海陵湾口海水水质的综合分析与评价

李婷, 朱长波, 李俊伟, 陈素文, 颉晓勇, 刘永

李婷, 朱长波, 李俊伟, 陈素文, 颉晓勇, 刘永. 海陵湾口海水水质的综合分析与评价[J]. 南方水产科学, 2018, 14(3): 49-57. DOI: 10.3969/j.issn.2095-0780.2018.03.006
引用本文: 李婷, 朱长波, 李俊伟, 陈素文, 颉晓勇, 刘永. 海陵湾口海水水质的综合分析与评价[J]. 南方水产科学, 2018, 14(3): 49-57. DOI: 10.3969/j.issn.2095-0780.2018.03.006
LI Ting, ZHU Changbo, LI Junwei, CHEN Suwen, XIE Xiaoyong, LIU Yong. Water quality assessment for Hailing Bay estuary, China[J]. South China Fisheries Science, 2018, 14(3): 49-57. DOI: 10.3969/j.issn.2095-0780.2018.03.006
Citation: LI Ting, ZHU Changbo, LI Junwei, CHEN Suwen, XIE Xiaoyong, LIU Yong. Water quality assessment for Hailing Bay estuary, China[J]. South China Fisheries Science, 2018, 14(3): 49-57. DOI: 10.3969/j.issn.2095-0780.2018.03.006

海陵湾口海水水质的综合分析与评价

基金项目: 公益性行业 (农业) 科研专项经费项目 (201403008);中国水产科学研究院南海水产研究所中央级公益性科研院所基本业务费专项资金资助(2013ZD01);广东省海洋渔业科技与产业发展专项(Z2015013);广东省海洋渔业科技推广项目(B201601-01)
详细信息
    作者简介:

    李 婷(1985 — ),女,博士,助理研究员,从事水产养殖生态学研究。E-mail:liting@scsfri.ac.cn

    通讯作者:

    朱长波(1978 — ),男,博士,副研究员,从事生态系统养殖学及建模研究。E-mail:changbo@scsfri.ac.cn

  • 中图分类号: X 824

Water quality assessment for Hailing Bay estuary, China

  • 摘要: 根据2015—2016年4个航次的调查数据,对海陵湾口海水温度、盐度、pH、溶解氧(DO)、化学需氧量(COD)、无机氮(DIN)、无机磷(DIP)、叶绿素a (Chl-a)、石油类、硫化物和重金属质量浓度等16项水质指标进行分析,并通过综合污染评价指数(P)、富营养状态(E)和质量评价指数(NQI)对该区域渔业环境质量进行综合评价。结果显示,对海陵湾海域污染贡献率最高的因子依次是石油类、DIN、COD和DO,不同季节海水受污染程度和主要污染物水平存在显著差异(P<0.05);春季海水中DIN污染贡献率最高(0.27~0.69 mg·L–1),仅达到国家四类海水标准;夏季水质清洁,达到国家二类海水标准,但DO质量浓度(4.69~5.93 mg·L–1)显著低于其他三季;秋冬两季海水均受到一定程度的石油污染,海水中石油类质量浓度分别达0.069 mg·L–1和0.143 mg·L–1,均超过国家二类海水标准限量值,综合评价结果为轻度污染;冬季海水中COD值(3.67 mg·L–1)和Chl-a质量浓度(13.07 mg·m–3)均显著高于其他季节,11个调查站位(90%以上) NQI值大于3,水质呈现明显的富营养化状态。
    Abstract: Based on the quarterly investigation data of the Hailing Bay estuary from 2015 to 2016, in addition to the evaluation of the Nemerow pollution index (P), eutrophication index (E) and nutrient quality index (NQI), we analyzed 16 basic water quality indices, including water temperature, salinity, pH, dissolved oxygen (DO), chemical oxygen demand (COD), dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), chlorophyll a, petroleum hydrocarbon, sulfide and heavy metal content, so as to evaluate the quality of the fishery environment in this region. The results show that the top four contamination factors in Hailing Bay estuary were petroleum hydrocarbon, DIN, COD and DO, and the degree of contamination and the main pollutants in seawater were different among four seasons significantly (P<0.05). In spring, the DIN value was higher than those in the other seasons significantly, ranging from 0.27 mg·L–1 to 0.69 mg·L–1. In summer, the seawater was relatively clean, but the DO value was lower significantly, ranging from 4.69 mg·L–1 to 5.93 mg·L–1. In autumn and winter, the seawater was both contaminated by petroleum hydrocarbon whose concentration were 0.069 mg·L–1 and 0.143 mg·L–1, respectively (mild pollution). Winter witnessed the highest mass concentrations of COD (3.67 mg·L–1), Chl-a (13.07 mg·m–3) and NQI (4.35). The NQI values in 11 sampling stations were over 3, which indicates that seawater in the Hailing Bay estuary is experiencing high eutrophication.
  • 大型海藻广泛分布于海岸线潮间带及潮间带以下的透光层,它们在不到海洋面积百分之一的情况下却提供着百分之十的初级生产力[1]。海藻自身具有食用、医用、工业和环境等方面的应用价值,而且还具有净化沿岸水质,吸收利用水体的氮(N)、磷(P)营养盐等功能,增殖海藻是延缓水体富营养化行之有效的措施之一[2-3],同时还具有为海洋生物提供栖息场所[4]等生态功能。秦传新等[5]研究了孔石莼(Ulva pretusa)和角叉菜(Pelvetia siliquosa)对硝酸氮(NO3--N)和P的吸收及组成,证实2种大型海藻对高浓度营养盐有较好的吸收作用;杨宇峰和费修绠[6]、YU和YANG[7]认为龙须菜(Gracilaria lemaneigormis)等大型海藻大规模增养殖是降低富营养化海区水质的有效手段;对海藻场内水流、水温[8]、溶解氧(DO)、pH[9]的分布变化具有缓冲作用。但是高密度的增养殖会产生大量海藻脱落物,其在重力的作用下沉积在海底,腐烂后发生分解。

    由于大型海藻场海藻种类普遍单一化,而且其叶片会减缓水流的冲刷,势必会造成外侧的海藻脱落,较缓的水流和不断积累的海藻会通过机械沉降作用下沉入海底后形成泥沙底质,腐烂后的海藻会释放出N、P营养盐,不断吸收水体DO,造成二次污染[10]。2008年4月以来在黄海海域出现了浒苔(Enteromorpha proligera)、孔石莼爆发式增殖情况[11]。因此研究大型海藻脱落物对于海洋水质的影响有着重要的意义。目前国内外主要研究工作集中在大型海藻对沿岸海水净化效果与其最适生长环境方面[12-14],海藻脱落后对海藻场影响的报道较少,因此文章筛选了在广东海域广泛增殖的江蓠(G.confervoides)作为实验对象,通过人工模拟的方法,在实验室中模拟藻类植物沉积、腐烂过程,探讨不同质量海藻脱落物在不同季节对上覆水理化性质的影响,为确定大型海藻的增殖密度以及科学管理等提供参考依据。

    实验在中国水产科学研究院南海水产研究所深圳试验基地进行,实验用底泥沉积物采自深圳大亚湾(114.66°E,22.76°N)。在天气情况相近的低潮时,在采样点选取3 m×3 m沉积物相对均匀底泥面,用高度30 cm、内径5 cm的有机玻璃管采集沉积物柱状样4个,供实验室培养用。在运输途中将采集好的底泥放入泡沫箱中,加入冰袋冰冻保存,运回实验室冷冻备用;实验用上覆水采自大亚湾(114.66°E,22.76°N),所采集的海水不做处理,实验期间海水盐度为29~30;实验海藻为广东沿海常见大型海藻江蓠,采自广东汕头南澳海域(116.94°E,23.41°N)。

    实验装置为高30 cm,内径5 cm的透明有机玻璃管。管盖有一个可控速的搅拌器插口。搅拌器扇距沉积物—水界面深度约5 cm,搅拌速度为60~80 r·min-1,以保证培养管内水体均匀混合且不会搅动沉积物。上面是可滤过海藻的出水口,用于收集上覆水(图 1)。

    图  1  实验装置图
    Figure  1.  Experimental apparatus

    大亚湾南澳海域年平均流速为0.24 m·s-1,将位于培养管管口搅拌器转速设置为模拟天然海域流速。模拟天然海藻的脱落物状态,添加天然海藻藻体,分为无海藻区(对照组)、3 g·m-2(低丰度组)、5 g·m-2(中丰度组)和10 g·m-2(高丰度组)。实验在光照培养箱中进行,保持24 h光照,并依照大亚湾常年季节特点,春秋季20 ℃、夏季28 ℃、冬季15 ℃平均水温设置光照培养箱温度。每个季节温度设置1个对照组,3个处理组。实验前将江蓠置于烘箱中80 ℃烘干,干湿质量比例为0.304:1,对照组中不加入烘干海藻,处理组中分别在低丰度组加入0.91 g,中丰度组加入1.52 g,高丰度组加入3.04 g烘干后江蓠,进入培养管进行实验,每组设置3个重复。共培养72 h,定时采集上覆水,采集之后加入等量海水补充。采集后的上覆水在真空抽滤机抽滤冷冻保存。

    用YSI参数测量仪测量水中溶氧并记录,分别用靛酚蓝法测定铵态氮(NH4+-N)、重氮-偶氮光度法测定亚硝态氮(NO2--N)、锌-镉还原法测定NO3--N、抗坏血酸还原钼蓝法测定活性磷(PO43--P),联合消化法测定上覆水中总氮(TN)、总磷(TP),参照《海洋监测规范》(GB12763.4—2007)。

    实验数据采用Origin 8.0绘图,并应用SPSS 17.0进行数据分析和方差分析,使用LSD多重比较,P<0.05为差异显著。

    不同温度环境对DO质量浓度的影响见图 2。不同温度下各组ρ(DO)差异显著,高温环境(28 ℃)ρ(DO)下降超过低温(15 ℃)环境。15 ℃环境各组中ρ(DO)在第36小时达到底值,中丰度组与高丰度组差异不显著(P>0.05),对照组与低丰度组差异显著(P<0.05)。20 ℃环境各组水体ρ(DO)在第24小时达到底值,而高丰度组ρ(DO)随时间变化逐渐下降至最低0.35 mg·L-1,对照组与低丰度组差异不显著(P>0.05),中丰度组与高丰度组差异不显著(P>0.05)。28 ℃环境除对照组ρ(DO)随时间改变不明显外,其余各组均在8 h后ρ(DO)急剧下降,低丰度组在第12小时降至最低(0.21 mg·L-1),低丰度组、中丰度组和高丰度组ρ(DO)随时间变化均无显著差异(P>0.05)。

    图  2  不同温度下溶解氧质量浓度变化
    Figure  2.  Variation of DO concentration at different temperatures

    1) NH4+-N。不同温度环境对NH4+-N质量浓度的影响见图 3。不同温度条件下水体ρ(NH4+-N)显著不同,3个温度下水体ρ(NH4+-N)呈现出先上升后下降趋势,最终下降到与初始值持平或更小。各组中加入江蓠的质量对水体中ρ(NH4+-N)有显著影响(P<0.05)。低温条件(15 ℃)下水体ρ(NH4+-N)持续上升,并且出现峰值时间晚于高温条件(20 ℃和28 ℃)。15 ℃下对照组与低丰度组无显著差异(P>0.05),中丰度组与高丰度组无显著差异(P>0.05),水体ρ(NH4+-N)在12~24 h达到峰值;20 ℃下对照组与另外3组体质量均呈显著影响(P<0.05);28 ℃下对照组中ρ(NH4+-N)与另外3组差异显著(P<0.05)。

    图  3  不同温度下铵态氮质量浓度变化
    Figure  3.  Variation of NH4+-N concentration at different temperatures

    2) NO2--N、NO3--N。不同温度环境对NO2--N、NO3--N质量浓度的影响见图 4图 5。NO2--N、NO3--N表现出较高一致性。水体温度对ρ(NO2--N)、ρ(NO3--N)有显著影响,且低温(15 ℃)ρ(NO2--N)、ρ(NO3--N)出现峰值时间晚于高温(28 ℃),处在峰值时,ρ(NO2--N)、ρ(NO3--N)和添加江蓠的质量呈正相关,高丰度组>中丰度组>低丰度组>对照组。15 ℃下NO2--N对照组与低丰度组无显著差异(P>0.05),中丰度组与高丰度组无显著差异(P>0.05)(图 4);20 ℃下对照组与低丰度组、中丰度组和高丰度组呈较高一致性(P>0.05);28 ℃下低丰度组与另外3组差异显著(P<0.05),对照组与另外3组差异显著(P<0.05),但中丰度组与高丰度组差异不显著(P>0.05)。

    图  4  不同温度下亚硝态氮质量浓度变化
    Figure  4.  Variation of NO2--N concentration at different temperatures
    图  5  不同温度下硝态氮质量浓度变化
    Figure  5.  Variation of NO3--N concentration at different temperatures

    15 ℃下,ρ(NO3--N)高丰度组与其余3组差异显著(P<0.05),12~36 h出现峰值(图 5);20 ℃下低丰度组与另外3组差异显著(P<0.05),8~12 h浓度出现峰值;28 ℃下低丰度组与另外3组差异显著(P<0.05),8~12 h浓度出现峰值。

    3) TN。不同温度环境对TN质量浓度的影响见图 6。TN释放早于无机氮,低温(15 ℃)时ρ(TN)在4~8 h达到峰值,此后开始逐渐下降,对照组与低丰度组无显著差异(P>0.05),中丰度组与高丰度组无显著差异(P>0.05);20 ℃时在2~4 h达到峰值,对照组与低丰度组无显著性差异(P>0.05),中丰度组与高丰度组无显著差异(P>0.05);28 ℃时对照组在第72小时ρ(TN)达到峰值,低丰度组、中丰度组和高丰度组在2~4 h达到峰值,其中对照组与其余3组差异显著(P<0.05)。

    图  6  不同温度下总氮质量浓度变化
    Figure  6.  Variation of TN concentrations at different temperatures

    1) PO43--P。不同水温条件时水体PO43--P质量浓度变化见图 7。15 ℃、20 ℃和28 ℃下ρ(PO43--P)的变化趋势均为2~4 h出现峰值,显著早于N元素的释放。对照组中峰值出现较晚,后逐渐降低,在第8小时小浮动浓度升高,后逐渐下降至略高于起始值,3个温度环境下均与实验组差异显著(P<0.05)。低温下(15 ℃),中丰度组ρ(PO43--P)为10.61 mg·L-1,显著高于高温条件(28 ℃)下水体浓度,而且加入的江蓠质量与上覆水浓度呈正相关关系。

    图  7  不同温度下活性磷质量浓度变化
    Figure  7.  Variation of PO43--P concentration at different temperatures

    2) TP。不同水温条件时水体TP质量浓度变化见图 8。3个温度下的ρ(TP)在2~4 h达到峰值,显著高于TN达到峰值时间。对照组峰值出现稍晚于实验组,之后水体营养盐浓度快速下降,至第48小时浓度略有升高,最终至实验结束时浓度略高于起始值。ρ(TP)与加入的江蓠体质量呈正比。水温控制在15 ℃时对照组与各实验组呈显著差异(P<0.05);实验温度20 ℃时对照组晚于实验组出现峰值,之后水体营养盐浓度迅速下降,至第72小时浓度略高于第0小时。4组实验呈显著差异(P<0.05),且对照组与低丰度组无显著差异,低丰度组、中丰度组无显著差异,中丰度组、高丰度组无显著差异;水温控制在28 ℃时对照组在第24小时出现峰值,晚于各实验组,对照组与实验组呈显著差异(P<0.05)。

    图  8  不同温度下总磷质量浓度变化
    Figure  8.  Variation of TP concentrations at different temperatures

    大型海藻脱落死亡后,失去生物活性,经过机械沉降作用沉至海底,在微生物的作用下腐烂分解。水生植物的分解较为复杂,包括水生植物的水解、有机成分的酶解、矿质成分的分解、可溶性有机质的溶解、生物的降解和各类有机成分的酶解、微小颗粒的逸散等[15],腐烂后的藻类会对水体产生多方面的影响。沉积物中的有机质发生矿化后耗氧,厌氧代谢的中间产物NO2--N、NO3--N逐渐积累,协同矿化后产生的NH4+-N向水层扩散,P元素不断的积累,导致水体富营养化的发生,进而导致溶解氧的过度消耗,因此大型海藻脱落后对底质的影响得到了越来越多的重视。

    自然状态下水中DO与大气中氧气存在着动态平衡,而江蓠腐烂导致平衡被打破,DO下降。孙连鹏等[16]指出,厌氧环境使污泥中的N、P等营养物质得到了较大程度释放。此实验表明,当ρ(DO)达到最低值,此时的ρ(NO2--N)、ρ(NO3--N)同时达到峰值,并且峰值时间等同于ρ(NH4+-N)达到峰值时间。周劲风等[17]指出,NH4+-N经过硝化和亚硝化等的矿化作用转变为不能直接被海藻吸收的NO2--N和NO3--N,此过程消耗氧气,NO2--N属于中间产物极不稳定,反硝化细菌活跃将他们转化为氮(N2)等气体。而NH4+-N持续上升,是因为底泥中的有机氮分解需要浮游动植物的参与,NH4+-N同时是沉积物需氧量的重要贡献者[18],当水体DO降低,矿化速率减缓,沉积物中的氮以NH4+-N形式溶出[19]。综上所述江蓠腐烂后最直接产物NH4+-N有3支可能的出路:1)进入到水界面直接被藻类吸收;2)发生硝化转变为NO3--N,之后取决于氧气的参与可能发生反硝化,生成N2不会被大多数水生植物所利用;3)进入沉积物铵态氮库中。

    在DO降低时,此时的TN、TP也处在较低水平。林旭丹等[20]指出,DO影响着水体环境中不同微生物的呼吸作用,当DO浓度高时,好氧微生物如亚硝化细菌和硝化细菌活跃,浓度低时,厌氧微生物如反硝化细菌活跃。实验显示当DO充足时,江蓠腐烂释放出的有机氮迅速转化为无机氮,ρ(TN)在2~4 h达到峰值,之后快速下降,最终至实验结束时略高于起始值,浓度与加入的江蓠质量呈正相关关系,印证了实验结论。

    通过实验模拟各个季度上覆水营养盐改变,在冬季时ρ(NH4+-N)显著低于夏季,而P元素浓度在冬季显著高于夏季。张亚克等[21]认为夏季蓝绿藻种群占优,与水体NH4+-N变化显著相关,而在冬季时水体硅藻种群增加,与水体P元素增加具有一定相关性。冬季时随着水体悬浮颗粒沉淀,N、P元素浓度较高[22],气温较低限制了藻类的生长,而到次年春季时气温回升,水体中N、P资源丰富,在自然光照下,为机会主义藻类爆发做了准备,爆发式增长的藻类进一步吸收水体中DO,导致局部水域环境恶化。

    海藻丰度对无机氮的影响也表现出差异。冬季(15 ℃)和春秋季(20 ℃)时,ρ(NO2--N)、ρ(NO3--N)最大值均随江蓠丰度的增加而增大,夏季(28 ℃)则相反。高温时,主要限制为DO。随江蓠丰度的增加,DO较长时间保持在极低值。故28 ℃时ρ(NO2--N)、ρ(NO3--N)最大值随江蓠丰度的增加而减小。15 ℃和20 ℃时DO下降较慢,所以变化相反。赵志梅[23]指出溶解氧和温度主要是通过改变硝化-反硝化细菌的活性从而影响硝酸盐的通量,论证了实验结论。

    TN与PO43--P均在2~4 h营养盐浓度达到峰值,冬季P元素浓度普遍高于夏季。相关研究证实,P元素的释放早于N元素释放[24-28],因为P元素存在于植物体内的生物活性物质内,这些物质更容易分解。植物体内的ATP、核酸等可直接水解为磷酸,无需经过复杂的矿化作用[29],所需时间较短。而PO43--P为藻类的限制因子,夏季时大型海藻场脱落后的藻类会在短时间内释放出PO43--P,可造成甲藻、蓝藻快速生长,而蓝藻通过改变水体pH,而引发底泥沉积物中大量的磷释放,反过来又会促使藻类爆发式生长,竞争水体DO,导致局部水域富营养化加重,从而造成反馈式破坏。而在冬季时气温较低,限制富营养化的爆发,脱落后的藻类逐渐腐烂,营养盐沉积入底泥,在次年春季底泥中营养盐再次扩散入上覆水中又将会刺激藻类的爆发式增长。

    综上所述,大型海藻场的沉积物是许多溶解性物质和颗粒性物质的来源,上覆水与沉积物间的营养盐交换活动,直接影响着海藻场的营造。虽然大型海藻场的营造是好的,但是如果海藻密度过高致使海藻脱落,在重力的作用下下沉到海底,会使上覆水TP、TN增加,沉水植物体内的N、P元素70%以上会在较短时间内被释放进入水体,参与水体营养的再生和循环[30],沉积物中的无机物释放至上覆水后会造成水体富营养化,可能招致某些机会主义海藻爆发。如2008年6月~7月,胶州湾浒苔的爆发,导致海藻场不仅没有达到增殖的目的,反而破坏了海藻场海域水质[31]。因此合理地控制海藻密度,并且根据不同海藻季节变化和生活习性,交替进行吊养或放养江蓠、龙须菜、条斑紫菜(P.yezoensis)等经济价值高环境价值高的品种,吸收水体营养盐,既可以满足经济利益,又具有环保价值[6]

  • 图  1   海陵湾采样站位图

    Figure  1.   Sampling stations in Hailing Bay estuary

    图  2   调查海域海水理化性质

    Figure  2.   Water temperature, salinity and pH in Hailing Bay estuary

    图  3   海陵湾水域叶绿素a质量浓度与初级生产力的季节性变化

    Figure  3.   Seasonal variation of chlorophyll a mass concentration and primary productivity in waters of Hailing Bay estuary

    图  4   海陵湾水域无机磷、无机氮、化学需氧量和溶解氧质量浓度的季节性变化

    Figure  4.   Seasonal variation of mass concentrations of DIP, DIN, COD and DO in waters of Hailing Bay estuary

    图  5   海陵湾水域海水中石油类、硫化物质量浓度的季节动态变化

    Figure  5.   Seasonal variation of mass concentrations of petroleum hydrocarbon and sulfide in waters of Hailing Bay estuary

    图  6   海陵湾水域海水中重金属质量浓度的季节动态变化

    Figure  6.   Seasonal variation of heavy metal mass concentration in waters of Hailing Bay estuary

    表  1   内梅罗污染指数污染水平分级

    Table  1   Water pollution grading based on Nemerow pollution index (P)

    污染水平
    pollution level
    清洁Ⅰ
    clean
    较清洁Ⅱ
    relatively clean
    轻度污染Ⅲ
    mild pollution
    中度污染Ⅳ
    moderate pollution
    重度污染Ⅴ
    severe pullution
    污染指数 P P≤0.8 0.8<P≤1.0 1.0<P≤4.5 4.5<P≤7.7 P>7.7
    下载: 导出CSV

    表  2   海陵湾水域综合污染评价指数

    Table  2   Evaluation result of water quality based on Nemerow pollution index (P)

    站位
    station
    春季
    spring
    夏季
    summer
    秋季
    autunm
    冬季
    winter
    P 等级
    grade
    P 等级
    grade
    P 等级
    grade
    P 等级
    grade
    S1 1.45 1.04 2.25 1.38
    S2 1.67 0.70 1.49 1.01
    S3 0.85 0.71 1.72 1.03
    S4 0.83 0.62 1.06 1.09
    S5 1.03 0.69 0.65 1.37
    S6 1.01 1.50 1.05 1.54
    S7 0.69 0.70 1.25 1.39
    S8 0.83 0.65 0.78 3.10
    S9 0.75 1.29 0.65 3.02
    S10 0.87 0.72 0.61 2.85
    S11 0.96 0.76 0.76 3.45
    S12 1.13 0.74 0.66 3.41
    平均 average 1.00 0.84 1.08 2.06
    下载: 导出CSV

    表  3   海陵湾水域营养状态指数和海水营养状态质量指数

    Table  3   Evaluation result of water nutrition level based on eutrophication index (E) and nutrient quality index (NQI)

    站位
    station
    营养状态指数
    E
    营养状态质量指数
    NQI
    春季
    spring
    夏季
    summer
    秋季
    autunm
    冬季
    winter
    春季
    spring
    夏季
    summer
    秋季
    autunm
    冬季
    winter
    S1 3.508 0.042 0.085 0.037 3.15 1.49 1.89 1.41
    S2 3.740 0.032 0.501 0.295 3.43 1.31 2.36 3.86
    S3 0.339 0.048 0.132 0.225 1.75 1.05 1.72 4.25
    S4 0.159 0.032 0.242 0.202 1.70 0.70 1.88 3.43
    S5 0.184 0.014 0.296 0.361 1.94 0.71 2.49 4.23
    S6 0.245 0.014 0.100 0.313 1.93 0.71 1.57 4.52
    S7 0.739 0.025 0.147 0.290 2.21 0.67 1.94 4.68
    S8 0.103 0.027 0.181 0.441 1.66 0.63 2.03 4.43
    S9 0.044 0.023 0.275 0.427 1.56 0.69 1.74 5.42
    S10 0.117 0.022 0.296 1.041 1.78 0.79 2.56 5.19
    S11 0.329 0.024 0.703 0.538 2.06 0.82 2.96 5.49
    S12 0.266 0.051 0.224 0.320 2.24 1.28 1.72 5.33
    平均 average 0.814 0.030 0.265 0.374 2.12 0.90 2.07 4.35
    下载: 导出CSV
  • [1] 齐雨藻, 吕颂辉, 钱宏林, 等. 南海港湾(海陵湾)浮游植物与赤潮生物研究[J]. 暨南大学学报(自然科学与医学版), 1994, 15(1): 151-155.
    [2]

    CHEN H, LIU S, XU X R, et al. Antibiotics in the coastal environment of the Hailing Bay region, South China Sea: spatial distribution, source analysis and ecological risks[J]. Mar Pollut Bull, 2015, 95(1): 365-373.

    [3]

    CHEN H, LIU S, XU X R, et al. Antibiotics in typical marine aquaculture farms surrounding Hailing Island, South China: occurrence, bioaccumulation and human dietary exposure[J]. Mar Pollut Bull, 2015, 90(1/2): 181-187.

    [4] 任杰, 刘沛然, 戴志军. 粤西海陵湾底质沉积特征与泥沙输运路径[J]. 台湾海峡, 2001, 20(1): 96-100.
    [5] 丘耀文, 朱良生. 海陵湾沉积物中重金属污染及其潜在生态危害[J]. 海洋环境科学, 2004, 23(1): 22-24.
    [6]

    QIU Y W, ZHU L S, LI M Q. Distribution characteristics of heavy metals and grain size of sediments from Hailing Bay, China[J]. Mar Pollut Bull, 2005, 7(1): 69-76.

    [7]

    LIU S, CHEN H, ZHOU G J, et al. Occurrence, source analysis and risk assessment of androgens, glucocorticoids and progestagens in the Hailing Bay region, South China Sea[J]. Sci Total Environ, 2015, 536: 99-107.

    [8] 丘耀文, 朱良生, 徐梅春, 等. 海陵湾水环境要素特征[J]. 海洋科学, 2006, 30(4): 20-24.
    [9] 谷阳光, 王朝晖, 吕颂辉, 等. 粤西海域表层沉积物生源要素分布与污染评价[J]. 深圳大学学报(理工版), 2010, 27(3): 347-353.
    [10] 贾晓平, 杜飞雁, 林钦, 等. 海洋渔场生态环境质量状况综合评价方法探讨[J]. 中国水产科学, 2003, 10(2): 160-164.
    [11] 王增焕, 柯常亮, 王许诺, 等. 流沙湾贝类养殖海域环境质量评价[J]. 南方水产科学, 2011, 7(3): 24-30.
    [12] 罗昭林, 朱长波, 郭永坚, 等. 流沙湾表层沉积物中碳、氮、磷的分布特征和污染评价[J]. 南方水产科学, 2014, 10(3): 1-8.
    [13] 国家质量技术监督局. GB 17378.4—2007海洋监测规范第4部分: 海水分析[S]. 北京:中国标准出版社, 2007:44-162.
    [14] 陈宇炜, 高锡云. 浮游植物叶绿素含量测定方法的比较测定[J]. 湖泊科学, 2000, 12(2): 185-188.
    [15] 徐勇, 曲克明, 赵俊, 等. 渤海中部海区水域夏季环境质量综合评价[J]. 渔业科学进展, 2017, 38(2): 8-15.
    [16]

    NEMEROW N L. Scientific stream pollution analysis[M]. Washington, D.C.: Scripta Book Co., 1974:163-231.

    [17] 李巧香, 周永召, 李鹏山. 夏季三亚湾近岸海域海水水质状况分析与评价[J]. 海洋湖沼通报, 2010(3): 100-106.
    [18] 郭永坚, 罗昭林, 李俊伟, 等. 2012−2013年流沙湾海水养殖区水环境质量评价[J]. 广东农业科学, 2015, 42(19): 130-136.
    [19]

    CADÉE G C. Primary production off the Guyana coast[J]. Neth J Sea Res, 1975, 9(1): 128-143.

    [20] 潘慧琴, 黄少辉, 叶玉瑶. 海岛型旅游地生态安全评价——以海陵岛为例[J]. 广东农业科学, 2013, 40(20): 171-177.
    [21]

    REDFIELD A C. The biological control of chemical factors in the environment[J]. Sci Prog, 1960, 11(3): 150-170.

    [22] 邹景忠, 董丽萍, 秦保平. 渤海湾富营养化和赤潮问题的初步探讨[J]. 海洋环境科学, 1983, 2(2): 41-54.
    [23] 胡琴, 曲亮, 黄必桂, 等. 2014年秋季黄河口附近海域营养现状与评价[J]. 海洋环境科学, 2016, 35(5): 732-738.
    [24] 蒋红, 崔毅, 陈碧鹃, 等. 渤海近年来营养盐变化趋势研究[J]. 渔业科学进展, 2005, 26(6): 61-67.
    [25] 李纯厚, 徐姗楠, 杜飞雁, 等. 大亚湾生态系统对人类活动的响应及健康评价[J]. 中国渔业质量与标准, 2015, 5(1): 1-10.
    [26] 广东省南海伏季休渔成效调研课题组. 广东省南海伏季休渔成效调研报告[J]. 新经济, 2014(28): 60-63.
    [27] 吴巧玲. 海陵湾海水鱼网箱养殖暴发刺激隐核虫病的诊断与防治[J]. 海洋与渔业, 2016(11): 58-59.
    [28] 张乐. 广东阳江海陵岛旅游季节性及其地方响应研究[D]. 广州: 广东商学院, 2011: 31.
  • 期刊类型引用(7)

    1. 胡晓娟,赵秀,杨宇峰,曹煜成. 大型海藻龙须菜(Gracilaria lemaneiformis)藻段凋落分解对环境的影响及细菌群落演替特征. 海洋学报. 2023(08): 130-142 . 百度学术
    2. 张秀梅,纪棋严,胡成业,徐焕志,王一航,杨晓龙,郭浩宇. 海洋牧场生态系统稳定性及其对干扰的响应——研究现状、问题及建议. 水产学报. 2023(11): 107-121 . 百度学术
    3. 戴晓娟,胡韧,罗洪添,王庆,胡晓娟,白敏冬,杨宇峰. 大型海藻龙须菜凋落物分解对水质的影响. 热带海洋学报. 2021(01): 91-98 . 百度学术
    4. 章守宇,刘书荣,周曦杰,汪振华,王凯. 大型海藻生境的生态功能及其在海洋牧场应用中的探讨. 水产学报. 2019(09): 2004-2014 . 百度学术
    5. 徐姗楠,王爽,张喆,李纯厚. TG-MS联用分析海藻和稻壳的协同耦合热解机制. 太阳能学报. 2018(06): 1696-1703 . 百度学术
    6. 于杰,戴晓玲,章增林,张紫英,陈日钊,黄国强,苏琼,李文红. 细基江蓠和真江蓠野生种群生长海域水质营养盐特征及富营养化评价. 南方农业学报. 2017(08): 1511-1517 . 百度学术
    7. 王云祥,秦传新,陈丕茂,袁华荣,佟飞,冯雪,黎小国. 深圳海域造礁石珊瑚分布特点与多样性. 海洋渔业. 2017(02): 131-139 . 百度学术

    其他类型引用(1)

图(6)  /  表(3)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 8
出版历程
  • 收稿日期:  2017-09-19
  • 修回日期:  2017-11-30
  • 网络出版日期:  2019-01-07
  • 刊出日期:  2018-06-04

目录

/

返回文章
返回