环境因子对黄海鳀鱼亲体-补充量关系影响的初步研究

郑芳, 刘群, 王艳君

郑芳, 刘群, 王艳君. 环境因子对黄海鳀鱼亲体-补充量关系影响的初步研究[J]. 南方水产科学, 2008, 4(2): 15-20.
引用本文: 郑芳, 刘群, 王艳君. 环境因子对黄海鳀鱼亲体-补充量关系影响的初步研究[J]. 南方水产科学, 2008, 4(2): 15-20.
ZHENG Fang, LIU Qun, WANG Yanjun. Study of impacts of environmental factors on stock and recruitment relationship of the anchovy stock in the Yellow Sea[J]. South China Fisheries Science, 2008, 4(2): 15-20.
Citation: ZHENG Fang, LIU Qun, WANG Yanjun. Study of impacts of environmental factors on stock and recruitment relationship of the anchovy stock in the Yellow Sea[J]. South China Fisheries Science, 2008, 4(2): 15-20.

环境因子对黄海鳀鱼亲体-补充量关系影响的初步研究

基金项目: 

国家自然科学基金面上项目 30271025

详细信息
    作者简介:

    郑芳(1983-),女,硕士研究生,从事鱼类种群动力学研究。E-mail: zf8357@hotmail.com

    通讯作者:

    刘群,E-mail: qunliu@mail.ouc.edu.cn

  • 中图分类号: S932

Study of impacts of environmental factors on stock and recruitment relationship of the anchovy stock in the Yellow Sea

  • 摘要:

    鱼类年际资源量的波动可以归因于年间环境条件的变化和该种鱼类亲体数量的变化。文章根据1990~2001年间黄海中南部鳀鱼声学调查评估结果,以及黄海千里岩海区在此年间的表层水温和营养盐统计数据,以Ricker模型(R=αSe-βS)为基础对黄海鳀鱼(Engraulis japonicas)亲体-补充量关系进行了初步研究。结果表明,黄海千里岩水域表层水温、磷酸盐浓度等环境条件因素对补充量有重要影响。

    Abstract:

    Changes in fish year-class strength have been attributed to year-to-year variability in environmental conditions, such as sea surface temperature (SST) and phosphate concentration, and spawning stock biomass(SSB).In this study, we examined the relationship between environmental factors, SSB and recruitment for the anchovy (Engraulis japonicas) stock in the Yellow Sea using a traditional stock-recruitment Ricker model. The recruitment fluctuation of the anchovy stock in the Yellow Sea was successfully reproduced by the Ricker stock-recruitment model with environmental factors. The findings suggest that the impacts of SST and phosphate concentration observed at the Qianliyan Marine Environment Monitoring Station in the Yellow Sea on the anchovy stock in the Yellow Sea are very important.

  • 鸢乌贼(Sthenoteuthis oualaniensis)隶属于柔鱼科鸢乌贼属,广泛分布在印度洋、太平洋的赤道和亚热带等海域,以印度洋西北部海域的资源量为最大[1]。前苏联和日本学者[2-3]曾多次对印度洋鸢乌贼资源进行调查,同时根据种类的发光器、形态特征、肥满度等初步分为大型、中型和小型3个群体,主要是侧重于对其资源量的研究;SNYDER[4]曾对阿拉伯海鸢乌贼大型群体进行了生物学的初步研究;杨德康[5]根据中国拖网渔船在亚丁湾海域兼捕的鸢乌贼,从捕捞时间和渔获物的性腺成熟度来分析,认为鸢乌贼由春生群、夏生群和秋生群3个群体组成;我国于2003~2005年对印度洋西北部海域鸢乌贼资源进行调查研究,对其资源密度及其分布、钓捕技术、渔场形成机制与海洋环境因子之间的关系等作了较全面的分析,对其生物学特性也作了初步分析[6-9],但是对该海域鸢乌贼的种群及其遗传结构没有作出进一步研究。文章是根据2004~2005年2次对印度洋西北部公海海域(13°N~20°N、59°E~64°E)鸢乌贼资源调查中所采集的鸢乌贼肌肉样本,利用随机扩增多态性DNA(random amplified polymorphic DNA,RAPD)检测方法,对该海域鸢乌贼种群及其遗传结构进行研究,为其资源评估、群体数量变动分析提供最基础的资料。

    根据2004年9~12月和2005年3~5月2次印度洋西北部公海海域鸢乌贼资源调查结果,在27个站点中共采集鸢乌贼肌肉样本200尾(表 1),其胴长范围为20.3~53.0 cm,平均胴长为36.7 cm。肌肉样本用75%的酒精固定并保存于4℃的冰箱中备用。根据形态学特征及其空间分布,选取了12个站点48尾鸢乌贼的肌肉样本进行RAPD分析(图 1)。

    表  1  印度洋西北部海域鸢乌贼肌肉样品取样时间、地点、样本尾数以及分析的样本尾数
    Table  1.  Sampling localities, sampling dates, total numbers and the numbers used for RAPD analysis ofS.oualaniensis in the northwestern Indian Ocean
    取样时间
    sampling date
    经度/°N
    longitude
    纬度/°E
    latitude
    尾数/ind
    number
    RAPD分析尾数/ind
    numbers used for RAPD analysis
    2004-10-11 65.25 12.78 5 0
    2004-10-12 63.37 13.45 5 0
    2004-10-14 62.55 14.55 5 0
    2004-10-15 62.35 16.38 5 4
    2004-10-16 62.33 18.93 5 4
    2004-10-18 63.00 18.88 5 4
    2004-10-21 63.93 18.95 5 4
    2004-10-22 63.48 18.47 5 0
    2004-10-24 62.83 18.12 5 4
    2004-10-25 61.45 17.17 5 0
    2004-10-26 61.45 17.72 5 0
    2004-10-27 61.50 17.78 10 0
    2004-10-31 60.93 16.32 10 4
    2004-11-01 60.92 15.57 10 0
    2004-11-02 59.42 15.08 10 0
    2004-11-06 59.67 13.17 10 4
    2004-11-07 60.10 13.33 10 4
    2004-11-09 60.92 14.13 10 0
    2004-11-10 61.02 14.50 10 4
    2004-11-12 60.72 14.42 10 4
    2004-11-14 60.78 16.97 10 4
    2004-11-15 60.53 16.87 10 0
    2004-11-17 60.82 15.87 10 4
    2004-11-20 60.45 15.40 10 0
    2005-03-27 60.43 13.00 4 0
    2005-03-31 60.00 15.00 5 0
    2005-04-03 61.05 16.95 6 0
    合计 total 200 48
    下载: 导出CSV 
    | 显示表格
    图  1  遗传多样性分析的样品采集站点
    Figure  1.  Sampling localities of S.oualaniensis used for RAPD analysis in the northwestern Indian Ocean

    取肌肉样本25~30 mg加液氮后碾碎,-70℃保存备用。采用基因组DNA纯化试剂盒(SK1252,Sangon公司生产)提取基因组DNA。用Beckman DU-650紫外分光光度计检测DNA的含量,并用1%的琼脂糖凝胶电泳检测基因组DNA的质量。检测后的基因组DNA放置于-20℃冰箱中备用。

    PCR-RAPD所采用的随机引物由上海Sangon公司合成。扩增反应中体积为25 μL,其中包括10×Taq buffer 2.5 μL,dNTPs(Fermentas公司生产,25 mol·L-1)0.5 μL,MgCl2(Fermentas公司生产,25 mmol·L-1)2.5 μL,Taq DNA Polymerase(Fermentas公司生产,5 μ·μL-1)0.2 μL,随机引物(Sangon公司生产,50 μmol·μL-1)0.5 μL,基因组DNA 1μL(50~100 ng·μL-1),ddH2O 17.8 μL。

    PCR扩增在GeneAmp PCR System 9700 PCR仪上进行,所有样本对每一个引物都进行1~2次扩增反应。反应条件为经94℃预变性2 min后,接着40个循环,每个循环包括94℃变性15 s,35℃复性60 s,72℃延伸90 s,最后是72℃终延伸10 min,4℃保温。扩增产物用1.5%琼脂糖凝胶电泳分离,EB染色,凝胶成像系统(genius bio imaging system,GENE公司生产)观察、拍照并记录。

    根据电泳后记录下清晰的扩增条带进行数据统计,在RAPD图谱中相对位置无条带的用“0”表示,在相对位置有条带的用“1”表示,将RAPD图谱转化成0、1矩阵,利用Popgene 1.31软件计算不同站点鸢乌贼样本的遗传相似度(S)和遗传距离(D)。计算公式为:

    $$ S=\frac{2 N_\mathtt{x y}}{N_\mathtt{x}+N_\mathtt{y}} ; D=1-S $$

    式中Nxy为X、Y 2个样本共有的扩增条带,NxNy分别为X、Y样本各自拥有的扩增带。

    采用PHYLIP(phylogeny inference package,Ver.3.5)软件包中的NEIGHBOR程进行UPGMA(unweighted pair-group method with arithmetic average)聚类分析。参照恽锐等[10]的方法,用Shannon多样性指数计算种群的遗传多样性,其平均值即为种群的遗传多样性。计算公式为:

    $$ h=-\sum p_i \log _2 p_i $$

    式中pi为某位点的表型频率,包括有带样本的频率和无带样本的频率,h为该位点的表型多样性,即样本在该位点出现“有带”或“无带”的不确定性。

    利用Arlequin 2.0软件进行分子方差分析(analysis of molecular variance,AMOVA),计算其遗传分化指数(GST),GST即为种群间的遗传多样性占种群多样性的比例,以检测鸢乌贼种群内和种群间的遗传变异情况的显著性。计算公式为:

    $$ G_{\mathrm{ST}}=\frac{H_{\mathrm{T}}-H_{\mathrm{S}}}{H_{\mathrm{T}}} $$

    式中HT为种群的总遗传多样性,HS为种群内平均遗传多样性。

    PCR-RAPD试验所使用的16个随机引物中,经过筛选,选取扩增条带丰富且稳定性好的8个引物进行分析,引物序列见表 2。每个引物均可得到条带清晰且重复性好的扩增图谱,扩增条带为3~8,其分子量大小为200~1 500 bp。图 2为引物R8的扩增图谱。

    表  2  所用的随机引物及其序列
    Table  2.  Primers and their sequence used for RAPD analysis
    引物
    primers
    序列
    sequence
    引物
    primers
    序列
    sequence
    R1 5′-ccatcctacc R5 5′-ccatggtgtc
    R2 5′-acagtaccgcc R6 5′-aaccgcgtcc
    R3 5′-gatggctgtg R7 5′-ctcaccgtcc
    R4 5′-ctccccaact R8 5′-acggcgtatg
    下载: 导出CSV 
    | 显示表格
    图  2  随机引物R8对鸢乌贼肌肉样本的RAPD扩增图谱
    1~16号样本来源于18°N~20°N海域
    Figure  2.  RAPD electrophoresis pattern of S.oualaniensis muscle samples using primer R8
    No.1~16 sampled from 18°N~20°N in the northwestern Indian Ocean.

    将RAPD图谱转化成0、1矩阵,经过POPGENE 1.31处理,根据NEI[11]的方法可得出各个样本间的遗传相似性指数(S)和遗传距离(D)。根据遗传距离,利用PHYLIP软件包中的NEIGHBOR程序进行UPGMA聚类分析,得出48尾鸢乌贼样本的聚类图(图 3)。

    图  3  基于鸢乌贼样本的遗传距离聚类图
    1~16号样本来源于18°N~20°N海域;17~48号样本来源于13°N~18°N海域
    Figure  3.  Dendrogram revealed by UPGMA analysis of S.oualaniensis using Nei′s (1972) genetic distance
    No.1~16 sampled from18°N~20°N in the northwestern Indian Ocean; No.17~48 sampled from 13°N~18°N in the northwestern Indian Ocean.

    图 3可知,18°N~20°N海域4个站点的16尾样本聚集在一起,且样本间的最大遗传距离为0.4858,可以推测认为,该海域的鸢乌贼形成一个种群。而在13°N~18°N海域的8个站点的32尾样本中,除第23号样本外,其余样本都聚集在一起,且样本间的最大遗传距离为0.4767,该海域的鸢乌贼也同样形成一个种群。因此,根据UPGMA聚类分析,可以得出在13°N以北的印度洋西北部海域鸢乌贼存在2个不同种群,且2个种群之间的遗传距离为0.1338,遗传相似性指数为0.8748。

    利用Shannon多样性指数计算印度洋西北部海域鸢乌贼种群的遗传多样性,其平均值即为种群的遗传多样性。计算结果表明,印度洋西北部海域鸢乌贼种群平均每个位点的多样性指数为0.3676±0.1801,由此可以看出其种群的遗传多样性较高,种群分化较大。

    根据获得的RAPD扩增带,计算种群间的多态位点比例(表 3),2个种群多态位点比例分别为68.75%和93.75%,这说明印度洋西北部海域鸢乌贼2个种群均保持较高的遗传多样性。以种群内不同扩增图谱类型之间的遗传差异值为基础,计算种群的遗传多样性,18°N~20°N海域鸢乌贼种群的遗传多样性为0.2072,13°N~18°N海域鸢乌贼种群为0.1656,其平均值为0.1864。

    表  3  印度洋西北部海域鸢乌贼种群多态位点比例与遗传多态性
    Table  3.  Proportion of polymorphic loci and genetic diversity of S.oualaniensis populations in the northwest Indian Ocean
    内容
    content
    18°N~20°N种群
    population located in 18°N~20°N
    13°N~18°N种群
    population located in 13°N~18°N
    多态位点比例/%
    proportion of polymorphic loci
    68.75 93.75
    遗传多态性(平均值±标准差)
    genetic diversity (Mean±SE)
    0.2072±0.1928 0.1656±0.1441
    下载: 导出CSV 
    | 显示表格

    GST是用来判断种群间的遗传分化情况,当GST < 0.05时,种群间没有遗传分化;当0.05 < GST < 0.15时,种群间的遗传分化程度为中等;当0.15 < GST < 0.25时,种群间有高度的分化;当GST>0.25时,种群间的分化程度非常高。印度洋西北部12°N以北海域鸢乌贼种群总遗传多样性为0.2375,种群内平均遗传多样性为0.1864,可以得出其种群间遗传分化指数为0.2150,即21.5%的遗传变异来自于种群间,而78.5%来自于种群内。该结果表明,不同种群间在遗传背景上存在较大的差异,且种群内的遗传变异水平较高。

    通过对印度洋西北部海域鸢乌贼样本的RAPD分析,并根据遗传距离对其进行UPGMA聚类,发现18°N~20°N海域4个站点的16尾鸢乌贼样本聚集在一起,形成了一个种群,而13°N~18°N海域8个站点的32尾鸢乌贼样本聚集在一起,形成了另一个种群。对这2个不同种群的形态学参数进行统计,18°N~20°N海域鸢乌贼胴长为45.4~53.0 cm,平均胴长为48.9±2.81 cm,而13°N~18°N海域胴长为20.3~51.2 cm,平均胴长为36.3±8.03 cm,优势胴长为32.0~42.0 cm。经单因素方差(ANOVA)分析2个种群间的胴长的P=0.00002 < 0.05,差异性显著。陈新军等[12]认为印度洋西北部海域鸢乌贼分为形态特征存在一定差异性的3个种群:大型种群、中型种群和小型种群,其中大型种群主要分布在18°N以北海域,中型种群主要分布在12°N~18°N海域,小型种群主要分布在12°N以南及赤道附近海域,且这3个种群重叠分布;谷津明彦[3]也认为该海域的鸢乌贼存在3个不同体型的种群,此文所得出的种群结构与陈新军、谷津明彦等研究的结果基本一致。因此,印度洋西北部13°以北海域鸢乌贼种群在形态学与遗传上都可以被区分为18°N~20°N、13°N~18°N 2个不同的种群。

    Shannon多样性指数表示种群间的多样性占总多样性的比例,可以用来估测遗传多样性在种群内和种群间的分布,即估测种群的遗传分化程度。利用Shannon多样性指数计算出的印度洋西北部海域鸢乌贼的遗传多样性指数为0.3676±0.1801,为较高的水平。由于其遗传多样性水平较高,种群分化较大,从侧面可以说明印度洋西北部海域鸢乌贼2个种群在形态上差别很大的原因。

    另外,此研究结果还揭示,与18°N~20°N海域鸢乌贼种群相比,13°N~18°N海域鸢乌贼种群拥有较高的多态性位点比例,而遗传多态性却相对较低(表 3),这一结果可能与所选用8条RAPD引物有关;笔者因此推测出13°N~18°N海域鸢乌贼可能所受的捕捞压力相对较大,生长速度较快。基于此研究的分析结果,该海域鸢乌贼2个种群间在遗传背景上存在较大的差异,且种群内的遗传变异水平较高,笔者认为,对该海域鸢乌贼资源的规模性开发还处于较合理水平。

    种以下类群包括亚种、品种及地理种群等,遗传分析的目的在于了解遗传多样性、鉴别种群、分析种群间的差异大小和微进化等,多数学者采用2种方法对RAPD结果进行处理并对上述问题进行探讨[13-15]:(1)寻找种群的特有遗传标记,据此可以鉴别不同的种群;(2)基于遗传相似率的分析,包括相似率比较、遗传距离分析、聚类分析等。此研究在进行RAPD实验过程中未能寻找到用于区分印度洋西北部海域鸢乌贼2个种群的RAPD分子标记,这可能是由于在此次实验中使用引物较少的原因所造成的。因而,此研究选用了第2种分析方法。

    RAPD技术能够快速、简便地检测大量基因组DNA的遗传变异,只要采用适当的分析方法,不仅可以用于鉴定头足类资源的品系、种群结构并探讨其进化关系,还可以在探讨头足类种群分化等方面发挥重要作用。

  • 图  1   1987~2001年黄海鳀鱼亲体-补充量数据散点图

    图中连线连接相邻年份的补充数据

    Figure  1.   Scatter plot of the stock and recruitment data for the anchovy (E.japonicas) stock in the Yellow Sea

    The line joins recruitment values with the year indicated.

    图  2   黄海千里岩1990~2001年4~7月份平均日表层水温数据(折线图)与黄海鳀鱼补充量数据(柱状图)变化趋势图

    Figure  2.   Variations of mean SST from April to July (line) and recruitment (bar) observed at the Qianliyan Marine Environment Monitoring Station in the Yellow Sea in the period of 1990~2001

    图  3   黄海千里岩1990~2001年平均磷酸盐浓度数据(折线图)与黄海鳀鱼补充量数据(柱状图)变化趋势图

    Figure  3.   Variations of mean phosphates concentration (line) and recruitment (bar) observed at the Qianliyan Marine Environment Monitoring Station in the Yellow Sea in the period of 1990~2001

    图  4   黄海千里岩环境条件指数αt和黄海鳀鱼补充量指数R变化趋势图

    Figure  4.   Variations of environmental conditions index and the recruitment observed at the Qianliyan Marine Environment Monitoring Station in the Yellow Sea

    图  5   黄海鳀鱼补充量观测值和计算值比较图

    Figure  5.   Comparison of observed and calculated recruitment of anchovy (E.japonicas) stock in the Yellow Sea

    表  1   黄海千里岩水域环境因子与黄海鳀鱼补充量数据的相关系数

    Table  1   The correlation of environmental factors and recruitment data observed at the Qianliyan Marine Environment Monitoring Station in the Yellow Sea

    环境因子
    environmental factors
    Xi 相关系数
    correlation coefficient
    年平均磷酸盐浓度
    mean phosphates concentration
    X1 0.4091
    平均表层水温
    average sea surface temperature
    1月 X2 0.2656
    2月 X3 0.3707
    3月 X4 -0.0761
    4月 X5 -0.6213
    5月 X6 -0.6614
    6月 X7 -0.4987
    7月 X8 -0.5290
    8月 X9 -0.0451
    9月 X10 -0.4223
    10月 X11 -0.3174
    11月 X12 -0.1593
    12月 X13 -0.1838
    全年 X14 -0.4679
    4~7月 X15 -0.8096
    下载: 导出CSV

    表  2   黄海鳀鱼SRR模型参数的估计值,AIC、BIC计算值

    Table  2   Estimated parameters and AIC, BIC in stock recruitment models (SRR)

    模型
    model
    参数 estimated parameters AIC BIC
    α β α0 α1 α10 α15
    Ricker模型
    Ricker model
    1.5931 0.3058 - - - - 37.2062 38.176
    加入αt的Ricker模型
    Ricker model with αt
    - 0.3058 7.974 -0.0144 0.216 -0.713 9.3159 11.7404
    下载: 导出CSV
  • [1] 张春霖, 成庆泰, 郑傈珊, 等. 黄渤海鱼类调查报告[M]. 北京: 科学出版社, 1955: 51-52.
    [2] 朱德山, IVERSEN S A. 黄、东海鳀鱼及其他经济鱼类资源声学评估的调查研究[J]. 海洋水产研究, 1990, 11: 18-31.
    [3]

    RICKER W E. Computation and interpretation of biological statistics of fish populations[J]. Bull Fish Res Board Can, 1975, 191(18): 1-382. https://www.semanticscholar.org/paper/Computation-and-interpretation-of-biological-of-Ricker/5a8d0d7094c356e3b851fd66bd929ed0e56aabfd

    [4]

    HILBORN R, WALTERS C J. Quantitative fisheries stock assessment: Choice, dynamics and uncertainty[M]. New York: Chapman & Hall, 1992. doi: 10.1007/978-1-4615-3598-0

    [5]

    BEVERTON R J H, HOLT S J. On the dynamics of exploited fish populations[J]. Fish Inverst, 1957, 19(2): 1-533. doi: 10.1007/bf00044132

    [6]

    RICKER W E. Stock and recruitment[J]. J Fish Res Bd Can, 1954, 108(11): 599-623. doi: 10.1139/F54-039

    [7]

    QUINN Ⅱ T J, DERISO R B. Quantitiative fish dynamics[M]. New York: Oxford University Press, 1999. doi: 10.1093/oso/9780195076318.001.0001

    [8]

    ZHAO X, HAMRE J, LI F, et al. Recruitment, sustainable yield and possible ecological consquences of the sharp decline of the anchovy (Engraulis japonicus) stock in the Yellow Sea in the 1990s[J]. Fish Oceanogr, 2003, 12(4): 495-501. doi: 10.1046/j.1365-2419.2003.00262.x

    [9]

    WANG Yanjun, LIU Qun, YE Zhenjiang. A bayesian analysis on the anchovy stock (Engraulis japonicus) in the Yellow Sea[J]. Fish Res, 2006, 82(1/3): 87-94. doi: 10.1016/j.fishres.2006.08.007

    [10] 詹秉义. 渔业资源评估[M]. 北京: 中国农业出版社, 1995: 208-215. https://book.douban.com/subject/2048040/
    [11] 邓景耀, 叶昌臣. 渔业资源学[M]. 重庆: 重庆出版社, 2000: 124-131. https://www.dushu.com/book/10041543/
图(5)  /  表(2)
计量
  • 文章访问数:  5373
  • HTML全文浏览量:  157
  • PDF下载量:  3465
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-11-18
  • 修回日期:  2007-12-23
  • 刊出日期:  2008-04-04

目录

/

返回文章
返回