珠海养殖池塘沉积物中BHC和DDT残留与风险分析

刘建军, 贾晓平, 甘居利, 李纯厚, 李卓佳

刘建军, 贾晓平, 甘居利, 李纯厚, 李卓佳. 珠海养殖池塘沉积物中BHC和DDT残留与风险分析[J]. 南方水产科学, 2006, 2(5): 56-60.
引用本文: 刘建军, 贾晓平, 甘居利, 李纯厚, 李卓佳. 珠海养殖池塘沉积物中BHC和DDT残留与风险分析[J]. 南方水产科学, 2006, 2(5): 56-60.
LIU Jianjun, JIA Xiaoping, GAN Juli, LI Chunhou, LI Zhuojia. Residue characteristics and risk evaluation of BHC and DDT in sediments of culture ponds in Zhuhai[J]. South China Fisheries Science, 2006, 2(5): 56-60.
Citation: LIU Jianjun, JIA Xiaoping, GAN Juli, LI Chunhou, LI Zhuojia. Residue characteristics and risk evaluation of BHC and DDT in sediments of culture ponds in Zhuhai[J]. South China Fisheries Science, 2006, 2(5): 56-60.

珠海养殖池塘沉积物中BHC和DDT残留与风险分析

基金项目: 

广东省科技计划项目 2003B21501

珠海市科技计划项目 BC200320016

中国水产科学研究院重点项目 2003-5-4

详细信息
    作者简介:

    刘建军(1979-),男,硕士研究生,从事渔业生态环境监测与调控研究。E-mail: ghost143@sina.com

    通讯作者:

    甘居利,E-mail: ganjuli@163.com

  • 中图分类号: X839.2

Residue characteristics and risk evaluation of BHC and DDT in sediments of culture ponds in Zhuhai

  • 摘要:

    测定了珠海水产养殖池塘沉积物中六六六(BHC)和滴滴涕(DDT)残留量。结果显示,ΣBHC、ΣDDT残留量(湿重)分别为0.36~1.67、0.95~2.59 μg·kg-1,平均分别为0.91、1.81 μg·kg-1,明显低于一些江河、湖泊、海湾沉积物中的含量,符合我国无公害水产品产地沉积环境质量标准。γ-BHC/ΣBHC比值为0~21.6%,(DDE+DDD)/ΣDDT比值为61.1%~76.7%,表明珠海池塘养殖环境中的BHC日趋减少,推测残留的DDT大部分已降解为DDE和DDD,近年没有BHC和DDT输入。BHC和DDT含量低于ERL值,表明BHC和DDT残留对珠海池塘养殖基地造成的生态风险极低。

    Abstract:

    The benzene hexachlorides (BHCs) and dichloradiphenyl trichloroethanes (DDTs) in sediments of some aquaculture ponds in Zhuhai, China were determined in July, 2005. The results showed that the contents of total BHC and total DDT were from 0.36 to 1.67 (arithmetic mean=0.91) μg·kg-1 and 0.95 to 2.59(1.81) μg·kg-1, respectively. The residue levels of ΣBHC, ΣDDT in sediments of the tested area were lower than those of some rivers, lakes and bays, and also under the superior limits of national sediment quality standard for no contamination fishery products. The quality grade of BHCs or DDTs was "basically clean". The ratio of γ-BHC/ΣBHC, (DDE+DDD)/ΣDDT were from 0 to 21.6% and 61.1% to 76.7%, respectively. It may be guessed that BHCs gradually decreased, most residual DDT had decomposed to DDE and DDD, there was little or no BHCs or DDTs distributed into the sediments of Zhuhai aquaculture ponds in recent years. The contents of BHC and DDT were lower than the ERL value of risk evaluation to consumers of bottom feeders.

  • 实际种群分析(virtual population analysis,VPA)又称有效种群分析和现实种群分析,是渔业资源评估的经典方法之一。VPA被广泛应用来评估渔业的历史数据,求解种群资源量和捕捞死亡率[1-3]。在FRY等[2]前人研究工作的基础上,GULLAND[4]提出并应用了这个方法。

    然而,鱼类年龄数据的不易获得[5],对年龄结构VPA的应用造成了困难。由于更易获得体重数据,采用体重结构的VPA(WVPA)对于实际渔业来说更具有优越性。尤其是对于远洋渔业,像大西洋鳕(Gadus macrocephalus),青鳕(Theragra chalcogramma)等,一般都是在渔船上按照重量进行分类,然后进行冷藏,对于上岸统计来说,只需将每箱的重量乘以箱数即可得出相应的渔获量,简单易行。伴随着捕捞努力量的增大,我国近海的渔业资源呈现越来越严重的低龄化问题[6]。由此导致年龄结构的VPA模型难以获得比较长的世代年龄序列,使得估算过程困难。而采用WVPA模型,将考察资源数量变动的时间单位由“年”改变为以鱼的个体生长间隔△W所经历的时间,将资源数量分为多个“伪世代”,使得计算步骤简单。

    本文通过Monte Carlo模拟数据估算捕捞死亡系数,研究在不同的白色噪音下WVPA的可靠性及稳定性,进而回溯渔业开发史以及资源量状况[7]。并将WVPA的结果与年龄结构的VPA对比,初步探究WVPA在渔业资源评估中的可用性。

    GULLAND[8]根据Baranov的渔获量方程提出了VPA的公式如下:

    $$ N_{i, j}=\frac{F_{i, j}+M}{F_{i, j}\left(1-e^{-\left(F_{i, j}+M\right)}\right)} C_{i, j} $$ (1)
    $$ \frac{N_{i, j}}{N_{i+1, j+1}}=\frac{F_{i, j}\left(1-e^{-\left(F_{i, j}+M\right)}\right)}{\left(F_{i, j}+M\right) \times e^{-\left(F_{i, j}+M\right)}} $$ (2)

    模型当中Nijij龄的资源量,Ni+1,j+1是下一年该世代的资源量,Ciji年该世代的渔获量,M是自然死亡系数,Fijij龄的捕捞死亡系数,NC的单位都是尾数。

    VPA的计算流程如下:通过假设最大年龄的捕捞死亡系数F,加上与之对应的渔获量Cij,进而估算出Nij,然后将NijCi-1,j-1带入公式(2)求算出Fi-1,j-1。以此类推,以达到重现渔业历史的目的。

    Monte Carlo模拟仿真又称随机模拟方法(random simulation),有时也称统计实验(statistical testing),是人们对随机事件分析的一种数学方法,它使用不同的随机数反映随机过程的涨落现象。Monte Carlo模拟仿真常被应用于检验结果的有效性和在一定程度上分析具体的模型和渔业数据[9]。在本文的Monte Carlo模拟过程中我们采用了相同的操作模型和评估模型,其简单的执行过程如下:(1)根据原始数据求出模型的各个参数真值;(2)以此模型作为操作模型,并根据参数真值计算出模拟数据,在其上加入白色噪音[其不同水平用变异系数(coefficient of variation,CV)表示]后,即得到“伪观测数据”;(3)用模型分析伪观测数据,计算出种群的生物学参数估计值,并与参数真值比较得到相对误差。

    在Monte Carlo模拟过程中我们设定了原始资源量(N1)、自然死亡系数和捕捞死亡系数。假定它们的初始值分别为:N1等于1 000,F在0.1~1.5之间;在此我们构造了2个具有不同生长特点和自然死亡率的模拟种群[10],一个具有8龄的寿命,即:tM=8,M=0.32;另一个寿命相对短,约为3龄,tM=3,M=0.86。

    在模拟过程中,资源量(N)和渔获量(C)分别用下式计算[2]

    $$ N_{t+1}=N_t e^{-(F+M)} $$ (3)
    $$ C_t=\frac{F}{F+M} N_t\left(1-e^{-(F+M)}\right) $$ (4)

    本文设定5个不同水平的白色噪音[11]加在资源量上(CVN=1%,5%,10%,20%和30%),而将资源量噪音水平的一半加在渔获量上(CVC=0.5%,2.5%,5%,10%和15%)。正态分布的随机变量通过Box-Mueller方法[12]产生。选择2个单一分布的随机数U1U2并设定:

    $$ Z_1=\sqrt{-2 \log \left(U_1\right)} \cos \left(2 \pi U_2\right) $$ (5a)
    $$ Z_2=\sqrt{-2 \log \left(U_1\right)} \sin \left(2 \pi U_2\right) $$ (5b)

    Z1Z2便是平均值等于0,方差为1的正态随机变量。

    本研究重复模拟1 000次,以获得稳定的解。在求算出不同年份的捕捞死亡系数F后,本文计算了参数真值和估计值的相对估计误差REE:

    $$ \mathrm{REE}=\frac{\sum\limits_i^n\left|F_{\text {true }}-F_{\text {esti }}\right|}{n F_{\text {true }}} \times 100 \% $$ (6)

    n是模拟重复的次数,这里n=1 000。REE愈小表明估计值愈精确。

    本文采用赤鲷Pagrus pagrus为实验对象。赤鲷是一种底栖性鱼类,在大西洋西部多分布在美国的纽约到阿根廷,在大西洋东部,从英国诸岛到塞内加尔一直到非洲最西端的佛得角都有它的分布[13]。赤鲷的寿命较长,PAJUELO报告最高为14龄,自然死亡系数M采用PAULY[14]的公式计算得M=0.32。

    本文采用VAUGHAN等[15]在美国东南部沿海统计的1978~1997年的1~8龄渔获量数据,将最高年龄的捕捞死亡系数设为F= 1.2。通过对各龄的捕捞死亡系数的估算,进而估算资源量,达到对资源历史再现的目的,为渔业管理提供参考数据。

    WVPA是将第i年的鱼按体重分为j级,则Cij表示第ij重量级的渔获量,它的计算公式如下,

    $$ C_{i, j}=\frac{\delta_{i, j} V_i}{\gamma_j} $$ (7)

    δij:第i年的第j重量级的比例。

    Vi:第i年的总产量。

    γj:第j重量级的中值。

    之后的过程与VPA相似,由此计算得到捕捞死亡系数和资源量。

    表 1总结了对2个模拟种群应用WVPA计算捕捞死亡系数的结果。结果表明,即使在较高的白色噪音水平下(30%),WVPA仍然可以较准确的估算捕捞死亡系数[相对估算误差REE=3.81%(长寿命种群),和2.75%(短寿命种群)]。这可能指示这种方法更适用于寿命短的鱼种。

    表  1  应用WVPA对2个模拟种群在不同白色噪音(CV)下捕捞死亡系数F的平均估计值和相对估计误差
    Table  1.  Estimated average F values and relative estimated errors for two simulated populations for different white noises(CV)
    a
    F CVN=1% CVN=5% CVN=10% CVN=20% CVN=30%
    0.1 0.0995 (0.49) 0.0995 (0.48) 0.0994 (0.55) 0.0995 (0.47) 0.0996 (0.40)
    0.6 0.5994 (0.09) 0.5992 (0.13) 0.6028 (0.47) 0.6034 (0.53) 0.6082 (1.36)
    1.0 0.1995 (0.05) 1.0100 (1.00) 1.0011 (0.11) 1.0148 (1.48) 1.0337 (3.37)
    1.5 1.5038 (0.25) 1.5047 (0.31) 1.5087 (0.54) 1.5551 (3.67) 1.6518 (10.12)
    平均REE/%
    average
    0.22 0.48 0.42 1.543.81
    b
    F CVN=1% CVN=5% CVN=10% CVN=20% CVN=30%
    0.1 0.0995 (0.50) 0.0995 (0.47) 0.0997 (0.35) 0.0997 (0.35) 0.0990 (0.99)
    0.6 0.5995 (0.09) 0.5996 (0.06) 0.5997 (0.04) 0.6035 (0.59) 0.6075 (1.25)
    1.0 0.9993 (0.01) 0.9995 (0.05) 1.004 (0.41) 1.0115 (1.15) 1.0290 (2.91)
    1.5 1.4992 (0.05) 1.4908 (0.61) 1.5205 (1.37) 1.5424 (2.68) 1.5879 (5.86)
    平均REE/%
    average
    0.16 0.30 0.54 1.19 2.75
    注:a: 长寿命种群tM=8, M = 0.32; b: 短寿命种群tM=3, M = 0.86
    Note: a: long-lived population tM=8, M=0.32; b: short-lived population tM=3, M =0.86
    下载: 导出CSV 
    | 显示表格

    图 1显示的是采用体重级别对上岸鱼进行分组得到的渔获量组成。图 2是应用WVPA估算的资源量的组成状况。资源量在1980年前后出现高峰,渔获量也在这之后达到最高,但随着1982年的捕捞死亡系数的增大,使得资源量在此之后一蹶不振。在将1992~1997年的资源量由尾数转变为重量后,WVPA的计算结果与2002年6月的赤鲷资源状况报告的数据基本相符[16]图 3为应用VPA与WVPA估算赤鲷的捕捞死亡系数,在某些年份(1985、1986、1993~1997),F的差异较大(REE>10%),其他年份的捕捞死亡系数差别不大。

    图  1  1978~1997年赤鲷按照体重构成的渔获数量
    Figure  1.  Catch-at-weight Ci, , j of red porgy in 1978~1997
    图  2  采用体重结构的VPA(WVPA)估算1978~1997年赤鲷的资源量
    Figure  2.  Estimated population abundance of red porgy over 300 g using WVPA
    图  3  采用VPA与WVPA 2种方法对赤鲷1978~1997年的捕捞死亡系数的评估结果
    Figure  3.  Estimated fishing mortality of red porgy in 1978~1997 using VPA and WVPA

    图 4显示的为采用年龄结构的VPA(>3龄)与体重结构的VPA(>300 g)估算的赤鲷资源量状况的比较结果。2种方法估算的资源量均在1980年达到最大值。从1978~1997年采用VPA较采用WVPA估算的资源量偏高的原因可能是渔获量数据中大于3龄的比大于300 g的数量大的缘故。在1984~1997年估测的资源量中采用WVPA较VPA获得的结果变化趋势较缓和,这或许是由于一个世代中包含几个重量级,或者一个重量级包含几个年龄世代的缘故。这是因为在实际的渔业中,鱼类的补充并不是由年龄,而是由体长或体重决定的[17]。因此,采用体重结构的VPA,即WVPA,在渔业中更具有实际的意义。

    图  4  采用年龄结构的VPA(>3龄)与体重结构的VPA(>300 g)估算的赤鲷资源量
    Figure  4.  Comparison of red porgy abundance estimated using WVPA (over 300 g) and VPA (over age 3)

    此外,还有一些问题,例如WVPA与捕获比率及鱼类生长曲线的相关,对上岸量进行重量级别分组需要采用多大的间隔等等,还有待于日后的进一步研究。

    (1) 本研究假设模型没有过程误差,使用该方法时渔获量数据含有误差是结果出现误差的主要原因。渔业中一些渔获物没有被统计到的情况时常发生,例如私人消费渔获物以及海上抛弃[18-19]。仅凭渔民捕捞日志的资料有时不能得到可靠的渔获数据,这可能低估了产量,这样捕捞死亡系数的估计就会偏高。

    (2) 在评估过程中,将各龄的自然死亡率确定为同一值的做法,也会对结果造成一定的影响。

    (3) 一般来说,在采用VPA来估算资源量的过程中,我们获得的捕捞数据是根据年龄测量得到的数据,样本的数量受到很大的限制。而采用WVPA样本的数量几乎可以等同于上岸鱼的数量。因此在减小误差方面,WVPA会更有优势。

    本文演示了由体重结构的VPA估算鱼类捕捞死亡率和资源量的方法。WVPA的计算精度近似于年龄结构的VPA,但它对数据的要求要低一些。所以当实际渔业中的年龄数据不存在或不够精确时,可以采用本文的方法。

  • 表  1   沉积环境质量等级

    Table  1   Quality grade of sediment environment

    指数范围range of index < 0.4 0.4~0.6 0.6~0.8 0.8~1.0 1.0~2.0 >2.0
    质量等级quality level 1 2 3 4 5 6
    质量评价quality evaluation 自然本底 清洁 较清洁 轻污染 污染 重污染
    下载: 导出CSV

    表  2   6个采样点六六六和滴滴涕残留量(湿重)

    Table  2   Residue of BHC and DDT in six sampling sites(wet weight) ×10-3 mg·kg-1

    采样点
    sampling stations
    含量
    concentration
    总六六六
    ∑BHC
    总滴滴涕
    ∑DDT
    质量
    等级
    quality
    level
    α-BHC β-BHC γ-BHC δ-BHC pp-DDT op-DDT pp-DDE pp-DDD 含量
    concentration
    质量
    指数
    quality index
    含量
    concentration
    质量指数
    quality index
    1 0.25 0.10 nd* 0.42 0.16 0.44 1.23 0.33 0.77 0.00154 2.16 0.108 1
    2 0.36 0.15 nd 0.33 0.12 0.53 0.54 0.48 0.84 0.00168 1.67 0.0835 1
    3 0.68 0.42 0.36 0.21 0.56 0.40 0.68 0.95 1.67 0.00334 2.59 0.130 1
    4 0.25 0.22 nd 0.50 0.20 0.28 0.71 0.87 0.97 0.00194 2.06 0.103 1
    5 0.12 0.06 nd 0.18 0.16 0.18 0.48 0.62 0.36 0.00072 1.44 0.0720 1
    6 0.36 0.09 0.12 0.26 0.10 0.13 0.36 0.36 0.83 0.00166 0.95 0.0475 1
    注:1. 鳘鱼沙村对虾精养池内,用过甲醛和硫酸铜;2. 桅夹村海鲈精养池内,用过较多甲醛和硫酸铜;3. 桅夹村海鲈精养池外水源渠;4. 大海环村对虾和青蟹粗养池内,小量投饵;5. 广丰村对虾精养池内,基本只用利生素;6. 广丰村对虾精养池外水源渠;* nd表示未检出
    Note:1. Shrimp intensive culture pond in Minyusha village, formaldehyde and copper sulfate were used;2. Sea bass intensive culture pond in Weijia village, more ormaldehyde and copper sulfate were used;3. The headwater channel of sea bass intensive culture pond in Weijia village;4. Shirmp and crab extensive culture pond in Dahaihuan village, feed a little;5. Shrimp intensive culture pond in Guangfeng village, Lishengsu was used only;6. The headwater channel of shrimp intensive culture pond in Guangfeng village;* nd denotes undetectable.
    下载: 导出CSV

    表  3   珠海斗门养殖池塘与其它水域沉积物中BHC和DDT含量和风险值比较(湿重)

    Table  3   Comparison of BHC, DDT contents and risk values in the study area with other areas(wet weight) ×10-3mg·kg-1

    农药名称
    name of pesticides
    风险评价低值
    ERL[2]
    风险评价中值
    ERM[2]
    本研究区
    area of our study
    澳门附近[4]
    area of Macau
    维多利亚港[5]
    Victoria Harbour of Hong Kong
    中国太湖[6]
    Taihu lake of China
    长江口潮滩[7]
    flows beach of Changjiang River Estuary
    长江口南岸[8]
    south coast of Changjiang River Estuary
    DDT 1 7 0.23~0.96 0.26~4.05 nd~0.21 nd~8.42
    DDD 2 20 0.33~0.95 0.17~5.48 nd~0.34 0.50~5.26
    DDE 2.2 27 0.36~1.23 0.33~4.29 nd~0.35 0.65~6.21
    ΣDDT 3 46.1 0.95~2.59 1.92~39.1 1.38~25.4 0.76~13.8 nd~0.57 4.96~14.9
    γ-BHC 2.37 4.99 nd~0.36 0.08~3.50 nd~0.95
    ΣBHC 0.36~1.67 0.48~26.0 nd~2.3 1.83~16.0 0.54~32.6 1.19~8.22
    下载: 导出CSV
  • [1] 傅群, 黄珂, 甘居利. 环境激素与水产品质量安全[J]. 南方水产, 2005, 1(4): 64-68. doi: 10.3969/j.issn.2095-0780.2005.04.012
    [2]

    LONG E R, MACDONALD D D, SMITH S L, et al. Incidence of adverse biological effects within ranges of chemical concentrations in marine estuarine sediments [J]. Environ Manag, 1995, 19(1): 81-97. doi: 10.1007/BF02472006

    [3]

    INGERSOLL C G. Calculation and evaluation of sediment effect concentrations for the amphipod Hyalella azteca and the midge Chironomus riparius [J]. Great Lakes Res, 1996, 22: 602-623. doi: 10.1016/S0380-1330(96)70984-X

    [4] 康跃惠, 盛国英, 傅家谟, 等. 珠江澳门河口沉积物柱样中有机氯农药的垂直分布特征[J]. 环境科学, 2001, 22(1): 81-85. doi: 10.3321/j.issn:1000-6923.2000.03.013
    [5] 张珞平, 洪华生, 庄峙厦. 香港维多利亚港表层沉积物有机氯农药和PCBs的含量和分布[J]. 厦门大学学报, 1994, 33(5): 731-733. https://www.doc88.com/p-5059586808064.html
    [6] 袁旭音, 王禹, 陈骏, 等. 太湖沉积物中有机氯农药的残留特征及风险评估[J]. 环境科学, 2003, 24(1): 121-125. https://www.hjkx.ac.cn/hjkx/ch/reader/view_abstract.aspx?file_no=20030121&flag=1
    [7] 杨毅, 刘敏, 许世远, 等. 长江口潮滩表层沉积物中PCBs和OCPs的分布[J]. 中国环境科学, 2003, 23(2): 215-219. https://www.zghjkx.com.cn/CN/abstract/abstract10329.shtml
    [8] 刘华林, 刘敏, 陈书波, 等. 长江口南岸水体SPM和表层沉积物中OCPs的赋存[J]. 中国环境科学, 2005, 25(5): 622-626. https://www.zghjkx.com.cn/CN/abstract/abstract9334.shtml
    [9] 徐恒振, 马永安, 周传光, 等. 海岸带环境难降解有机污染物的分析[J]. 海洋学报, 2000, 22(增刊): 384-391.
    [10] GB/T18407.4-2001《农产品安全质量无公害水产品产地环境要求(沉积物部分)》[S]. 北京: 中国标准出版社, 2001.
    [11] 贾晓平, 杜飞雁, 林钦, 等. 海洋渔场环境质量状况综合评价方法探讨[J]. 中国水产科学, 2003, 10(2): 160-164. doi: 10.3321/j.issn:1005-8737.2003.02.015
表(3)
计量
  • 文章访问数:  5027
  • HTML全文浏览量:  148
  • PDF下载量:  2899
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-05-09
  • 修回日期:  2006-05-30
  • 刊出日期:  2006-10-19

目录

/

返回文章
返回