Karyotype analysis of Cromileptes altivelis
-
摘要:
研究利用植物血球凝集素(phytohemagglutinin, PHA)体内注射、肾细胞短期培养、空气干燥方法制备了驼背鲈染色体,并对其组型进行了分析。结果表明,驼背鲈的染色体组型公式是2n=48=48t,NF=48。结果显示,驼背鲈在鱼类系统演化上应属于高位类群,但在鲈形目中,其在进化上仍属相对原始的类型。
Abstract:The chromosome specimens of high-finned grouper Cromileptes altivelis were obtained from metaphase of kidney cells by in vivo injection of PHA and colchicine, hypatoic-air drying technique, as well as Giemsa staining. The results showed that C.altivelis had a diploid chromosome number of 48 and its karyotype formula was 2n=48=48t, NF=48. Its karyotype was in accordance with the typical characters of higher location karyotype group of fish, but yet a relatively primitive one in Perciformes.
-
Keywords:
- Cromileptes altivelis /
- chromosome /
- karyotype
-
鸢乌贼(Sthenoteuthis oualaniensis)隶属于柔鱼科鸢乌贼属,广泛分布在印度洋、太平洋的赤道和亚热带等海域,以印度洋西北部海域的资源量为最大[1]。前苏联和日本学者[2-3]曾多次对印度洋鸢乌贼资源进行调查,同时根据种类的发光器、形态特征、肥满度等初步分为大型、中型和小型3个群体,主要是侧重于对其资源量的研究;SNYDER[4]曾对阿拉伯海鸢乌贼大型群体进行了生物学的初步研究;杨德康[5]根据中国拖网渔船在亚丁湾海域兼捕的鸢乌贼,从捕捞时间和渔获物的性腺成熟度来分析,认为鸢乌贼由春生群、夏生群和秋生群3个群体组成;我国于2003~2005年对印度洋西北部海域鸢乌贼资源进行调查研究,对其资源密度及其分布、钓捕技术、渔场形成机制与海洋环境因子之间的关系等作了较全面的分析,对其生物学特性也作了初步分析[6-9],但是对该海域鸢乌贼的种群及其遗传结构没有作出进一步研究。文章是根据2004~2005年2次对印度洋西北部公海海域(13°N~20°N、59°E~64°E)鸢乌贼资源调查中所采集的鸢乌贼肌肉样本,利用随机扩增多态性DNA(random amplified polymorphic DNA,RAPD)检测方法,对该海域鸢乌贼种群及其遗传结构进行研究,为其资源评估、群体数量变动分析提供最基础的资料。
1. 材料和方法
1.1 材料来源
根据2004年9~12月和2005年3~5月2次印度洋西北部公海海域鸢乌贼资源调查结果,在27个站点中共采集鸢乌贼肌肉样本200尾(表 1),其胴长范围为20.3~53.0 cm,平均胴长为36.7 cm。肌肉样本用75%的酒精固定并保存于4℃的冰箱中备用。根据形态学特征及其空间分布,选取了12个站点48尾鸢乌贼的肌肉样本进行RAPD分析(图 1)。
表 1 印度洋西北部海域鸢乌贼肌肉样品取样时间、地点、样本尾数以及分析的样本尾数Table 1. Sampling localities, sampling dates, total numbers and the numbers used for RAPD analysis ofS.oualaniensis in the northwestern Indian Ocean取样时间
sampling date经度/°N
longitude纬度/°E
latitude尾数/ind
numberRAPD分析尾数/ind
numbers used for RAPD analysis2004-10-11 65.25 12.78 5 0 2004-10-12 63.37 13.45 5 0 2004-10-14 62.55 14.55 5 0 2004-10-15 62.35 16.38 5 4 2004-10-16 62.33 18.93 5 4 2004-10-18 63.00 18.88 5 4 2004-10-21 63.93 18.95 5 4 2004-10-22 63.48 18.47 5 0 2004-10-24 62.83 18.12 5 4 2004-10-25 61.45 17.17 5 0 2004-10-26 61.45 17.72 5 0 2004-10-27 61.50 17.78 10 0 2004-10-31 60.93 16.32 10 4 2004-11-01 60.92 15.57 10 0 2004-11-02 59.42 15.08 10 0 2004-11-06 59.67 13.17 10 4 2004-11-07 60.10 13.33 10 4 2004-11-09 60.92 14.13 10 0 2004-11-10 61.02 14.50 10 4 2004-11-12 60.72 14.42 10 4 2004-11-14 60.78 16.97 10 4 2004-11-15 60.53 16.87 10 0 2004-11-17 60.82 15.87 10 4 2004-11-20 60.45 15.40 10 0 2005-03-27 60.43 13.00 4 0 2005-03-31 60.00 15.00 5 0 2005-04-03 61.05 16.95 6 0 合计 total 200 48 1.2 试验方法和数据处理
1.2.1 基因组DNA的提取和检测
取肌肉样本25~30 mg加液氮后碾碎,-70℃保存备用。采用基因组DNA纯化试剂盒(SK1252,Sangon公司生产)提取基因组DNA。用Beckman DU-650紫外分光光度计检测DNA的含量,并用1%的琼脂糖凝胶电泳检测基因组DNA的质量。检测后的基因组DNA放置于-20℃冰箱中备用。
1.2.2 PCR-RAPD扩增反应及电泳
PCR-RAPD所采用的随机引物由上海Sangon公司合成。扩增反应中体积为25 μL,其中包括10×Taq buffer 2.5 μL,dNTPs(Fermentas公司生产,25 mol·L-1)0.5 μL,MgCl2(Fermentas公司生产,25 mmol·L-1)2.5 μL,Taq DNA Polymerase(Fermentas公司生产,5 μ·μL-1)0.2 μL,随机引物(Sangon公司生产,50 μmol·μL-1)0.5 μL,基因组DNA 1μL(50~100 ng·μL-1),ddH2O 17.8 μL。
PCR扩增在GeneAmp PCR System 9700 PCR仪上进行,所有样本对每一个引物都进行1~2次扩增反应。反应条件为经94℃预变性2 min后,接着40个循环,每个循环包括94℃变性15 s,35℃复性60 s,72℃延伸90 s,最后是72℃终延伸10 min,4℃保温。扩增产物用1.5%琼脂糖凝胶电泳分离,EB染色,凝胶成像系统(genius bio imaging system,GENE公司生产)观察、拍照并记录。
1.2.3 数据处理
根据电泳后记录下清晰的扩增条带进行数据统计,在RAPD图谱中相对位置无条带的用“0”表示,在相对位置有条带的用“1”表示,将RAPD图谱转化成0、1矩阵,利用Popgene 1.31软件计算不同站点鸢乌贼样本的遗传相似度(S)和遗传距离(D)。计算公式为:
$$ S=\frac{2 N_\mathtt{x y}}{N_\mathtt{x}+N_\mathtt{y}} ; D=1-S $$ 式中Nxy为X、Y 2个样本共有的扩增条带,Nx、Ny分别为X、Y样本各自拥有的扩增带。
采用PHYLIP(phylogeny inference package,Ver.3.5)软件包中的NEIGHBOR程进行UPGMA(unweighted pair-group method with arithmetic average)聚类分析。参照恽锐等[10]的方法,用Shannon多样性指数计算种群的遗传多样性,其平均值即为种群的遗传多样性。计算公式为:
$$ h=-\sum p_i \log _2 p_i $$ 式中pi为某位点的表型频率,包括有带样本的频率和无带样本的频率,h为该位点的表型多样性,即样本在该位点出现“有带”或“无带”的不确定性。
利用Arlequin 2.0软件进行分子方差分析(analysis of molecular variance,AMOVA),计算其遗传分化指数(GST),GST即为种群间的遗传多样性占种群多样性的比例,以检测鸢乌贼种群内和种群间的遗传变异情况的显著性。计算公式为:
$$ G_{\mathrm{ST}}=\frac{H_{\mathrm{T}}-H_{\mathrm{S}}}{H_{\mathrm{T}}} $$ 式中HT为种群的总遗传多样性,HS为种群内平均遗传多样性。
2. 结果
2.1 RAPD扩增结果
PCR-RAPD试验所使用的16个随机引物中,经过筛选,选取扩增条带丰富且稳定性好的8个引物进行分析,引物序列见表 2。每个引物均可得到条带清晰且重复性好的扩增图谱,扩增条带为3~8,其分子量大小为200~1 500 bp。图 2为引物R8的扩增图谱。
表 2 所用的随机引物及其序列Table 2. Primers and their sequence used for RAPD analysis引物
primers序列
sequence引物
primers序列
sequenceR1 5′-ccatcctacc R5 5′-ccatggtgtc R2 5′-acagtaccgcc R6 5′-aaccgcgtcc R3 5′-gatggctgtg R7 5′-ctcaccgtcc R4 5′-ctccccaact R8 5′-acggcgtatg 2.2 UPGMA分析
将RAPD图谱转化成0、1矩阵,经过POPGENE 1.31处理,根据NEI[11]的方法可得出各个样本间的遗传相似性指数(S)和遗传距离(D)。根据遗传距离,利用PHYLIP软件包中的NEIGHBOR程序进行UPGMA聚类分析,得出48尾鸢乌贼样本的聚类图(图 3)。
由图 3可知,18°N~20°N海域4个站点的16尾样本聚集在一起,且样本间的最大遗传距离为0.4858,可以推测认为,该海域的鸢乌贼形成一个种群。而在13°N~18°N海域的8个站点的32尾样本中,除第23号样本外,其余样本都聚集在一起,且样本间的最大遗传距离为0.4767,该海域的鸢乌贼也同样形成一个种群。因此,根据UPGMA聚类分析,可以得出在13°N以北的印度洋西北部海域鸢乌贼存在2个不同种群,且2个种群之间的遗传距离为0.1338,遗传相似性指数为0.8748。
2.3 遗传多样性
利用Shannon多样性指数计算印度洋西北部海域鸢乌贼种群的遗传多样性,其平均值即为种群的遗传多样性。计算结果表明,印度洋西北部海域鸢乌贼种群平均每个位点的多样性指数为0.3676±0.1801,由此可以看出其种群的遗传多样性较高,种群分化较大。
2.4 DNA多态性与遗传分化
根据获得的RAPD扩增带,计算种群间的多态位点比例(表 3),2个种群多态位点比例分别为68.75%和93.75%,这说明印度洋西北部海域鸢乌贼2个种群均保持较高的遗传多样性。以种群内不同扩增图谱类型之间的遗传差异值为基础,计算种群的遗传多样性,18°N~20°N海域鸢乌贼种群的遗传多样性为0.2072,13°N~18°N海域鸢乌贼种群为0.1656,其平均值为0.1864。
表 3 印度洋西北部海域鸢乌贼种群多态位点比例与遗传多态性Table 3. Proportion of polymorphic loci and genetic diversity of S.oualaniensis populations in the northwest Indian Ocean内容
content18°N~20°N种群
population located in 18°N~20°N13°N~18°N种群
population located in 13°N~18°N多态位点比例/%
proportion of polymorphic loci68.75 93.75 遗传多态性(平均值±标准差)
genetic diversity (Mean±SE)0.2072±0.1928 0.1656±0.1441 GST是用来判断种群间的遗传分化情况,当GST < 0.05时,种群间没有遗传分化;当0.05 < GST < 0.15时,种群间的遗传分化程度为中等;当0.15 < GST < 0.25时,种群间有高度的分化;当GST>0.25时,种群间的分化程度非常高。印度洋西北部12°N以北海域鸢乌贼种群总遗传多样性为0.2375,种群内平均遗传多样性为0.1864,可以得出其种群间遗传分化指数为0.2150,即21.5%的遗传变异来自于种群间,而78.5%来自于种群内。该结果表明,不同种群间在遗传背景上存在较大的差异,且种群内的遗传变异水平较高。
3. 讨论
3.1 关于印度洋西北部海域鸢乌贼种群结构的探讨
通过对印度洋西北部海域鸢乌贼样本的RAPD分析,并根据遗传距离对其进行UPGMA聚类,发现18°N~20°N海域4个站点的16尾鸢乌贼样本聚集在一起,形成了一个种群,而13°N~18°N海域8个站点的32尾鸢乌贼样本聚集在一起,形成了另一个种群。对这2个不同种群的形态学参数进行统计,18°N~20°N海域鸢乌贼胴长为45.4~53.0 cm,平均胴长为48.9±2.81 cm,而13°N~18°N海域胴长为20.3~51.2 cm,平均胴长为36.3±8.03 cm,优势胴长为32.0~42.0 cm。经单因素方差(ANOVA)分析2个种群间的胴长的P=0.00002 < 0.05,差异性显著。陈新军等[12]认为印度洋西北部海域鸢乌贼分为形态特征存在一定差异性的3个种群:大型种群、中型种群和小型种群,其中大型种群主要分布在18°N以北海域,中型种群主要分布在12°N~18°N海域,小型种群主要分布在12°N以南及赤道附近海域,且这3个种群重叠分布;谷津明彦[3]也认为该海域的鸢乌贼存在3个不同体型的种群,此文所得出的种群结构与陈新军、谷津明彦等研究的结果基本一致。因此,印度洋西北部13°以北海域鸢乌贼种群在形态学与遗传上都可以被区分为18°N~20°N、13°N~18°N 2个不同的种群。
3.2 印度洋西北部海域鸢乌贼的遗传多样性
Shannon多样性指数表示种群间的多样性占总多样性的比例,可以用来估测遗传多样性在种群内和种群间的分布,即估测种群的遗传分化程度。利用Shannon多样性指数计算出的印度洋西北部海域鸢乌贼的遗传多样性指数为0.3676±0.1801,为较高的水平。由于其遗传多样性水平较高,种群分化较大,从侧面可以说明印度洋西北部海域鸢乌贼2个种群在形态上差别很大的原因。
另外,此研究结果还揭示,与18°N~20°N海域鸢乌贼种群相比,13°N~18°N海域鸢乌贼种群拥有较高的多态性位点比例,而遗传多态性却相对较低(表 3),这一结果可能与所选用8条RAPD引物有关;笔者因此推测出13°N~18°N海域鸢乌贼可能所受的捕捞压力相对较大,生长速度较快。基于此研究的分析结果,该海域鸢乌贼2个种群间在遗传背景上存在较大的差异,且种群内的遗传变异水平较高,笔者认为,对该海域鸢乌贼资源的规模性开发还处于较合理水平。
3.3 RAPD结果的分析方法
种以下类群包括亚种、品种及地理种群等,遗传分析的目的在于了解遗传多样性、鉴别种群、分析种群间的差异大小和微进化等,多数学者采用2种方法对RAPD结果进行处理并对上述问题进行探讨[13-15]:(1)寻找种群的特有遗传标记,据此可以鉴别不同的种群;(2)基于遗传相似率的分析,包括相似率比较、遗传距离分析、聚类分析等。此研究在进行RAPD实验过程中未能寻找到用于区分印度洋西北部海域鸢乌贼2个种群的RAPD分子标记,这可能是由于在此次实验中使用引物较少的原因所造成的。因而,此研究选用了第2种分析方法。
RAPD技术能够快速、简便地检测大量基因组DNA的遗传变异,只要采用适当的分析方法,不仅可以用于鉴定头足类资源的品系、种群结构并探讨其进化关系,还可以在探讨头足类种群分化等方面发挥重要作用。
-
表 1 驼背鲈肾细胞中染色体数目出现频率
Table 1 Occurrence frequency of chromosome number in kidney cells of C.altivelis
染色体数
chromosome number>48 48 47 46 45 ≤44 细胞数 cell number 2 77 5 5 5 6 出现频率/%
occurrence frequency2 77 5 5 5 6 表 2 驼背鲈的染色体核型参数
Table 2 Indices of karyotype analyses of C.altivelis
序号
no.相对长度(平均值±标准差)
relative length(Mean±SD)臂比
arm ratio类型
type1 5.58±0.26 ∞ t 2 5.30±0.25 ∞ t 3 5.06±0.23 ∞ t 4 4.96±0.21 ∞ t 5 4.84±0.18 ∞ t 6 4.75±0.16 ∞ t 7 4.66±0.14 ∞ t 8 4.57±0.09 ∞ t 9 4.50±0.08 ∞ t 10 4.41±0.08 ∞ t 11 4.33±0.09 ∞ t 12 4.27±0.10 ∞ t 13 4.20±0.11 ∞ t 14 4.11±0.11 ∞ t 15 4.00±0.10 ∞ t 16 3.86±0.12 ∞ t 17 3.79±0.15 ∞ t 18 3.70±0.16 ∞ t 19 3.56±0.16 ∞ t 20 3.47±0.16 ∞ t 21 3.35±0.19 ∞ t 22 3.22±0.21 ∞ t 23 3.00±0.26 ∞ t 24 2.54±0.40 ∞ t 表 3 石斑鱼亚科鱼类染色体核型比较
Table 3 Comparison of the chromosome karyotype among Epinephelinae
属名
genus name种名
specific name染色体数(2n)
chromosome number核型公式
karyotype formula臂数(NF)
arm number驼背鲈属
Cromileptes驼背鲈 C.altivelis 48 48t 48 石斑鱼属
Epinephelus蜂巢石斑鱼 E.merra 48 4m+6sm+4st+34t[10] 58 鲑点石斑鱼 E.fario 48 4m+6sm+4st+34t[10]
3m+11sm+34st[11]62 点带石斑鱼 E.malabaricus 48 48t[10, 12] 48 黑边石斑鱼 E.fasciatus 48 48t[13, 10] 48 斑带石斑鱼 E.fasciatomaculatus 48 48t[13] 48 六带石斑鱼 E.sexfascitus 48 2sm+46t[14] 50 青石斑鱼 E.awoara 48 48t[15] 48 斜带石斑鱼 E.coioides 48 2sm+46t[16, 17] 50 云纹石斑鱼 E.moara 48 48t[16]
2st+46t[18]48 鞍带石斑鱼 E.lanceolatus 48 4st+44t[19] 48 褐点石斑鱼 E.fuscoguttatus 48 2sm+46t[20] 50 赤点石斑鱼 E.akaara 48 5st+43t[17] 48 长体鳜属
Coreosiniperca长体鳜 C.roulei 48 2sm+10st+36t[21] 50 鳜属
Siniperca鳜 S.chuatsi 48 6sm+16st+26t[21] 54 大眼鳜 S.kneri 48 6sm+14st+28t[21] 54 斑鳜 S.scherzeri 48 6sm+14st+28t[21] 54 暗鳜 S.obscura 48 4sm+14st+30t[21] 52 波纹鳜 S.undulatr 48 2sm+16st+30t[21] 50 -
[1] 成庆泰, 杨文华. 中国NFDA1科鱼类地理分布的初步研究. 鱼类学论文集(第一辑)[M]. 北京: 科学出版社, 1981: 1-9. https://baike.baidu.com/item/%E9%B1%BC%E7%B1%BB%E5%AD%A6%E8%AE%BA%E6%96%87%E9%9B%86%C2%B7%E7%AC%AC%E4%B8%80%E8%BE%91/59112353 [2] 区又君, 李加儿, 陈福华. 驼背鲈的形态和生物学性状[J]. 中国水产科学, 1999, 6(1): 24-26. doi: 10.3321/j.issn:1005-8737.1999.01.006 [3] 王以康. 鱼类分类学[M]. 上海: 上海科学技术出版社, 1958: 273-277. [4] 区又君, 李加儿, 陈福华. 驼背鲈引种驯养及人工诱导性腺发育和繁殖[J]. 湛江海洋大学学报, 1999, 19(3): 20-23. https://www.cqvip.com/doc/journal/943408421 [5] 区又君. 驼背鲈的胚胎发育[J]. 海洋科学, 2006, 30(8): 17-19. doi: 10.3969/j.issn.1000-3096.2006.08.006 [6] 陈福华, 区又君, 李加儿. 驼背鲈寄生线虫的研究[J]. 鱼类病害研究, 1995, 17(3/4): 63. [7] 林义浩. 快速获得大量鱼类肾细胞中期分裂相的PHA体内注射法[J]. 水产学报, 1982, 6(3): 201-204. https://d.wanfangdata.com.cn/periodical/Ch9QZXJpb2RpY2FsQ0hJTmV3UzIwMjQxMTA1MTcxMzA0Eg5RSzAwMDAwMjU1NTkzMhoIMW9oeHRvcms%3D [8] LEVAN A, FREDGA K, SANDBERG A A. Nomenclature for centromeric position on chromosomes[J]. Hereditas, 1964, 52(2): 201-220. doi: 10.1111/j.1601-5223.1964.tb01953.x
[9] GOMAN G C. The chromosomes of the Reptilia. a cytotaxonomic interpretation. Cytotaxonomy and Vertebrate Evolution[M]. NewYork: Academic Press Inc, 1973: 5-30. https://turtles.linnaeus.naturalis.nl/linnaeus_ng/app/views/literature2/reference.php?id=5262&epi=11
[10] 郑莲, 刘楚吾, 李长玲. 4种石斑鱼染色体核型研究[J]. 海洋科学, 2005, 29(4): 51-55. https://www.cqvip.com/doc/journal/983226409 [11] 陈毅恒, 容寿柏, 刘绍琼. 鲑点石斑鱼的核型[J]. 福建水产, 1990(1): 23-25. https://www.cqvip.com/doc/journal/993951576 [12] 邹记兴, 余其兴, 周菲. 点带石斑鱼的核型、C带、Ag-NOR[J]. 水产学报, 2005, 29(1): 33-37. https://www.cqvip.com/doc/journal/982950429 [13] 李锡强, 彭跃东. 斑带石斑鱼与黑边石斑鱼核型的研究[J]. 湛江水产学院学报, 1994, 14(2): 22-26. https://www.cqvip.com/doc/journal/985770448 [14] 陈毅恒, 容寿柏, 刘绍琼, 等. 六带石斑鱼的核型分析[J]. 湛江水产学院学报, 1990, 10(1): 43-44. https://www.cqvip.com/doc/journal/954001081 [15] 杨俊慧, 钟扬伟. 青石斑鱼染色体组型的初步研究[J]. 广州师院学报, 1988(2): 62-68. [16] 丁少雄, 王世锋, 王德祥, 等. 斜带石斑鱼染色体核型分析[J]. 厦门大学学报: 自然科学版, 2004, 43(3): 426-428. https://www.cqvip.com/doc/journal/916119903 [17] 王云新, 王宏东, 张海发, 等. 斜带石斑鱼与赤点石斑鱼的核型研究[J]. 湛江海洋大学学报, 2004, 24(3): 4-7. doi: 10.3969/j.issn.1673-9159.2004.03.002 [18] 郭丰, 王军, 苏永全, 等. 云纹石斑鱼染色体核型研究[J]. 海洋科学, 2006, 30(8): 1-3. doi: 10.3969/j.issn.1000-3096.2006.08.001 [19] 王德祥, 苏永全, 王世锋, 等. 宽额鲈染色体核型研究及制作方法的比较[J]. 台湾海峡, 2003, 22(4): 465-468. doi: 10.3969/j.issn.1000-8160.2003.04.009 [20] 廖经球, 尹绍武, 陈国华, 等. 褐点石斑鱼的核型研究[J]. 水产科学, 2006, 25(11): 567-569. doi: 10.3969/j.issn.1003-1111.2006.11.008 [21] 余先觉, 周暾, 李渝成, 等. 中国淡水鱼类染色体[M]. 北京: 科学出版社, 1989: 11-18. [22] 小岛吉雄. 鱼类细胞遗传学[M]. 林义浩编译. 广州: 广东科技出版社, 1990: 8-33. [23] 赵金良. 我国海水鱼和咸淡水鱼染色体组型研究概述[J]. 上海水产大学学报, 2000, 9(4): 344-347. doi: 10.3969/j.issn.1004-7271.2000.04.011 [24] 周敦. 鱼类染色体研究[J]. 动物学研究, 1984, 5(3): 38-51. [25] 吴仲庆. 水产生物遗传育种学[M]. 厦门: 厦门大学出版社, 1991. [26] 李长玲, 曹伏君, 刘楚吾, 等. 笛鲷属三种鱼类染色体组型的研究[J]. 海洋通报, 2005, 24(5): 23-26. doi: 10.3969/j.issn.1001-6392.2005.05.004