饥饿对大口黑鲈消化器官、蛋白酶和淀粉酶活力的影响

关胜军, 吴锐全, 谢骏, 王广军

关胜军, 吴锐全, 谢骏, 王广军. 饥饿对大口黑鲈消化器官、蛋白酶和淀粉酶活力的影响[J]. 南方水产科学, 2007, 3(2): 25-29.
引用本文: 关胜军, 吴锐全, 谢骏, 王广军. 饥饿对大口黑鲈消化器官、蛋白酶和淀粉酶活力的影响[J]. 南方水产科学, 2007, 3(2): 25-29.
GUAN Shengjun, WU Ruiquan, XIE Jun, WANG Guangjun. Effects of starvation on digestive organs and activities of protease and amylase of largemouth bass (Micropterus salmoides)[J]. South China Fisheries Science, 2007, 3(2): 25-29.
Citation: GUAN Shengjun, WU Ruiquan, XIE Jun, WANG Guangjun. Effects of starvation on digestive organs and activities of protease and amylase of largemouth bass (Micropterus salmoides)[J]. South China Fisheries Science, 2007, 3(2): 25-29.

饥饿对大口黑鲈消化器官、蛋白酶和淀粉酶活力的影响

基金项目: 

广东省科技计划项目 2004B20301005

中国水产科学研究院人才基金项目 

详细信息
    作者简介:

    关胜军(1981-),男,硕士研究生,从事水产动物营养与饲料研究。E-mail: guanshengjun163@163.com

    通讯作者:

    吴锐全,E-mail: wuruiquan1@21cn.com

  • 中图分类号: S917

Effects of starvation on digestive organs and activities of protease and amylase of largemouth bass (Micropterus salmoides)

  • 摘要:

    对饥饿和饥饿后投喂的大口黑鲈(Micropterus salmoides)蛋白酶和淀粉酶活力及消化组织的变化进行了研究,饥饿周期为30 d。饥饿对大口黑鲈消化道指数的影响为肝体比从试验的第3天开始明显下降(P<0.05),第20天开始保持稳定水平(P>0.05);幽门盲囊重与体重比先上升后下降;胃重与体重比始终呈上升趋势(P<0.05);肠重与体重比在第10天开始保持稳定水平(P>0.05);肠长与体长比呈上升趋势(P<0.05)。饥饿对蛋白酶活力影响为从开始到第3天胃蛋白酶活力上升,第10天开始下降;幽门盲囊蛋白酶活力在第10天之后持续下降(P<0.05);肠道蛋白酶活力一直呈下降趋势。饥饿对淀粉酶活力影响为肝脏淀粉酶活力、胃淀粉酶活力和幽门盲囊淀粉酶活力均呈下降趋势(P<0.05);肠道淀粉酶活力第10天之后即稳定在低水平(P>0.05)。饥饿后摄食对蛋白酶活力和淀粉酶活力的影响为饥饿后摄食蛋白酶活力和淀粉酶活力均呈上升趋势,上升的速度在不同组织有差异,在恢复摄食后的第10天基本达到正常水平。

    Abstract:

    An experiment was conducted to study the effects of starvation and refeeding on digestive organs and the activities of protease and amylase in largemouth bass (Micropterus salmoides). The course of starvation lasted for 30 days. From day 3 the liver weight/body weight (LW/BW) began decrease (P < 0.05), and maintained a constant after 20 days of starvation (P > 0.05). The pyloric caeca weight/body weight (PW/BW) grew up first, and then went down. The stomach weight/body weight (SW/BW) kept growing through the starvation period (P < 0.05). The intestine weight/body weight (IW/BW) maintained stably for the first 10 days (P > 0.05).The intestine length/body length (IL/BL) kept growing (P < 0.05). The activity of protease in stomach was increasing for the first 3 days, and decreasing after day 10. The activity of protease in pyloric caeca was decreasing from day 10. The activity of protease in intestine decreased during the entire starvation period.The activities of amylase in liver, stomach and pyloric caeca all went down after starvation (P < 0.05). The activity of amylase in intestine kept at lower level after day 10. When refeeding was applied, the activities of protease and amylase increased, and returned to normal level after 10 days of refeeding.

  • 硫酸盐还原菌(sulfate-reducing bacteria,SRB)在生态系统中是属于土著微生物类群,是兼性厌氧菌,广泛存在于各种环境中,是自然界硫循环中SO42-异化还原的专门承担者,将SO42-还原同时降解有机物获取能量,产物为对周围环境有害的有毒气体H2S。目前,国内外对海洋沉积物中SRB研究多集中在海洋工程、石油勘探、管道铺设等金属防腐方面[1-2]。近年来因病害使国内外海水养殖产量出现大幅度的滑坡,其主要原因是养殖环境恶化,尤其是底质的污染严重,大部分养殖海区投喂天然饵料,饵料系数较高,养殖年限较长,网箱底部堆积大量富含有机物的沉积物,为SRB大量繁殖提供了有利条件,SRB繁殖会产生大量有毒气体H2S,造成水体污染并毒害养殖生物,使养殖水体环境状况进入恶性循环状态。目前,国内外对网箱养殖环境中SRB的相关研究报道不多[3],因此,开展网箱养殖海区沉积物中SRB生态特性和相关防治是很有必要的。本文通过研究大鹏澳网箱养殖海域的SRB,了解此环境中SRB的生态特性、SRB数量变化,以及SRB与其他环境因子之间的关系,为以后修复养殖水体环境,提高养殖生物产量,实现海水网箱养殖业的可持续发展提供理论依据。

    大鹏澳是大亚湾西南部的一个小内湾,水面面积约1 400 km2。20世纪90年代以来,海水网箱养殖得到了迅速发展。目前,网箱养殖区水面面积约有20 km2,养殖网箱约4 200箱,养殖区平均水深4.5 m,污染相对比较严重[4-5]

    2006年11月,在大亚湾大鹏澳网箱养殖海域利用GPS定位5个站点,其中1、2、3号站位于鱼类网箱养殖区,4号站位于浮筏贝类养殖区,5号站作为对照站,采样站点如图 1所示。在每个站用柱状采泥器采集柱状沉积物样品2管,将沉积物置于内径为5 cm的PVC管内并用橡胶塞密封好,其中1管用于测定硫化物、氧化还原电位(oxidation-reduction potential,ORP)和pH,另1管用于测定SRB含量,并清晰标记样品垂直方向,其中柱状沉积物SRB计数按照1 cm层、5 cm层、10 cm层深度进行取样。

    图  1  大鹏澳网箱养殖海域采样站位
    Figure  1.  Sampling stations of fish cage aquaculture area in Dapeng′ao Cove

    培养基配方为K2HPO4 0.5 g · L-1,NH4Cl 1.0 g · L-1,MgSO4 2.0 g · L-1,Na2SO4 0.5 g · L-1,CaCI2 0.1 g · L-1,酵母膏1.0 g · L-1,乳酸钠4 mL ·L-1依次加入净化陈海水中溶解。调节pH值约为7.0~7.5[6]。密封后用蒸气压力灭菌器121~125℃灭菌15~20 min后冷却至室温。称取硫酸亚铁铵1.2 g,抗坏血酸0.4 g,在无菌箱(室)内均匀地摊在离紫外线灯30 cm处灭菌30 min。在无菌操作下,把硫酸亚铁铵和维生素C溶解于事先准备好的40 mL无菌水中。按每100 mL培养基各加入1.0 mL硫酸亚铁铵溶液和1.0 mL维生素C溶液。

    硫酸盐还原菌的计数(本标准适用于工业循环冷却水中硫酸盐还原菌的测定,也适用于原水、生活用水及粘泥中硫酸盐还原菌的测定)采用我国国家标准《工业循环冷却水中硫酸盐还原菌的测定》(GB/T14643.5-1993)规定的MPN法[7]

    沉积物中硫化物的测定采用《海洋监测规范》[8]中的硫离子选择电极法。取5.00 g混匀的湿样置于50 mL烧杯中,加入20 mL抗氧化络合剂使用液,充分搅拌5 min,静置,待沉积物完全沉淀后,用倾斜法将上清液倒入50 mL量瓶中;再重复2次用15 mL抗氧化络合剂使用液按上述步骤浸取残留的沉积物,合并3次上清液,再用抗氧化络合剂使用液定容至刻度。测定时将上清液移入50 mL烧杯中,插入参比电极和活化后的硫离子选择电极,一边搅拌至读数稳定后记录结果。每次测定后均需用蒸馏水洗涤电极并用滤纸吸干,以备下一样品测定。

    沉积物ORP的测定参照《海洋监测规范》[8]中的电位计法。

    沉积物pH的测定按照《海洋监测规范》[8]规定采用复合电极方法。

    上述分析仪器为上海雷磁PHSJ-4A实验室pH/ORP测定仪,配有硫离子选择电极、参比电极、氧化还原电极、感温电极和pH复合电极。

    利用Microsoft Excel对SRB的检出率、含量、变化幅度等按照不同站位、不同层次进行分析,利用数理统计软件SPSS对SRB与硫化物、ORP、pH做相关分析。

    2006年11月大亚湾大鹏澳网箱养殖海域沉积物中SRB的数量如表 1所示,沉积物中SRB数量波动范围在900~110 000 ind · g-1之间。

    表  1  大鹏澳网箱养殖海域沉积物中SRB的数量
    Table  1.  Content of SRB in cage culture area sediment in Dapeng′ao Cove  ind · g-1
    垂直深度/cm
    vertical depth
    1号站
    station 1
    2号站
    station 2
    3号站
    station 3
    4号站
    station 4
    对照站
    control station
    1 45 000 45 000 110 000 25 000 30 000
    5 30 000 4 500 45 000 15 000 15 000
    10 11 500 2 500 4 500 900 4 500
    下载: 导出CSV 
    | 显示表格

    图 2显示了各个站位表层沉积物SRB的分布情况,SRB平面分布特征是鱼类网箱区>对照区>浮筏贝类区,网箱区的数量明显高于对照区和浮筏贝类区,这可能是由于网箱区内的网箱设置比较密集,饵料主要是冰鲜小杂鱼,残饵和粪便形成的生物沉积,为SRB的生长提供了有利的环境;浮筏贝类区SRB数量最少,可能是由于此区域的养殖生物为太平洋牡蛎,无需投饵,故底部富含有机质的沉积物较少,SRB含量也较少。

    图  2  采样站点表层沉积物SRB的平面分布
    Figure  2.  Plane distribution of SRB in surface layer of sediment

    各个站位沉积物中SRB的垂直分布如图 3所示,可以明显看出SRB数量的分布特征为1 cm层>5 cm层>10 cm层,呈现由上到下逐渐减少的趋势。验证了海洋沉积物中硫酸盐还原菌数量是由上向下逐渐降低的结论[9],这也与高爱国等[10]在北极楚科奇海调查得到的SRB分布规律相似。

    图  3  沉积物中的SRB的垂直分布
    Figure  3.  Vertical distribution of sediment SRB in the five sampling stations

    2006年11月大亚湾大鹏澳网箱养殖海域5个站位沉积物中硫化物的含量如表 2所示,其硫化物含量波动范围为372.48~703.98 μg · g-1

    表  2  表层沉积物中SRB与其他环境因子
    Table  2.  The amount of SRB and other factors of surface sediment
    站位
    station
    SRB数量
    content of SRB
    硫化物含量/μg·g-1
    sulfide content
    氧化还原电位
    ORP
    pH
    1号站 station 1 45 000 529.44 -226.5 8.12
    2号站 station 2 45 000 527.76 -270.3 8.18
    3号站 station 3 110 000 703.98 -384.5 8.16
    4号站 station 4 25 000 372.48 -171.5 8.21
    对照站 control station 30 000 445.18 -199.5 8.17
    下载: 导出CSV 
    | 显示表格

    图 4可以明显看出,鱼类网箱养殖区(1、2、3号站)沉积物中硫化物含量要高于贝类区和对照区,其主要原因是鱼类网箱区需要大量投饵,底部富含有机质,这一环境利于SRB大量繁殖,异化还原硫酸盐形成硫化物;浮筏贝类养殖区的硫化物含量最低,这是因为贝类养殖过程中不需投饵,底部沉积物有机质含量较少;另外,该海域贝类区养殖年限较短,水体底部的溶解氧和pH值均较高,不利于SRB的生长,因此,硫化物含量较低。而对照区的5号站,其硫化物含量相对较高于贝类养殖区,这可能是因为5号站位于大鹏澳湾口,在海流作用下,受网箱区沉积物往湾口外迁移的影响要大于贝类区有关。

    图  4  各采样站点沉积物中硫化物的含量
    Figure  4.  Content of sediment sulfide in the five sampling stations

    各采样站位沉积物的氧化还原电位如表 2所示,其波动范围在-171.5~-384.5 mV之间。图 5显示了2006年11月大亚湾大鹏澳网箱养殖海域5个站位沉积物的ORP平面分布特征。可以看出,鱼类网箱区的ORP要低于贝类区和对照区,其主要原因是由于网箱区残饵和排泄粪便长期积累,网箱区底部富含有机质,微生物分解大量有机质,产生还原性的物质(如:S2-、NH4+、Fe2+等),从而导致氧化还原电位较低。

    图  5  各采样站点沉积物的氧化还原电位
    Figure  5.  ORP of sediment in the five sampling stations

    图 6显示了2006年11月大亚湾大鹏澳网箱养殖海域各个站位沉积物的pH值,其特征为网箱区低于对照区和贝类区,影响沉积物pH变化的主要因素是呼吸作用[11],因为网箱区沉积物的有机质含量高于对照区和贝类区,所以网箱区沉积物中的细菌呼吸作用和有机质在细菌参与下的分解作用相对活跃,导致pH下降。

    图  6  各采样站点沉积物的pH
    Figure  6.  pH value of sediment in the five sampling stations

    2006年11月大亚湾大鹏澳网箱养殖海域表层沉积物中SRB含量、硫化物含量、ORP、pH值如表 2所示。利用SPSS对SRB与其他环境因子所做的相关分析结果显示,SRB与硫化物的含量为显著性正相关(R=0.96, P < 0.05,表 3),这与李培英等[12]研究的浙江至闽北陆架积物硫酸盐还原菌与硫化物的相关关系的结果相一致。由于SRB在沉积物环境中主要电子受体是硫酸盐,当SRB大量存在时就会有更多的还原态的硫化物生成。SRB含量与Eh的关系显示极显著性负相关关系(R=-0.97,P < 0.01,表 3),这与陈皓文等[13]对北部湾东侧沉积物SRB研究结果相一致。ORP的高低主要取决于沉积物中的DO含量,当沉积物处于严重缺氧时,有机物最终分解为还原态物质,Eh为负值,而厌氧的低氧化还原状态环境适合SRB的大量繁殖,所以这一分析结果与理论相一致。而SRB与pH的关系系数为R=-2.71(P>0.05,表 3),两者不具有显著性相关关系,由此可以看出,硫化物含量和ORP是反映SRB数量的2个非常重要的指标。

    表  3  SRB与其他因子的相关系数
    Table  3.  Correlation between SRB and other chemical factors
    对子 parallelism 相关系数R  correlation coefficient n  number of sample P  significance factor
    SRB-硫化物 SRB-sulfide 0.96 5 0.011
    SRB-氧化还原电位 SRB-ORP -0.97 5 0.006
    SRB-pH -2.71 5 0.611
    下载: 导出CSV 
    | 显示表格
  • 图  1   饥饿对消化道指数的影响(n=9)

    Figure  1.   Effect of starvation on the index of digestive organ

    图  2   饥饿对蛋白酶活力的影响(n=9)

    Figure  2.   Effect of starvation on the activity of protease

    图  3   饥饿对淀粉酶活力的影响(n=9)

    Figure  3.   Effect of starvation on the activity of amylase

    图  4   饥饿后摄食天数对蛋白酶活力的影响(n=9)

    Figure  4.   Effect of refeeding days on the activity of protease

    图  5   饥饿后摄食天数对淀粉酶活力的影响(n=9)

    Figure  5.   Effect of refeeding days on the activity of amylase

  • [1] 谢小军, 邓利, 张波. 饥饿对鱼类生理生态学影响的研究进展[J]. 水生生物学报, 1998, 22(2): 181-188. doi: 10.3321/j.issn:1000-3207.1998.02.014
    [2] 高露娇, 陈立侨, 赵晓勤, 等. 史氏鲟幼鱼的饥饿和补偿性生长研究对消化器官结构和酶活性的影响[J]. 中国水产科学, 2004, 5(11): 413-420. https://www.cnki.com.cn/article/cjfdtotal-sckx200403011.htm
    [3]

    SERGIO B. Digestive enzymes activity during ontogenetic development and effect of starvation in Japanese flounder, Paralichthys olivaceus[J]. Aquac, 2006, 252(2/4): 15-26. https://www.sciencedirect.com/science/article/pii/S0044848605004758

    [4] 郑曙明, 王燕妮, 聂迎霞. 虎鲨饥饿后的补偿性生长及淀粉酶活性的研究[J]. 华中农业大学学报, 2003, 22(5): 483-487. doi: 10.3321/j.issn:1000-2421.2003.05.016
    [5] 王宏田, 张培军. 牙鲆体内消化酶活性的研究[J]. 海洋与湖沼, 2002, 33(5): 472-476. doi: 10.3321/j.issn:0029-814X.2002.05.003
    [6] 黎军胜, 李建林, 吴婷婷. 奥尼罗非鱼淀粉酶、脂肪酶的分布与特性[J]. 中国水产科学, 2004, 9(5): 473-482. doi: 10.3321/j.issn:1005-8737.2004.05.015
    [7] 中山大学生物系生化微生物教研室编. 生化技术导论[M]. 北京: 科学出版社, 1979.
    [8]

    PAUL A L, PAUL J M, SMITH R L. Compensatory growth in Alaska yellowfin sole, Pleuronectes asper, follow food deprivation[J]. Fish Biol, 1995, 46(2): 442-448.

    [9] 宋昭彬, 何学福. 饥饿对南方鲇消化系统的形态和组织学影响[J]. 水生生物学报, 2000, 24(2): 155-161. https://www.zhangqiaokeyan.com/academic-journal-cn_acta-hydrobiologica-sinica_thesis/0201254764981.html
    [10]

    EHRLICH K F, BLAXTER J H S, PEMBERTON R. Morphological and histological changes during the growth and starvation of herring and plaice larvae[J]. Mar Biol, 1976, 35(4): 105-118. doi: 10.1007/BF00390932

    [11]

    MACLEOD M G. Effect of salinity and starvation on the alimentary canal anatomy of rainbow trout, Salmo gairdenert Richardson[J]. Fish Biol, 1978, 12(3): 71-79. doi: 10.1007/BF00391257

    [12]

    CHEN Leung K M, CHU K H. Effects of starvation on biochemical composition and digestive enzyme activities in the hepatopancreas of the shrimp Metapenaeus ensis[C]//HIRANO R H. Proceedings of the Second Asian Fisheries Forum. Tokyo: [s.n.], 1989, 17-22. https://www.mendeley.com/catalogue/a73d22c0-ecff-3a9c-ba9a-436119f8d331/

    [13]

    KERAMBRUN P, GUERIN J P. Changes in amylase activity of Leptomysis lingvura in relation to experimental feeding[J]. Comp Biochem Physiol, 1993, 105A(2): 303-310. https://www.sciencedirect.com/science/article/pii/030096299390212M

    [14] 孟庆武, 张秀梅, 张沛东, 等. 饥饿对凡纳滨对虾仔虾摄食行为和消化酶活力的影响[J]. 海洋水产研究, 2006, 27(5): 44-50. https://www.zhangqiaokeyan.com/academic-journal-cn_progress-fishery-sciences_thesis/0201261473787.html
    [15] 钱云霞. 饥饿对养殖鲈鱼蛋白酶活力的影响[J]. 水产科学, 2002, 21(3): 6-7.
    [16] 王燕妮, 张志蓉. 鲤鱼补偿生长及饥饿对淀粉酶的影响[J]. 水利渔业, 2001, 21(5): 6-7. https://d.wanfangdata.com.cn/periodical/sstxzz200105003
    [17] 张波, 孙耀, 唐启升. 饥饿对真鲷生长及生化组成的影响[J]. 水产学报, 2000, 24(3): 206-301. https://d.wanfangdata.com.cn/periodical/Ch9QZXJpb2RpY2FsQ0hJTmV3UzIwMjQxMTA1MTcxMzA0Eg1zY3hiMjAwMDAzMDAyGgg0ajVicHF3dA%3D%3D
图(5)
计量
  • 文章访问数:  5120
  • HTML全文浏览量:  152
  • PDF下载量:  3034
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-12-02
  • 修回日期:  2007-01-07
  • 刊出日期:  2007-04-04

目录

/

返回文章
返回