Effects of increased atmospheric CO2 and N supply on some physiological and biochemical traits in the economic brown seaweed, Hizikia fusiformis (Sargassaceae, Phaeophyta)
-
摘要:
以褐藻门马尾藻科马尾藻属羊栖菜(Hizikia fusiformis)为试验材料,探讨了在2种氮(N)水平下,CO2浓度升高对羊栖菜生长、光合作用和生化组成的影响。试验设350和700 μmol · mol-12种CO2浓度水平,以及自然海水加入浓度0、500 μmol · L-1的NaNO32种N肥施用水平。结果表明,在自然海水培养的条件下,倍增CO2对羊栖菜生长、光合作用和生化组成的影响不明显。而在N加富海水中培养的藻体升高CO2较明显的抑制了藻体的生长,并且干重鲜重比、体内蛋白质和可溶性多糖的含量分别降低4.5%、15%、32%。这可能主要是由于N加富使藻体内NO2-过多积累,而CO2升高使水体pH值降低,在藻体内形成HNO2产生的毒害作用。
Abstract:The marine macroalgae Hizikia fusiformis (Harvey) Okamura (Sargassaceae, Phaeophyta) was cultured under the condition of elevated atmospheric CO2and increased N supply to investigate the effects of increased CO2concentration and N supply on the growth, photosynthesis, and other related physiological and biochemical traits in this species. The experiment was designed for two CO2 levels which was 350 and 700 mol · mol-1, and two NO3-levels which was added 0, 500 mol · L-1 NaNO3in seawater. The algae cultured under non-N-enriched seawater, elevated CO2concentration had no significant effects on growth and biochemical traits. However, the algae cultured under N-enriched seawater, elevated CO2could effectively depress the growth.The ratio of fresh weight (FW)to dry weight (DW), the concentrations of soluble protein and soluble carbohydrate were decreased 4.5%, 15% and 32%. It suggested that increased N supply led to the accumulation of NO2-, and elevated CO2concentration caused pH value to decrease. This condition was well to form HNO2, which is toxic effect on H.fusiformis.
-
Keywords:
- Hizikia fusiforme /
- CO2 /
- photosynthesis /
- biochemical composition
-
-
表 1 不同C、N水平对羊栖菜P-I曲线的光合参数的影响
Table 1 Photosynthetic parameters of the P-I curves in H.fusiforme at different C and N levels
C-N- C+N- C-N+ C+N+ 暗呼吸/μmol O2· (g FW · h)-1
dark respiration rate (Rd)-6.12±0.749 -6.76±0.364 -7.45±0.519 -9.19±1.55 光合效率/μmol O2· (g FW · h)-1/μmol
photon · (m-2· h-1) photosynthetic efficiency (α)0.0916±0.00647 0.0961±0.00328 0.0982±0.00412 0.0929±0.0120 最大光饱和合速率/μmol O2· (g FW · h)-1
maximum net photosynthetic rate (Pmax)36.5±1.22 36.2±0.577 44.4±0.911 44.2±2.83 注: 平均值±标准差(n=3)
Note:Date was Mean±SD. -
[1] JOHNSTON A M, RAVEN J A. Effects of culture in high CO2on the photosynthetic physiology of Fucus serratus[J]. Br Phycol J, 1990, 25(1): 75-82. doi: 10.1080/00071619000650071
[2] VALIELA I, MCCLELLAND J, HAUXWELL J, et al. Macroalgal blooms in shalllow estuaries: controls and ecophysiological and e-cosystem consequences[J]. Limnol Oceanogr, 1997, 42(5/2): 1105-1118. doi: 10.4319/lo.1997.42.5_part_2.1105
[3] LARA C, ROMERO J M, CORONIL T, et al. Interactions between photosynthetic nitrate assimilation and CO2fixation in cyanobacteria[M]//ULLRICH W R, APARICIO P J, SYRETT P J, et al. In-organic Nitrogen Metabolism. Berlin: Springer-Verlag, 1987: 45-52. doi: 10.1007/978-1-4684-8571-4_47
[4] GAO K, ARUGA Y, ASADA K, et al. Enhanced growth of the red alga Porphyra yezoensis Ueda in high CO2 concentrations[J]. J Appl Phycol, 1991, 3(4): 355-362. doi: 10.1007/BF02392889
[5] ISRAEL A, HOPHY M. Growth, photosynthetic properties and Rubisco activities and amounts of marine macroalgae grown under current and elevated seawater CO2 concentrations[J]. Global Change Biol, 2002, 8(9): 831-840. doi: 10.1046/j.1365-2486.2002.00518.x
[6] 邹定辉, 高坤山, 阮祚禧. 高CO2浓度对石莼光合作用及营养盐吸收的影响[J]. 青岛海洋大学学报, 2001, 31(6): 877-882. doi: 10.3969/j.issn.1672-5174.2001.06.009 [7] 张清春, 于仁诚, 周名江, 等. 不同氮源对微小亚历山大藻生长和毒素产生的影响[J]. 海洋学报, 2005, 27(6): 138-145. doi: 10.3321/j.issn:0253-4193.2005.06.018 [8] NEORI A, COHEN I, GORDIN H. Ulva lactuca biofilters for ma-rine fish pond effluents. Ⅱ. Growth rate, yield and C: N ratio[J]. Bot Mar, 1991, 34: 483-489. doi: 10.1515/botm.1991.34.6.483
[9] NAKAJI T, TAKENAGA S, KUROHA M, et al. Photosynthetic re-sponses of Pinus densiflora seedlings to high nitrogen load[J]. En-viron Sci, 2002, 9(4): 269-282.
[10] ISRAEL A, BEER S. Photosynthetic and growth responses of mac-roalgae to globally changing CO2concentrations[C]//First Med-iterranean Symposium on Marine Vegetation. Ajaccio, Corsica, 2000, 10: 3-4.
[11] SMITH R G, BIDWELL R G S. Mechanisms of photosynthetic car-bon dioxide uptake by the red macroalga, Chondrus crispus[J]. Plant Physiol, 1989, 89(1): 93-99. doi: 10.1104/pp.89.1.93
[12] ZOU D. Effects of elevated atmospheric CO2on growth, photosyn-thesis and nitrogen metabolism in the economic brown seaweed, Hizikia fusiforme (Sargassaceae, Phaeophyta)[J]. Aquac, 2005, 250(3/4): 726-735. doi: 10.1016/j.aquaculture.2005.05.014
[13] 邹定辉, 陈雄文. 高浓度CO2对条浒苔(Enteromorpha clathrata)生长和一些生理生化特征的影响[J]. 海洋通报, 2002, 21(5): 38-45. doi: 10.3969/j.issn.1001-6392.2002.05.006 [14] 邱昌恩, 况琪军, 刘国祥, 等. 不同氮浓度对绿球藻生长及生理特性的影响[J]. 中国环境科学, 2005, 25(4): 408-411. doi: 10.3321/j.issn:1000-6923.2005.04.006 [15] WELLBURN A R. Why are atmospheric oxides of nitrogen usuallyphytotoxic and not alternative fertilizers[J]. New Phytol, 1990, 115(3): 395-429. doi: 10.1111/j.1469-8137.1990.tb00467.x
[16] NAKAJI T, KOBAYASHI T, KUROHA M, et al. Growth and ni-trogen availability of Red Pine Seedlings under high nitrogen load and elevated ozone[J]. Water Air Soil Pollut: Focus, 2004, 4(6): 277-287.