2008.04.015
    [14] 陈森, 张鹏, 晏磊, 等. 南海新建钢质罩网渔船渔获组成及渔场分析[J]. 南方水产科学, 2015, 11(5): 125-131. doi: 10.3969/j.issn.2095-0780.2015.05.015
    [15] 陈春亮, 曲念东, 侯秀琼, 等. 2007年伏季休渔深圳海域渔业资源调查分析[J]. 水产科学, 2008, 27(12): 648-651. doi: 10.3969/j.issn.1003-1111.2008.12.011
    [16] 侯秀琼, 陈春亮, 孙省利, 等. 2007—2008年伏季休渔深圳市海域鱼类资源调查研究[J]. 海洋开发与管理, 2009, 26(1): 106-112. doi: 10.3969/j.issn.1005-9857.2009.01.020
    [17] 程家骅. 伏季休渔制度实践的回顾之三: 现行伏季休渔制度的局限性分析及展望[J]. 中国水产, 2008(8): 17-19. doi: 10.3969/j.issn.1002-6681.2008.08.008
    [18] 张龙, 徐汉祥, 王甲刚, 等. 舟山沿岸定置张网作业休渔前后鱼类组成分析[J]. 浙江海洋学院学报(自然科学版), 2011, 30(1): 1-8. doi: 10.3969/j.issn.1008-830X.2011.01.001
    [19]

    ARENDSE C J, GOVENDER A, BRANCH G M. Are closed fishing seasons an effective means of increasing reproductive output? A per-recruit simulation using the limpet Cymbula granatina as a case history[J]. Fish Res, 2007, 85(1/2): 93-100.

    [20]

    DAVIES K T, GENTLEMAN W C, DIBACCO C. Fisheries closed areas strengthen scallop larval settlement and connectivity among closed areas and across international open fishing grounds: a model study[J]. Environ Manag, 2015, 56(3): 587-602. doi: 10.1007/s00267-015-0526-9

    [21] 潘澎, 李卫东. 我国伏季休渔制度的现状与发展研究[J]. 中国水产, 2016(10): 36-40. doi: 10.3969/j.issn.1002-6681.2016.10.015
    [22] 徐莲莲, 杨美丽. 东海带鱼休渔制度对渔区渔民的经济影响及渔民的需求分析——基于舟山渔场嵊泗渔民的调查研究[J]. 农村经济与科技, 2014(9): 52-53, 152. doi: 10.3969/j.issn.1007-7103.2014.09.020
    [23] ROLA A, NARVAEZ T A, NAGUIT M R A, et al. Impact of the closed fishing season policy for sardines in Zamboanga Peninsula, Philippines[J]. Soc Sci Electron Pub, 2018, 87: 40-50.
    [24] 朱国平, 李纲, 郑晓琼, 等. 东海鲐鱼资源时空分布特征[J]. 生态科学, 2011, 30(1): 1-7. doi: 10.3969/j.issn.1008-8873.2011.01.001
    [25]

    MUSIELLO-FERNANDES J, ZAPPES C A. Small-scale shrimp fisheries on the Brazilian coast: stakeholders perceptions of the closed season and integrated management[J]. Ocean Coast Manag, 2017, 148: 89-96. doi: 10.1016/j.ocecoaman.2017.07.018

    [26] 邹建伟, 王强哲, 林丕文, 等. 伏季休渔对北部湾北部虾类捕捞的影响及评价[J]. 南方水产科学, 2015, 11(6): 88-93. doi: 10.3969/j.issn.2095-0780.2015.06.012
    [27] 晏磊, 谭永光, 杨炳忠, 等. 基于张网渔业休渔前后的黄茅海河口渔业资源群落比较[J]. 南方水产科学, 2016, 12(6): 1-8. doi: 10.3969/j.issn.2095-0780.2016.06.001
    [28]

    WATSON D L, ANDERSON M J, KENDRICK G A, et al. Effects of protection from fishing on the lengths of targeted and non-targeted fish species at the Houtman Abrolhos Islands, Western Australia[J]. Mar Ecol Prog Ser, 2009, 384(2): 241-249.

    [29]

    WATSON D L, HARVEY E S, KENDRICK G A, et al. Protection from fishing alters the species composition of fish assemblages in a temperate-tropical transition zone[J]. Mar Biol, 2007, 152(5): 1197-1206. doi: 10.1007/s00227-007-0767-0

    [30] 陈作志, 邱永松, 贾晓平, 等. 捕捞对北部湾海洋生态系统的影响[J]. 应用生态学报, 2008, 19(7): 1604-1610.
    [31] 严利平, 杨林林, 刘尊雷, 等. 基于东海底层鱼类长度谱的捕捞强度变动判别[J]. 海洋渔业, 2016, 38(6): 570-576. doi: 10.3969/j.issn.1004-2490.2016.06.002
    [32]

    MCLEAN D L, HARVEY E S, MEEUWIG J J. Declines in the abundance of coral trout (Plectropomus leopardus) in areas closed to fishing at the Houtman Abrolhos Islands, Western Australia[J]. J Exp Mar Biol Ecol, 2011, 406(1/2): 71-78.

    [33]

    BAVINCK M, de KLERK L, van DIJK D, et al. Time-zoning for the safe-guarding of capture fisheries: a closed season in Tamil Nadu, India[J]. Mar Policy, 2008, 32(3): 369-378. doi: 10.1016/j.marpol.2007.08.007

    [34]

    YU J, CHEN P M, TANG D L, et al. Ecological effects of artificial reefs in Daya Bay of China observed from satellite and in situ measurements[J]. Adv Space Res, 2015, 55(9): 2315-2324. doi: 10.1016/j.asr.2015.02.001

    [35] 蔡研聪, 陈作志, 徐姗楠, 等. 北部湾二长棘犁齿鲷的时空分布特征[J]. 南方水产科学, 2017, 13(4): 1-10. doi: 10.3969/j.issn.2095-0780.2017.04.001
    [36] 王迎宾, 郑基, 郑献之, 等. 舟山渔场禁渔线以外海域单拖网鱼类群落结构变动分析[J]. 南方水产科学, 2012, 8(1): 8-15. doi: 10.3969/j.issn.2095-0780.2012.01.002
    [37] 刘凯, 张敏莹, 徐东坡, 等. 长江春季禁渔对崇明北滩渔业群落的影响[J]. 中国水产科学, 2006, 13(5): 834-840. doi: 10.3321/j.issn:1005-8737.2006.05.022
    [38] 李忠炉, 金显仕, 单秀娟, 等. 小黄鱼体长-体质量关系和肥满度的年际变化[J]. 中国水产科学, 2011, 18(3): 602-610.
    [39] 刘尊雷, 陈诚, 袁兴伟, 等. 基于调查数据的东海小黄鱼资源变化模式及评价[J]. 中国水产科学, 2018, 25(3): 632-641.
    [40]

    YU H G, YU Y J. Fishing capacity management in China: theoretic and practical perspectives[J]. Mar Policy, 2008, 32(3): 351-359. doi: 10.1016/j.marpol.2007.07.004

    [41] 刘勇, 程家骅. 渔业多鱼种综合开捕网目尺寸和捕捞努力量管理目标确定方法探讨[J]. 渔业科学进展, 2015, 36(6): 1-7.
  • 期刊类型引用(7)

    1. 胡晓娟,赵秀,杨宇峰,曹煜成. 大型海藻龙须菜(Gracilaria lemaneiformis)藻段凋落分解对环境的影响及细菌群落演替特征. 海洋学报. 2023(08): 130-142 . 百度学术
    2. 张秀梅,纪棋严,胡成业,徐焕志,王一航,杨晓龙,郭浩宇. 海洋牧场生态系统稳定性及其对干扰的响应——研究现状、问题及建议. 水产学报. 2023(11): 107-121 . 百度学术
    3. 戴晓娟,胡韧,罗洪添,王庆,胡晓娟,白敏冬,杨宇峰. 大型海藻龙须菜凋落物分解对水质的影响. 热带海洋学报. 2021(01): 91-98 . 百度学术
    4. 章守宇,刘书荣,周曦杰,汪振华,王凯. 大型海藻生境的生态功能及其在海洋牧场应用中的探讨. 水产学报. 2019(09): 2004-2014 . 百度学术
    5. 徐姗楠,王爽,张喆,李纯厚. TG-MS联用分析海藻和稻壳的协同耦合热解机制. 太阳能学报. 2018(06): 1696-1703 . 百度学术
    6. 于杰,戴晓玲,章增林,张紫英,陈日钊,黄国强,苏琼,李文红. 细基江蓠和真江蓠野生种群生长海域水质营养盐特征及富营养化评价. 南方农业学报. 2017(08): 1511-1517 . 百度学术
    7. 王云祥,秦传新,陈丕茂,袁华荣,佟飞,冯雪,黎小国. 深圳海域造礁石珊瑚分布特点与多样性. 海洋渔业. 2017(02): 131-139 . 百度学术

    其他类型引用(1)

图(2)  /  表(6)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 8
出版历程
  • 收稿日期:  2018-06-28
  • 修回日期:  2018-10-14
  • 录用日期:  2018-11-25
  • 网络出版日期:  2018-12-04
  • 刊出日期:  2019-04-04

目录

/

返回文章
返回