2种水温条件下罗非鱼体内氟苯尼考的药物动力学比较

冯敬宾, 贾晓平

冯敬宾, 贾晓平. 2种水温条件下罗非鱼体内氟苯尼考的药物动力学比较[J]. 南方水产科学, 2008, 4(4): 49-54.
引用本文: 冯敬宾, 贾晓平. 2种水温条件下罗非鱼体内氟苯尼考的药物动力学比较[J]. 南方水产科学, 2008, 4(4): 49-54.
FENG Jing-bin, JIA Xiao-ping. Pharmacokinetics of florfenicol in tilapia at two water temperatures[J]. South China Fisheries Science, 2008, 4(4): 49-54.
Citation: FENG Jing-bin, JIA Xiao-ping. Pharmacokinetics of florfenicol in tilapia at two water temperatures[J]. South China Fisheries Science, 2008, 4(4): 49-54.

2种水温条件下罗非鱼体内氟苯尼考的药物动力学比较

基金项目: 

广东省科技计划项目 2003D21501

珠海市科技计划项目 BC200320016

详细信息
    作者简介:

    冯敬宾(1978-), 男, 硕士, 从事水产动物病害研究。E-mail: fengjb0618@126.com

    通讯作者:

    贾晓平, E-mail: jiaxiaoping53@163.com

  • 中图分类号: S948

Pharmacokinetics of florfenicol in tilapia at two water temperatures

  • 摘要:

    采用药饵给药,药物剂量为10 mg · kg-1,比较研究了22和28℃水温条件下奥尼罗非鱼(Oreochromis niloticus×O.aureus)体内氟苯尼考的药物动力学。结果得出,22℃组和28℃组罗非鱼血浆的峰药浓度(Cmax)分别为4.46和3.90 μg · mL-1,达峰时间(Tmax)均为12 h,消除半衰期(T1/2β)分别为10.03和8.12 h,药-时曲线下面积(AUC)分别为86.68和72.44 h · μg · mL-1。相应条件下的肌肉Cmax分别为6.88和4.59 μg · g-1,Tmax均为12 h,T1/2β分别为10.97和8.03 h,AUC分别为112.71和73.66 h · μg · g-1。低温组罗非鱼血浆和肌肉中药物的T1/2β均长于高温组,前者分别比后者长1.91和2.96 h,表明低温组罗非鱼体内药物的消除速度慢于高温组。虽然2个水温组血浆和肌肉中药物的Tmax相同,但低温组血浆、肌肉的Cmax和AUC均明显高于高温组,表明低温组罗非鱼吸收利用药物程度高于高温组。

    Abstract:

    The pharmacokinetics of florfenicol in tilapia (Oreochromis niloticus×O.aureus) was studied in fresh water at 22℃ and 28℃.The tilapia were forced-fed with medicated feed containing a single dose of 10 mg · kg-1 bodyweight of florfenicol. The peak drug concentrations (Cmax), the time to the peak drug concentration (Tmax), the elimination half-lives (T1/2β) and the area under the concentration-time curve (AUC) in plasma were 4.46μg · mL-1, 12 h, 10.03 h and 86.68 h · μg · mL-1, respectively, at 22℃ and 3.90 μg · mL-1, 12 h, 8.12 h and 72.44 h · μg · mL-1, respectively, at 28℃. Corresponding Cmax, Tmax, T1/2β and AUC values in muscle were 6.88 μg · g-1, 12 h, 10.97 h and 112.71 h · μg · g-1, respectively at 22℃ and 4.59 μg · g-1, 12 h, 8.03 h and 73.66 h · μg · g-1, respectively, at 28℃. The elimination half-lives were longer at the lower water temperature than those at the higher water temperature, with the margin of 1.91 h in plasma and 2.96 h in muscle, respectively, which indicated that the drug was eliminated more rapidly at the higher water temperature than those at the lower water temperature. Although the same Tmax in plasma or muscle at both water temperatures were observed, however, the Cmax and AUC were lower in tilapia at the higher water temperature than those at the lower water temperature, indicating the better absorption and availability of florfenicol at the lower water temperature than at the higher water temperature.

  • 在中国鱼类养殖生产中,疾病防治是最重要的环节之一,然而由于缺乏有关的药物动力学基础资料和理论指导,往往盲目用药,不但影响了治疗效果,而且造成药物残留,影响水产品质量,对水产业的稳定、健康发展造成很大影响。氟苯尼考属于动物专用的氯霉素类抗生素,作为氯霉素替代品,该药不仅使用安全,疗效显著,而且不会象氯霉素引起人类的再生障碍性贫血[1],因此,在全世界范围得以迅速推广使用。目前,美国、日本和欧盟等国家已对水产动物体中氟苯尼考的药物动力学进行了一系列相关研究,而在国内,氟甲砜霉在水产动物体内的药物动力学研究却鲜有报道[2-3]。因此,有必要对其开展研究,为养殖生产和水产品质量控制提供用药依据。

    罗非鱼属于暖水性鱼类,为中国重要的淡水养殖品种,目前其产量和出口量均居世界第一位。罗非鱼集“大众鱼”、“小康鱼”和“创汇鱼”3个特点和功能于一体,罗非鱼养殖业具有巨大的发展前景。因此,笔者选择罗非鱼作为试验对象,研究了罗非鱼养殖生产过程中2个典型水温条件下(即22和28℃)罗非鱼体内氟苯尼考的药物动力学。

    日本日立LC-6200高效液相色谱仪;KL512型氮吹仪(配备数控恒温水浴装置);FJ-200高速分散均质机;TDL-500B调温离心机等。

    详见参考文献[4]。流动相乙腈-水(25/75,V/V),经0.45 m滤膜过滤后,置于棕色试剂瓶中,超声波脱气10 min后,备使用;流速1.0 mL · min-1;Nucleodur C18色谱柱(4.6×250 mm,粒度5 μm),柱温20℃;紫外检测波长223 nm。

    氟苯尼考标准品,Sigma公司产品;氯霉素标准品,99.6%,中国生物制品检定所产品;乙腈,色谱纯,Fisher公司产品。氟苯尼考可溶性粉(5%),华南农业大学实验兽药厂提供。

    标准液和内标液配制方法。准确称取0.050 g干燥恒重的氟苯尼考标准品,置于50 mL烧杯中,用适量乙醇溶解后,转移到50 mL容量瓶中,用流动相乙腈-水(25/75,V/V)稀释至刻度,即成1 000 μg · mL-1母液,置于-20℃避光保存备用。准确称取0.050 g氯霉素标准品,于100 mL烧杯中用流动相溶解,转移到100 mL容量瓶中,配制成500 μg · mL-1溶液,-20℃保存。

    健康奥尼罗非鱼(Oreochromis niloticus×O.aureus)200尾,平均体重110 g,由广东省国家级罗非鱼良种场提供。

    试验前罗非鱼分成2组,每组100尾,分别暂养于室外3.5 m×1 m×1.6 m的水池中,供氧充足。试验时,将罗非鱼转移到实验室玻璃水族箱(50 cm×30 cm×30 cm)内。转移罗非鱼具体方法为转移前停喂1 d,将鱼装入双层胶囊袋中,袋中鱼和水体积比约为1 : 1,充氧密封运输至实验室,鱼+水与纯氧体积比约为1 : 3。转移过程中,保证转移水体间温差在5℃以内。采用电热棒调节和控制水温,以每天2~3℃的速度调至试验温度,水温分别为22和28℃,禁食驯养3 d后开始试验。

    试验期间自然光照,供氧充足,并及时清除残饵以及罗非鱼粪便。每天换水1次,每次更换各水族箱水体的1/3。给药后24 h后投喂未加药物的空白饲料,每天投喂1次。

    可溶性粉悬浊液配制方法为将可溶性粉用蒸馏水溶解,搅拌均匀至悬浊状,使浓度为5 mg ·mL-1,备用(使用时搅拌均匀)。

    将1 mL注射器输出端切除、抛光,然后装入0.2 g空白颗粒饲料(Φ3.5 mm),然后用定量加液器将可溶性粉悬浊液(5 mg · mL-1)加入注射器,每g鱼体重2 μL,相当于剂量10 mg · kg-1鱼体重,使药液充分浸入饲料。小心地将注射器通过食道,然后推动活塞将药饵送入鱼胃,注意观察注射器插入食道的长度,以免将鱼胃捅破。给药后将鱼单独放入一个水盆中观察5 min,反胃回吐药饵的鱼弃去。

    给药前先采一组空白样,然后从给药后2 h开始取样至168 h,每个时间点取5尾鱼。每尾鱼用2.5 mL静脉注射器(肝素钠抗凝剂处理)在尾静脉内采血,以3 000 r · min-1离心10 min,分离血浆。将鱼处死,取背脊两侧肌肉。在同一采样点,将同一组织的各样品合并,-20℃保存至分析。

    血浆和肌肉样品分析方法详见冯敬宾等[4]的报道。在1 mL血浆或1 g肌肉组织中加入5 μg氯霉素作内标,加入磷酸盐缓冲液,8 mL乙酸乙酯提取药物,氮气吹干,1 mL流动相溶解,0.5 mL正己烷去除脂肪,过滤,20 μL进样检测。标准曲线浓度范围为0.03~16 μg · mL-1,以0.125、1和8 μg ·mL-1 3个浓度的加标样品计算回收率和精密度。

    用Microsoft Excel软件进行标准曲线回归分析,药物动力学参数应用非房室模型的统计矩原理进行计算。

    在线性范围0.03~16 μg · mL-1(n=8)内,所得标准曲线相关系数R=0.9999。由仪器噪音为0.0193 mAU,按信噪比S/N=3计算,并根据线性范围,确定此方法的检出限为0.03 μg· mL-1(μg· g-1)。血浆和肌肉组织中3个浓度水平的药物回收率均在99%以上。测得的批内精密度(n=5)和批间精密度(n=6)均小于6.5%。满足药物动力学分析要求。

    图  1  22和28℃水温下罗非鱼血浆内的药-时曲线
    Figure  1.  Curves of drug concentrations versus time in the plasma of tilapia at 22℃ and 28℃

    在22和28℃水温条件下,以剂量10 mg · kg-1给罗非鱼一次口服氟苯尼考药饵后,血浆和肌肉药物浓度-时间曲线如图 12所示,有关药物动力学参数详见表 1

    图  2  22和28℃水温下罗非鱼肌肉内的药-时曲线
    Figure  2.  Curves of drug concentrations versus time in the muscle of tilapia at 22℃ and 28℃
    表  1  2种水温条件下罗非鱼体内氟苯尼考的药物动力学参数
    Table  1.  Pharmacokinetic parameters calculated for florfenicol in tilapia at two temperatures
    组织tissue 水温/℃ water temperature 剂量/mg·kg-1 dose 药-时曲线下面积/h·μg·mL-1 (h·μg·g-1) AUC 峰药物浓度/μg·mL-1 (μg·g-1) Cmax 达峰时间/h Tmax 消除速率常数/h-1 β 消除半衰期/h T1/2β AUC与时间的乘积/h·μg·mL-1 (h·μg·g-1) AUMC 平均滞留时间/h MRT
    血浆plasma 22 10 86.68 4.46 12 0.0691 10.03 1 864.34 21.51
    28 10 72.44 3.90 12 0.0854 8.12 1 566.99 21.63
    肌肉muscle 22 10 112.71 6.88 12 0.0632 10.97 2 234.85 19.83
    28 10 73.66 4.59 12 0.0863 8.03 1 586.33 21.53
    下载: 导出CSV 
    | 显示表格

    图 1显示,罗非鱼在22和28℃水温条件下其血浆中药物浓度变化趋势大体相似,同时有所差异。在给药后0~12 h,是药物吸收过程,血浆药物浓度呈升高趋势。在0~2 h,2组血浆药物浓度均迅速上升;在2~6 h,22℃血浆药物浓度略有下降,而28℃血浆在2~4 h,药物浓度缓慢上升;在6~8 h,22℃血浆药物浓度又大幅升高,8~10 h略有下降,10~12 h再迅速升高,而28℃血浆在4~8 h,药物浓度则略有下降,8~12 h药物浓度表现为迅速升高,至12 h时2组血浆药物浓度均达到峰值,其浓度分别为4.46和3.90 μg · mL-1,22℃的血浆药物浓度明显高于28℃的相应值(1.14倍)。此后进入药物消除阶段,在12~18 h,22和28℃血浆药物浓度均迅速下降,分别为12 h峰值药浓度的33%和50%;在18~24 h,22℃血浆中药物浓度略有回升,而28℃则缓慢下降;在24~48 h,22和28℃血浆药物浓度均又迅速下降,至48 h时仅分别为12 h峰值药浓度的8.1%和4.3%。比较而言,22℃在12~72 h和28℃在12~48 h时段血浆药物浓度的消除方式分别符合指数方程Ct=10.617e-0.0691tCt=9.855e-0.0854t所描述的规律,其消除半衰期(T1/2β)分别为10.03和8.12 h,后者药物的消除速率快于前者。

    图 2显示,罗非鱼在22和28℃水温条件下其肌肉组织中药物浓度的变化趋势大体相似,亦略有不同。在0~12 h,肌肉组织中药物浓度处于分布过程,至12 h时药物在血浆和肌肉组织内达到分布平衡,峰值浓度分别达到6.88和4.59 μg · g-1,22℃肌肉的峰药物浓度明显高于28℃的相应值(约1.5倍)。22℃在12~48 h和28℃在12~96 h时段肌肉中药物均进入消除阶段,其消除方式分别符合指数方程Ct=11.652e-0.0632tCt=11.180e-0.0863t所描述的规律,其消除半衰期(T1/2β)分别为10.97和8.03 h,后者消除速率快于前者。

    表 1比较了22和28℃水温下氟苯尼考在罗非鱼体内的药物动力学参数,结果表明:(1)虽然在2种水温条件下血液和肌肉药物浓度的达峰时间Tmax均为12 h,但低温组罗非鱼血液和肌肉药物的峰值浓度(分别为4.46 μg · mL-1和6.88 μg · g-1)明显高于高温组的浓度(分别为3.90 μg · mL-1和4.59 μg · g-1),前者分别是后者的1.14和1.50倍,并且低温组罗非鱼血浆和肌肉的药物浓度-时间曲线下面积AUC(分别为86.68 h · g · mL-1和112.71 h · μg · g-1)均高于高温组罗非鱼血浆和肌肉的AUC(分别为81.00 h · μg · mL-1和81.24 h · μg· g-1),表明在22℃水温条件下罗非鱼对氟苯尼考的吸收效果更好;(2)低温组罗非鱼血浆和肌肉中药物的消除半衰期T1/2β(分别为10.03和10.97 h)均大于高温组罗非鱼血浆和肌肉的T1/2β(分别为8.12和8.03 h),前者的消除半衰期分别比后者长1.91和2.96 h,表明低温组罗非鱼体内药物的消除速度慢于高温组。可见,在22和28℃水温条件下,氟苯尼考在罗非鱼血浆、肌肉中的分布和消除规律虽然大体相似,但亦表现出了不同的特点。

    在药物吸收过程中,22℃组在2~6 h、28℃组在4~8 h似乎存在一个药物浓度缓慢上升(或略有下降)的阶段,在药-时吸收曲线上形成所谓的“多峰现象”。这种现象在有关文献中也有类似报道,笔者将原因推测为“首过效应”,认为是药物在体循环过程中原形药物量减少所致。如ELEMA等[5]曾报道过一些淡水鱼药物动力学试验中的“首过效应”现象。HUSTREDT等[6]报道大西洋鲑(Salmo salar)口服噁喹酸后,亦出现“首过效应”。笔者推测,氟苯尼考在罗非鱼体内亦存在“首过效应”,导致在达到峰药物浓度之前的吸收过程中,药物浓度出现缓慢上升或略微下降,呈现多峰现象。这种现象究竟是否是由“首过效应”而引起的体循环药量减少造成的,还有待于进一步研究来证实。

    另一个有趣的现象是,在药物消除阶段的18~24 h时段,22℃组罗非鱼血浆中药物浓度略有回升,在药-时消除曲线上形成所谓的“多峰现象”。对于这种现象,有关文献也有过多次报道。如BJÖRKLUND等[7]研究噁喹酸在虹鳟(Oncorhynchus mykiss)血浆、肌肉和肝脏内吸收、消除试验中也发现有此现象。INTORRE等[8]研究恩诺沙星在舌齿鲈(Dicentrarchus labrax)体内的药物动力学过程时,亦报道了此种现象。目前,一般认为药物消除过程中的“多峰现象”是由于肠、肝循环引起的重吸收造成的。如艾晓辉等[9]对鲤鱼(Cyprinus carpio)的研究、李美同等[10]对鳗鲡(Anguilla japonica)的研究,均认为出现这种现象可能与鱼体中某些脏器对药物存在再吸收有关。笔者在试验中观察到的现象与文献中报道的相似,但是这一药物消除过程中出现的“多峰现象”究竟是否是由于肠、肝循环引起的再吸收等原因造成的,也还有待于深入研究。

    此试验结果表明,在22和28℃水温条件下,罗非鱼血浆和肌肉中药物的达峰时间Tmax均为12 h,表明在一定温差范围内,水温对药物的吸收速度影响不大。MARTINSEN等[11]在11℃海水(盐度为30)条件下,采用10 mg · kg-1单剂量口服给药,研究了氟苯尼考(混合制粒)在大西洋鲑体内的药物动力学,得出血浆Cmax为4.0 μg ·mL-1,Tmax为10.3 h。HORSBERG等[12]在8.5~11.5℃海水(盐度为30)条件下,采用10 mg ·kg-1单剂量口服给药,研究了C14-氟苯尼考在鲑鱼体内的吸收、分布、代谢和排泄情况。结果发现,大部分器官和组织的放射活性在给药后12 h最大。此试验得出的达峰时间与MARTINSEN等[11]和HORSBERG等[12]报道的结果十分接近,即氟苯尼考在鱼体内的吸收和分布均比较迅速,Tmax为10~12 h。然而,此试验与他们的研究所采用的试验水温不同,这进一步表明水温对药物的吸收和分布速度基本没有影响。另外,比较此次试验和MARTINSEN等[11]、HORSBERG等[12]试验结果还可知,氟苯尼考在罗非鱼和鲑鱼体内吸收和分布速度的种属间差异也不大。

    虽然2种水温条件下罗非鱼血浆和肌肉中药物的达峰时间相同,但22℃组血浆和肌肉组织中Cmax和AUC均高于28℃组,表明水温影响药物的吸收和分布程度,表现为低水温下药物吸收分布程度高。这种现象文献中也曾有过报道。例如BJÖRKLUND和BYLUND[13]比较研究了在5、10和16℃ 3种水温条件下土霉素在虹鳟体内的吸收和排泄,结果显示,低水温条件下虹鳟对药物的吸收和分布程度较高。BJÖRKLUND等[7]对噁喹酸的研究结果亦显示出了同样的规律。

    试验结果显示,高温组罗非鱼体内药物的消除速度快于低温组,这符合水温相对较高条件下药物消除速度较快的一般规律。另外,ELLIS等[14]认为,在一定水温范围内,药物在鱼体中的代谢速率与水温成正比,温度升高1℃,鱼的代谢活力增加10%。NAMDARI等[15]的研究表明,大鳞大麻哈鱼(Oncorhynchus tshawytscha)在15和9℃的最终持续消除率β值大约相差60%。MARTINSEN等[11]在11℃海水条件下采用10 mg · kg-1单剂量静脉注射给药研究得出,大西洋鲑血浆内氟苯尼考的半衰期为12.2 h。HORSBERG等[16]在10℃海水(盐度为34)条件下,采用10 mg · kg-1单剂量静脉注射给药研究得出,大西洋鲑血浆内氟苯尼考的半衰期为14.7 h。相比之下,此试验中罗非鱼血浆内氟苯尼考的消除半衰期均明显短于上述报道中大西洋鲑的消除半衰期,其血浆中氟苯尼考的消除速度明显快于大西洋鲑。究其原因,除给药途径、种属间差异和盐度影响等因素外,最重要的影响因素应是此试验水温(22和28℃)远高于大西洋鲑的试验水温(11和10℃)。

    致谢: 李刘冬副研究员在该研究检测方法方面给予了技术指导,谨此致谢!
  • 图  1   22和28℃水温下罗非鱼血浆内的药-时曲线

    Figure  1.   Curves of drug concentrations versus time in the plasma of tilapia at 22℃ and 28℃

    图  2   22和28℃水温下罗非鱼肌肉内的药-时曲线

    Figure  2.   Curves of drug concentrations versus time in the muscle of tilapia at 22℃ and 28℃

    表  1   2种水温条件下罗非鱼体内氟苯尼考的药物动力学参数

    Table  1   Pharmacokinetic parameters calculated for florfenicol in tilapia at two temperatures

    组织tissue 水温/℃ water temperature 剂量/mg·kg-1 dose 药-时曲线下面积/h·μg·mL-1 (h·μg·g-1) AUC 峰药物浓度/μg·mL-1 (μg·g-1) Cmax 达峰时间/h Tmax 消除速率常数/h-1 β 消除半衰期/h T1/2β AUC与时间的乘积/h·μg·mL-1 (h·μg·g-1) AUMC 平均滞留时间/h MRT
    血浆plasma 22 10 86.68 4.46 12 0.0691 10.03 1 864.34 21.51
    28 10 72.44 3.90 12 0.0854 8.12 1 566.99 21.63
    肌肉muscle 22 10 112.71 6.88 12 0.0632 10.97 2 234.85 19.83
    28 10 73.66 4.59 12 0.0863 8.03 1 586.33 21.53
    下载: 导出CSV
  • [1]

    SAMS R A. Florfenicol: chemistry and metabolism of a novel broadspectrum antibiotic[C]//Proceedings of XVIII World Buiatrics Congress. Italy: Bologna, 1994: 18-24. https://www.semanticscholar.org/paper/Florfenicol%3A-Chemistry-and-metabolism-of-a-novel-Sams/04786d799fab91fe58ed0740429ad61eca611404

    [2] 徐力文, 廖昌容, 王瑞旋, 等. 氟苯尼考在九孔鲍体内的药代动力学初步研究[J]. 台湾海峡, 2006, 25(2): 216-221. doi: 10.3969/j.issn.1000-8160.2006.02.010
    [3] 冯敬宾, 李刘冬, 贾晓平. 氟苯尼考在罗非鱼体内药代动力学[J]. 南方水产, 2006, 2(5): 25-29. https://www.schinafish.cn/cn/article/pdf/preview/ec0fbf76-fc6d-422d-9caa-e9f85f9e1884.pdf
    [4] 冯敬宾, 贾晓平, 李刘冬. 罗非鱼体内氟甲砜霉素的高效液相色谱测定方法研究[J]. 南方水产, 2005, 1(1): 35-42. doi: 10.3969/j.issn.2095-0780.2005.01.006
    [5]

    ELEMA M O, HOFF K A, KRISTENSEN H G. Bioavailablity of flumequine after oral administration to Atlantic salmon (Salmo salar L. )[J]. Aquac, 1995, 136(3): 209-219. doi: 10.1016/0044-8486(95)01049-1

    [6]

    HUSTREDT S O, SALTE R, VASSVIK V. Absorption, distribution and elimination of oxolinic acid in Atlantic salmon (Salmo salar L. ) after various routes of administration[J]. Aquac, 1991, 95(3/4): 193-199. doi: 10.1016/0044-8486(91)90086-M

    [7]

    BJÖRKLUND H V, ERIKSSON A, BYLUND G. Temperature-related absorption and excretion of oxolinic acid in rainbow trout (Oncorhynchus mykiss)[J]. Aquac, 1992, 102(1/2): 17-27. doi: 10.1016/0044-8486(92)90285-S

    [8]

    INTORRE L, CECCHINI S, BERTINI S, et al. Pharmacokinetics of enrofloxacin in the sea bass (Dicentrarchus labrax)[J]. Aquac, 2000, 182(1): 49-59. doi: 10.1016/S0044-8486(99)00253-7

    [9] 艾晓辉, 陈正望, 张春光, 等. 喹乙醇在鲤体内的药物代谢动力学及组织浓度[J]. 水生生物学报, 2003, 27(3): 273-277. doi: 10.3321/j.issn:1000-3207.2003.03.011
    [10] 李美同, 郭文林, 仲锋, 等. 土霉素在鳗鲡组织中残留的消除规律[J]. 水产学报, 1997, 21(1): 39-43. https://xueshu.baidu.com/usercenter/paper/show?paperid=b241758ec5f046e305caa28ec524fd24&site=xueshu_se&hitarticle=1
    [11]

    MARTINSEN B, HORSBERG T E, VARMA K J, et al. Single dose pharmacokinetic study of florfenicol in Atlantic salmon (Salmo salar) in seawater at 11℃[J]. Aquac, 1993, 112(1): 1-11. doi: 10.1016/0044-8486(93)90153-P

    [12]

    HORSBERG T E, MARTINSEN B, VARMA K J. The disposition of 14C-florfenicol in Atlantic salmon (Salmo salar)[J]. Aquac, 1994, 122(2/3): 97-106. doi: 10.1016/0044-8486(94)90502-9

    [13]

    BJÖRKLUND H, BYLUND G. Temperature related absorbtion and excretion of oxyteracycline in rainbow trout[J]. Aquac, 1990, 84(3/4): 363-372.

    [14]

    ELLIS A E, ROBERTS R J, BRETT J R. The antomy and physiology of teleosts[M]//ROBERTS R J. Fish Physiology. London: Baillière Tindall, 1978: 13-54.

    [15]

    NAMDARI R, ABEDINI S, LAW F C P. Tissue distribution and elimination of oxytracycline in seawater chinook and coho salmon following medicated-feed treament[J]. Aquac, 1996, 144(1/3): 27-38. doi: 10.1016/S0044-8486(96)01310-5

    [16]

    HORSBERG T E, HOFF K A, NORDMO R. Pharmacokinetics of florfenicol and its metabolite florfenicol amine in Atlantic salmon[J]. J Aquat Anim Health, 1996, 8(4): 292-301.

图(2)  /  表(1)
计量
  • 文章访问数:  5434
  • HTML全文浏览量:  166
  • PDF下载量:  3588
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-05-31
  • 修回日期:  2008-04-10
  • 刊出日期:  2008-08-04

目录

/

返回文章
返回