Effects of different combinations of diets on the growth and food conversion efficiency of Chinese shrimp, Fenneropenaeus chinensis
-
摘要:
采用沙丁鱼肌肉(FF)、鹰爪虾肌肉(SF)、菲律宾蛤仔足肌(CF)、沙蚕(PW)和配合饲料(FD)5种饵料,设计了CF+PW、CF+FD、PW+FD、CF+FD+PW、FF+FD+PW+FD、FF+SF+CF+PW+FD共6种饵料搭配投喂模式,研究了不同饵料搭配对中国明对虾的生长和饵料转化效率的影响。中国明对虾摄食混合饵料后的生长都比除PW处理外的4种单种饵料投喂处理快,CF+PW处理的对虾在实验结束时的体重、增重率最大。混合投喂处理的饵料转化效率均高于除PW外的所有单种饵料投喂处理,所有混合投喂处理的实际饵料转化效率都比预测值高,并且除了PW+FD和CF+FD+PW两个处理的实际值与预测值差异不显著外,其它混合处理的饵料转化效率实际值都显著高于预测值。文中还对不同饵料搭配的优势对对虾饵料选择性的影响及产生这些优势的原因进行了探讨。
Abstract:The five diets used in the experiment were: fish flesh (FF)—the flesh of sardine (Sardinella zunasi), which was got rid of head, scales, fins, bowels, and bones; shrimp flesh (SF) —the flesh of a small size shrimp (Trachypenaeus curvirostris), which was got rid of head and shell; clam foot (CF) —the foot of clam (Ruditapes varigata), which was cut from the clam; polychaete worm (PW) —Neanthes japonica worm; formulated diet (FD) —a commercial sold shrimp diet (Sea-Horse brand; producer: Fujian Mawei Unite Feed Ltd. Co., China; Ingredients: bean powder, fish powder, shrimp powder, compound vitamines, and compound minerals). Six different combinations of diets (CF+PW, CF+FD, PW+FD, CF+FD+PW, FF+FD+PW+FD, and FF+SF+CF+PW+FD) and five single diets (FF, SF, CF, PW, and FD) were designed to investigate their effects on the growth and food conversion efficiency (FCE) of Chinese shrimp, Fenneropenaeus chinensis. The shrimp fed with mixed diets grew faster than those fed with single diet except PW and the shrimp in CF+PW treatment was the highest in terms of final weight and weight gain. The food conversion efficiencies (FCE) in mixed diets treatments were higher than all single diet treatments except PW and also higher than the estimated food conversion efficiencies (eFCE). Besides this, all FCE of mixed diets treatments were significant higher than eFCE except that FCE of PW+FD and CF+FD+PW were higher than eFCE but not significant. The effects of the advantages of mixed diets treatments on dietary selection of shrimp and causation of the advantages were discussed.
-
网箱的养殖效果,首先是养殖设施的安全性及养殖设施所能提供的养殖环境,其次是囊网所提供的合理的养殖空间。网箱囊网作为养殖对象的固定的活动场所,在一定的条件下所能提供的活动空间越大越好。但重力式柔性囊网在水流作用下,其形状随水流作用力大小而变化[1],较大的重力可以保持良好的囊网形状,但给养殖设施维护带来诸多困难,包括与之相适应的浮力,网衣强度,换网技术等等。
根据预应力的概念,在预知海区的最大流速,选择网衣的密实度,推算出网衣受流时的最大阻力,网衣下底漂移最大位移,设计并制作出抗流囊网。囊网制作时将最大流速时堆叠的网衣事先计划剪裁,依一定的规则经剪裁缝合制作而成圆台形囊网。囊网上装配适当的力纲,力纲通过重力作用(配重)使囊网相对刚化,最大限度保持囊网的形状,从而达到抗流效果。
1. 网囊抗流设计基本原理
影响网衣形状的因素较多,且复杂,但在生产实践中主要是以海流的影响最大。网衣在海流作用下,网衣从水面固定点向网衣底部的梯度逐渐增加,网衣底部产生堆叠现状。堆叠部分的网衣不仅增加网衣阻力,同时对养殖效果的产生风险。通过合理预先剪裁这部分网衣,制作成圆台形囊网,抗流效果比圆柱形囊网佳。
实验观察知,圆台形囊网的抗流效果,与网衣密实度、环境水流速及囊网悬挂的重力有关。准确计算出网衣的阻力,在水流作用力下网衣产生的倾角(圆台锥度),以及在最大流速下保持囊网形状所需重力(水平分量),是圆台形抗流囊网设计要考虑的基本要素。
以目前深水网箱圆柱形囊网外形尺寸周长45 m,高8 m,目大7.5 cm,水平缩结u=0.707为例,在流速0.45 ~0.75 m · s-1下,重新设计为圆台形抗流囊网时的外形尺寸及配重。
1.1 网衣阻力计算
比较了日本田内的网片阻力计算公式、前苏联巴拉诺夫网片阻力计算公式和A.л弗里德曼、A.C.列维恩阻力公式、美国莫里森阻力公式,以及我国湛江水产学院等单位1975年通过水槽试验得到的网片阻力公式[2],粗略得到网衣在冲角90°时的阻力估算值。
式中:R90——网片垂直于水流方向的阻力(N);
S——网片缩结面积(m2);
a——网片的目脚长度(mm);
d——网线直径(mm);
V——相对速度(m/s);
X——缩结影响系数,$X=\frac{0.54}{u_1 u_2}-0.09$;
H——拱度影响系数,$ H=1.6-2.96\left(\frac{L}{S}+\right.\text { 2. } 36\left(\frac{L}{S}\right)^2$。
从表 1中看出,日本田内阻力公式的值明显偏大,是由于田内实验时采用的材料为棉、马尼拉麻等材料制作的网片,相对于现在的合成纤维网片,经后人实验修正其阻力系数应小30%。因此,修正后的阻力依次为:22 353;33 392;46 638;62 092。由此看出,其阻力与A.C.列维恩阻力公式计算的阻力值接近。取三者平均值如表 2。
表 1 网衣在冲角90°时阻力的估算Table 1. Resistance of webbing at attack angle of 90°流速(m·s-1)
velocity of flow0.45 0.55 0.65 0.75 计算公式
calculation equation阻力(N)
resistance31 933.44 47 703.04 66 626.56 88 704.00 日本田内
$ R_{90}=1760 \frac{d}{a} S \cdot V^2$24 502.91 35 811.94 49 116.69 64 306.28 A.C.列维恩
$ R_{90}=1860 \frac{d}{a} X \cdot H \cdot S \cdot V^{1.89}$31 479.84 47 025.44 65 680.16 87 444.00 湛江水产学院等
$R_{90}=\left(880 \frac{d}{a}-10\right) S \cdot V^2 $表 2 网衣在4种流速下的平均阻力Table 2. Mean resistance of webbing at 4 different velocity of flow流速(m·s-1) velocity of flow 0.45 0.55 0.65 0.75 阻力(N) resistance 26 112 38 743 53 812 71 281 上述计算是基于平面矩形网片进行的,但深水网箱囊网更多的是圆柱形的,圆柱形网片阻力明显小于平面矩形网的阻力。学者詹杰民[3]等对圆形网与平面网的阻力进行了比较分析,得到周长等于矩形水平边长的圆形网的阻力与相应的平面网阻力之比值β,圆形网β值的变化范围是:0.575~0.712。修正后的网衣阻力如表 3。
表 3 修正后网衣在4种流速下的平均阻力Table 3. Revised mean resistance of webbing at 4 different velocity of flow流速(m·s-1) velocity of flow 0.45 0.55 0.65 0.75 阻力(N) resistance 18 592 27 585 38 314 50 752 1.2 圆台形锥度与抗流配重
比较流速0.45 m · s-1至0.75 m · s-1,发现这个流速段的落点范围大部分是我国沿海养殖区域常见的流速,约0.87~1.46 kn。选择流速0.65m · s-1为设计基准,可以兼及0.75 m · s-1短时段流速和0.65 m · s-1以下流速时不致于造成材料浪费和操作困难。
假计圆台形上底直径14 m,下底为10 m,高为8 m,若配重的水平分量达到足以平衡水流的推力时,则圆台形的锥度为理想状态。
从表 3基础数据计算后知,圆台形锥度为>26°时配重后所产生的水平分量,具有明显的抗流效果,同时锥度越大,抗流效果越明显。但考虑到与囊网制作工艺和养殖生产的实际操作,锥度一般在26°~30°的范围内,基本满足网衣实际抗流的需要和制作工艺与养殖生产操作的要求。以圆台形锥度28°为例,网衣配重如表 4。
表 4 4种流速下的配重Table 4. Sinker weight at 4 different velocity of flow流速(m·s-1) velocity of flow 0.45 0.55 0.65 0.75 配重(t) sinker weight 1.9 2.9 4.0 5.4 2. 囊网的制作
据上所述,制作一个上底周长45 m,下底周长31 m,高8 m,2a为7.5 cm的网箱囊网,具体制作方法如下。
2.1 材料用量
2.1.1 网衣用量
缩结系数u1=0.707,u2=0.707时,网衣的理论用量为:上底848.6目,下底584.6目,网高为150.8目。考虑四片梯形网片网目相同,取整数后分别为:上底852目;下底588目;网高151目。
根据对称剪裁法则,网身网衣的实际用量为:宽717目,高151目。考虑到每剪一刀破坏一目,扎边用量一目,宽度应加12目,网高加2目,得到的网身网衣用量是:732目×153目。
网盖(上底):264目×264目;网底(下底):189目×189目。
2.1.2 纲索用量
如表 5所示。
表 5 纲索用量Table 5. Use level of cable缘纲(m,ф6mm)
bolchline横力纲(m,ф12mm)
cross cable竖力纲(m,ф6mm)
vertical cable网线(m,ф2mm)
netting twine网盖 cover of net 50 50;16×2 若干 网身 net body 50;49;48;44;38 10 m×12~16 若干 网底 bottom of net 35 35;14×4 若干 2.2 剪裁计划
2.2.1 网身
如图 1(a)所示,将矩形网片缝成圆筒,从a点向b点开剪,展开网片,第二剪从b向c数150目落剪,由c点向d点剪,如图 1(b)所示,第三剪从d向e数150目落剪,由e点向f点剪,第四剪从f向g数150目落剪,由g点向h点剪。四剪的裁循环是:2N0B、2N1B(59)、2N1B。
2.2.2 网盖网底
网盖的剪裁方法主要有两种,一是在足够大的场地上,按网盖的实际尺寸作圆,网衣缩结系数按0.707张开复盖在圆上,依圆剪裁出所需。另一种是通过作图将图均分成八等份算出,记下剪裁循环。如图 2所示。
通过作图求得的网盖网底的剪裁循环分别是:
网盖循环:5N1B(4)、2N1B(5)、1N1B(14)、1N2B(9)、1N4B(3)、1N9B(3)。
网底循环:4N1B(3)、3N1B(3)、1N1B(7)、1N2B(6)、1N4B(3)、1N9B(2)。
2.3 网衣装配
2.3.1 网衣缝合
剪裁后的网片标记如图 3所示,将四块网片各扎边1目后,依次将c′d′边与dc边;e′f′边与fe边;g′h′边与hg边;b′a′边与ab边缝合。缝合好的网身小头再与网底缝合,即得到设计的圆台形囊网。
2.3.2 纲索装配
纲索配置及装配如图 4(a、b)所示。网衣缝合后,网身上底周长852目,按水平缩结0.707装配,面纲周长45 m,面纲装配如图 4(a)所示。同理,网盖配纲45 m,网身下底周长配纲588目,纲长31 m,网底配纲31 m。
装配好网身面纲和底纲后,竖纲装配位置如图 4(a)所示,a、d、f、h为网衣缝合边,各装配1条竖纲。a-d、d-f、f-h、h-a均分为三等份,每一长度为3.75 m配71目。竖纲从面纲向底纲目对目垂直装配,之后与横纲连接。竖纲与横纲装配如图 4(b)所示。网身力纲装配完成后,再与网底力纲连接。
配重,可根据表 4所列的各流速下的选择适当的配重量,均匀分配到身网竖力纲的底部。
3. 讨论
重力式深水网箱,较难解决的是抗流问题,制约因素也较多。主要归纳为下述3点。
(1) 从实践知,按表 4进行网衣配重,抗流效果达到理想效果,养殖容积保持率达90%,但生产上难以操作。以配置12~16个重砣计,每个重砣重达158~119 kg(0.45 m · s-1档), 重砣上提或更换囊网十分困难。
(2) 通过加大圆台形的锥度,使相同的配重产生较大的水平分量,相反保持相等的水平分量,可适当减小配重。两者的代价是养殖容积随之减小。
(3) 事实上,海流是周期性作规则的运动,最大流速是接近高潮或退潮的时段对网箱影响较大,但流速大小又影响水环境的交换。放大网目尺寸,可减小阻力,但养殖对象有特定的规限性。
(4) 上述3点最佳的解决办法是选择适宜的养殖海区。并根据上述问题进行取舍。同时,开发抗流的辅助装置及养殖配套设施是关键措施之一。
目前,南海区大部分HDPE深水网箱囊网采用圆台形设计,配重在480~640 kg不等,单个重砣重量约40 kg。实践证明是可行的,并达到明显的抗流作用。
-
表 1 5种饵料及混合摄入饵料的成分(平均值±SE)
Table 1 Composition of five provided diets and ingested mixed diets (mean±SE)
饵料种类
diets水分/%
moisture蛋白质/%
protein脂肪/%
lipid能量/kJ·g-1
energy能蛋比(E/P)
energy/protein脂蛋比(L/P)
lipid/proteinFF 82.62±1.50 91.41±0.017h 2.40±0.14a 22.61±0.02f 24.74±0.21a 0.026±0.001a SF 88.25±0.44 86.88±0.08g 3.84±0.18b 22.87±0.04g 26.32±0.35b 0.044±0.001b CF 78.19±0.77 66.49±0.06cd 4.31±0.47c 20.99±0.09cd 31.57±0.48de 0.065±0.001c PW 75.66±0.54 70.93±0.11f 11.00±0.18g 21.31±0.10e 30.04±0.78c 0.155±0.011ef FD 8.00±1.04 45.97±0.05a 9.16±0.17d 19.37±0.03a 42.12±0.16g 0.199±0.006e CF+PW …… 70.64±0.04f 10.53±0.06fg 21.29±0.01e 30.13±0.01c 0.149±0.001d CF+FD …… 53.92±1.41b 7.28±0.33d 20.00±0.11b 37.14±0.79f 0.136±0.010f PW+FD …… 64.81±0.73c 10.53±0.05fg 20.83±0.06c 32.15±0.23e 0.162±0.001ef CF+FD+PW …… 67.92±1.01de 10.42±0.16f 21.08±0.08d 31.04±0.35cd 0.153±0.002ef FF+CF+PW+FD …… 67.75±1.09de 9.90±0.32e 21.04±0.08d 31.07±0.37cd 0.146±0.005de FF+SF+CF+PW+FD …… 68.92±1.17ef 9.45±0.15de 21.15±0.09de 30.70±0.39cd 0.137±0.002d 注:同一列中未标有相同字母的数值相互之间存在显著差异。混合投喂处理的各项指标根据实际不同饵料摄入比例加权计算获得
Note: Values without same letter in the same column are different from each other. The values of mixed diet were weighed in accordance with the portion of each diet in total ingested diet.表 2 不同形式表示的放养对虾和收获对虾的重量和增长率(平均值±SE)
Table 2 The weight of initial shrimp and final shrimp and weight gain (mean±SE)
饵料搭配
diets combination放养对虾initial shrimp 收获对虾final shrimp 增重率/% weight gain WW/g DW/g P/g E/kJ WW/g DW/g P/g E/kJ WW DW P E FF 0.807±0.006 0.175±0.001 0.127±0.001 3.26±0.05 0.993±0.063a 0.189±0.001a 0.134±0.001a 3.31±0.17a 22.76±6.37a 7.60±1.56a 5.45±0.59a 1.30±0.13a SF 0.803±0.007 0.174±0.001 0.126±0.001 3.25±0.01 1.090±0.071ab 0.200±0.010a 0.141±0.001a 3.51±0.01a 35.76±3.09ab 14.81±1.82a 11.24±1.77a 8.30±0.1.72a CF 0.805±0.005 0.174±0.002 0.127±0.001 3.25±0.02 1.324±0.007abc 0.270±0.004ab 0.194±0.001ab 4.90±0.13ab 64.55±3.76abc 54.66±3.62ab 53.23±3.58ab 50.76±3.53ab PW 0.807±0.004 0.175±0.001 0.127±0.001 3.26±0.01 1.970±0.175ef 0.472±0.099de 0.326±0.002de 9.13±0.16e 144.19±8.67ef 169.91±9.68de 157.01±9.67de 180.33±9.52e FD 0.801±0.009 0.174±0.001 0.126±0.001 3.24±0.09 1.408±0.097bcd 0.286±0.068ab 0.203±0.008ab 5.32±0.31abc 76.00±6.25bcd 64.90±5.37e 61.43±3.95abc 64.65±4.03abc CF+PW 0.802±0.006 0.174±0.002 0.126±0.001 3.24±0.03 2.089±0.175f 0.501±0.051e 0.343±0.007e 9.42±0.14e 160.88±9.31f 188.68±9.34bcd 172.13±9.89e 191.23±8.74e CF+FD 0.802±0.008 0.174±0.001 0.126±0.001 3.24±0.05 1.607±0.109cde 0.378±0.078bcd 0.268±0.007bcde 7.38±0.48cde 100.39±5.29cde 117.79±6.58de 112.33±6.37bcde 127.86±5.36cde PW+FD 0.803±0.001 0.174±0.001 0.126±0.001 3.24±0.07 1.848±0.171ef 0.430±0.041de 0.301±0.001de 8.38±0.51de 129.86±9.18ef 147.02±7.23bcd 138.41±7.54de 158.16±5.78de CF+PW+FD 0.804±0.002 0.174±0.001 0.126±0.001 3.25±0.03 1.670±0.031cde 0.367±0.095bcd 0.260±0.004bcd 6.72±0.41bcd 107.62±9.57cde 110.82±5.36bcd 105.54±4.29bcd 106.97±4.19bcd FF+CF+PW+FD 0.807±0.004 0.175±0.001 0.127±0.001 3.26±0.01 1.676±0.109cde 0.395±0.035cde 0.277±0.001cde 7.45±0.50cde 107.60±8.65cde 125.67±4.31cde 118.27±4.68cde 128.48±4.33cde FF+SF+CF+PW+FD 0.809±0.001 0.175±0.001 0.127±0.001 3.26±0.01 1.732±0.076def 0.356±0.069cde 0.275±0.009cde 7.31±0.36cde 113.96±9.76de 122.81±7.69cde 116.02±5.17bcde 123.41±4.69cde 注:同一列中没有相同字母上标的数值相互之间存在显著差异。WW、DW、P、E分别表示数值以湿重、干重、蛋白质、能量表示
Note: Values without same letter in the same column are different from each other. WW, DW, P, and E mean values expressed in wet weight, dry weight, protein and energy, respectively.表 3 不同处理中不同饵料的百分比例(平均值±SE)
Table 3 Percentages of different diets in different treatments (mean±SE)
饵料搭配
diets combination干重dry weight 蛋白质protein 能量energy FF SF CF PW FD FF SF CF PW FD FF SF CF PW FD FF 100b 0a 0a 0a 0a 100b 0a 0a 0a 0a 100b 0a 0a 0a 0a SF 0a 100b 0a 0a 0a 0a 100b 0a 0a 0a 0a 100b 0a 0a 0a CF 0a 0a 100b 0a 0a 0a 0a 100b 0a 0a 0a 0a 100b 0a 0a PW 0a 0a 0a 100b 0a 0a 0a 0a 100b 0a 0a 0a 0a 100b 0a FD 0a 0a 0a 0a 100b 0a 0a 0a 0a 100b 0a 0a 0a 0a 100b CF+PW 0a 0a 6.64±0.87b 93.39±0.86c 0a 0a 0a 6.25±0.82b 93.75±0.82c 0a 0a 0a 6.55±0.86b 93.45±0.86c 0a CF+FD 0a 0a 38.76±6.87b 0a 61.27±6.89c 0a 0a 47.20±7.48b 0a 52.80±7.48b 0a 0a 40.57±7.03b 0a 59.43±7.03c PW+FD 0a 0a 0a 75.49±2.92c 24.50±2.92b 0a 0a 0a 82.542.27c 17.46±2.27b 0a 0a 0a 77.20±2.77c 22.80±2.77b CF+PW+FD 0a 0a 5.23±1.95ab 83.64±4.75c 11.13±3.98b 0a 0a 5.19±1.93ab 87.153.75d 7.66±2.79c 0a 0a 5.26±1.95ab 84.47±4.49c 10.27±3.69b FF+CF+PW+FD 7.09±2.65ab 0a 2.06±0.85a 72.58±6.58c 18.19±4.42b 9.55±3.49ab 0a 2.04±0.23ab 75.926.32c 12.49±3.19b 7.62±2.83ab 0a 2.06±1.19a 73.52±6.51c 16.80±4.14b FF+SF+CF+PW+FD 8.52±1.02a 5.51±0.49a 0.98±0.15a 66.61±5.28c 18.37±4.74b 11.29±1.30b 6.97±0.69ab 0.96±0.31a 68.364.35c 12.42±3.35b 9.11±1.08ab 5.96±0.54a 0.98±0.57a 67.07±5.05c 16.88±4.40b 注:同一行中没有相同字母上标的数值相互之间存在显著差异
Note: Values without same letter in the same column are different from each other.表 4 不同处理中对虾摄入的饵料干重、蛋白质和能量(平均值±SE)
Table 4 Total dry weight, protein, and energy of ingested diets in different treatments (mean±SE)
处理treatment 干重/g dry weight 蛋白质/g protein 能量/kJ energy FF 0.197±0.027a 0.180±0.024a 4.444±0.603a SF 0.527±0.044b 0.458±0.038b 12.047±1.012b CF 0.733±0.044bc 0.487±0.029bc 15.379±0.922bc PW 1.352±0.125e 0.959±0.089e 28.810±2.660f FD 1.144±0.033de 0.526±0.015bcd 22.162±0.647de CF+PW 1.150±0.069de 0.813±0.049de 24.490±1.478cde CF+FD 0.976±0.124cd 0.528±0.070bcd 19.530±2.498bc PW+FD 1.250±0.086e 0.809±0.048de 26.028±1.732ef CF+FD+PW 0.933±0.079cd 0.633±0.052cd 19.660±1.648cd FF +CF+PW+FD 0.909±0.114cd 0.614±0.074bcd 19.111±2.356cd FF+SF+CF+PW+FD 0.983±0.068cd 0.676±0.039cd 20.776±1.375cde 注:同一列中未标有相同字母的数值相互之间存在显著差异
Note: Values without same letter in the same column are different from each other.表 5 不同处理中的预测饵料转化效率与实际饵料转化效率(平均值±SE)
Table 5 The estimated food conversion efficiencies and observed food conversion efficiencies of different treatments(mean±SE)
% 处理
treatment干重dry weigh 蛋白质protein 能量energy 预测值
estimated实际值
observed预测值
estimated实际值
observed预测值
estimated实际值
observedFF 6.37 6.37±0.47a 3.50 3.50±0.43a 0.48 0.48±0.13a SF 4.92 4.92±0.54a 3.10 3.10±0.44a 2.22 2.22±0.45ab CF 13.07 13.07±0.86ab 13.89 13.89±0.92ab 10.78 10.78±0.73bcd PW 21.25 21.25±2.75bc 20.05 20.05±2.74bc 19.76 19.76±2.46de FD 9.85 9.85±1.59a 14.71 14.71±2.45ab 9.44 9.44±1.53bc CF+PW 20.71±0.07 *27.86±3.43c 19.66±0.05 *26.08±3.38bc 19.17±0.08 *24.74±3.02e CF+FD 11.10±0.22 *22.03±5.63bc 14.32±0.06 *28.90±4.56c 9.99±0.09 *22.39±5.71e PW+FD 18.45±0.33 20.10±2.41bc 19.12±0.12 21.26±2.82bc 17.41±0.29 19.39±2.27de CF+FD+PW 19.56±0.51 21.11±2.93bc 19.32±0.21 21.58±3.28bc 18.23±0.45 18.05±2.58cde FF +CF+PW+FD 17.93±0.79 *24.67±4.13c 17.68±0.70 *24.92±4.41bc 16.37±0.86 *22.37±3.75e FF+SF+CF+PW+FD 16.91±0.62 *21.91±2.31bc 16.28±0.39 *21.84±2.51bc 15.13±0.58 *19.43±2.07de 注:同一列没有相同字母标记的数值相互之间存在显著差异。标有“*”的实测值显著比预测值大(P < 0.05)
Note: Values without same letter in the same column are different from each other. Observed values with‘*’ were significantly higher than the estimated. -
[1] Chong V C, Sasekumar A. Food and feeding habits of white prawn Penaeus merguiensis[J]. Mar Ecol Prog Ser, 1981, 5(2): 185-191.
[2] Cockcroft A, Mclachlan A. Food and feeding habits of the surf zone penaeid prawn Macropetasma africanus (Balss)[J]. Mar Ecol, 1986, 7 (4): 345-357. doi: 10.1111/j.1439-0485.1986.tb00169.x
[3] Minami T. Predator-prey relationship and trophic levels of the pink shrimp, Pandalus eous, in the Yamato Bank, the Sea of Japan[J]. J Shellf Res, 2000, 19 (1): 553-554.
[4] Newell R I E, Marshall N, Sasekumar A, et al. Relative importance of benthic microalgae, phytoplankton, and mangroves as sources of nutrition for penaeid prawns and other coastal invertebrates from Malaysia[J]. Mar Biol, 1995, 123 (3): 595-606. doi: 10.1007/BF00349238
[5] Nunes A J P, Parsons G J. Effects of the southern brown shrimp, Penaeus subtilis, predation and artificial feeding on the population dynamics of benthic polychaetes in tropical pond enclosures[J]. Aquac, 2000, 183(1-2): 125-147. doi: 10.1016/S0044-8486(99)00278-1
[6] Nunes A J P, Gesteira T C V, Goddard S. Food ingestion and assimilation by the southern brown shrimp Penaeus subtilis under semi-intensive culture in NE Brazil[J]. Aquac, 1997, 149 (1-2): 121-136. doi: 10.1016/S0044-8486(96)01433-0
[7] Schwamborn R, Griales M M. Feeding strategy and daily ration of juvenile pink shrimp (Farfantepenaeus durarum) in a South Florida seagrass bed[J]. Mar Biol, 2000, 137 (1): 139-147. doi: 10.1007/s002270000317
[8] Dall W, Hill J, Rothlisberg P C, et al. 对虾生物学. 陈楠生, 杨雪梅, 李新正, 等译[M]. 青岛: 青岛海洋大学出版社, 1992. 339-357. [9] Liao I C. Study on the feeding of Kuruma shrimp, Penaeus japonicius[J]. China Fisheries, 1969, 197: 17-18.
[10] Alam M J, Ang K J, Begum M. Ingestion efficiency of Macrobrachium rosenbergii(de Man) larvae feeding on Artemia, Moina micrura Kurz and their combination[J]. Aquac Res, 1996, 27 (2): 113-120. doi: 10.1111/j.1365-2109.1996.tb00975.x
[11] Buskey E J, Coulter C, Strom S. Locomotory patterns of microzooplankton: Potential effects on food selectivity of larvae fish[J]. Bull Mar Sci, 1991, 53 (1): 29-43. https://www.semanticscholar.org/paper/Locomotory-patterns-of-microzooplankton%3A-potential-Buskey-Coulter/119eb09a71de36a7aeefa6295f30f87b1b3d336a
[12] Griffiths D. Prey availability and food of predators[J]. Ecol, 1975, 56 (5): 1209-1214. doi: 10.2307/1936161
[13] Manghagen C, Wiederholm A M. Food selectivity versus prey availability: A study using the marine fish Pomatoschistus microps[J]. Oecologia, 1982, 55 (3): 311-315. doi: 10.1007/BF00376917
[14] Mehner T, Plewa M, Huelsmann S, et al. Gape-size dependent feeding of age-0 perch (Perca fluviatilis) and age-0 zander (Stizostedion lucioperca) on Daphnia galeata[J]. Archiv fuer Hydrobiologie, 1998, 142 (2): 191-207. doi: 10.1127/archiv-hydrobiol/142/1998/191
[15] Mikheev V N. Prey size and food selectivity in young fishes[J]. J Ichth, 1984, 24 (2): 66-76.
[16] Sunaga T. Relationship between food consumption and food selectivity in fishes: Ⅱ. Experimental study on the food selection by juvenile guppy (Poecilia reticulata)[J]. Jap J Ecol, 1971, 21 (1-2): 67-70.
[17] Elner R W, Hughes R N. Energy maximization in the diet of the shore crab, Carcinus maenas[J]. J Anim Ecol, 1978, 47(1): 103-107. doi: 10.2307/3925
[18] Kislalioglu M, Gibson R N. Prey 'handling time' and its importance in food selection by the 15-spinied stickleback, Spinachia spinachia (L)[J]. J Exp Mar Biol Ecol, 1976, 25(2): 151-158. doi: 10.1016/0022-0981(76)90016-2
[19] Company R, Calduch-Giner J A, Kaushik S, et al. Protein sparing effect of dietary lipids in common dentex (Dentex dentex): A comparative study with sea bream (Sparus aurata) and sea bass (Dicentrachus labrax)[ J]. Aquat Living Resour, 1999, 12 (1): 23-30. doi: 10.1016/S0990-7440(99)80011-4
[20] Chamberlain G W, Lawrence A L. Maturation, reproduction and growth of Penaeus vannamei and P. stylirostris fed natural diets[J]. J World Mariculture Soc, 1981, 12(1): 209-224. doi: 10.1111/j.1749-7345.1981.tb00256.x
[21] AOAC (Association of Official Analytical Chemists). Official methods of analysis (14th edn. )[M]. Arlington, VA, Association of Official Analytical Chemists, 1984. 1141.
[22] Wu L, Dong S, Wang F, et al. Compesatory growth response following periods of starvation in Chinese shrimp, Fenneropenaeus osbeck[J]. J Shellf Res, 2000, 19 (2): 717-722. https://www.nstl.gov.cn/paper_detail.html?id=e1f9aa263069278527cb7c1db200c451
[23] Luna-Marte C. The food and feeding habit of Penaeus monodon Fabricius collected from Makato river, Aklan, Philippines (Decapoda, Natantia)[J]. Crustaceana, 1980, 38 (3): 225-236. doi: 10.1163/156854080X00139
[24] Luna-Marte C. Seasonal variation in food and feeding of Penaeus monodon Fabricius (Decapoda, Natantia)[J]. Crustaceana, 1982, 42 (3): 250-255. doi: 10.1163/156854082X00957
[25] 李爱杰. 水产动物营养与饲料学[M]. 北京: 中国农业出版社, 1996.18-19. [26] 薛敏, 李爱杰, 董双林, 等. 不同规格中国对虾最适可消化蛋白质与能量比值的研究[J]. 青岛海洋大学学报, 1998, 28 (2): 245-251. [27] 徐新章, 李爱杰. 中国对虾对配合饲料种蛋白质、碳水化合物、纤维素和脂肪的日常需要和最适含量的研究[J]. 海洋科学, 1988, (6): 1-6. [28] 虞冰如, 沈竑. 罗氏沼虾饲料中最适蛋白质、脂肪及能蛋比的研究[J]. 水产学报, 1990, 14 (4): 321-327. [29] Morais S, Bell J G, Robertson D A, et al. Protein/lipid ratios in extruded diets for Atlantic cod (Gadus morhua L. ): effects on growth, feed utilization, muscle composition and liver histology[J]. Aquac, 2001, 203 (1-2): 101-119. doi: 10.1016/S0044-8486(01)00618-4
[30] Sedgwick R W. Influence of dietary protein and energy on growth, food consumption and food conversion efficiency in Penaeus merguiensis[J]. Aquac, 1979, 16(1): 7-30.
计量
- 文章访问数: 5415
- HTML全文浏览量: 178
- PDF下载量: 2823