速冻方式对梭子蟹贮藏理化指标和品质的影响

王阳光, 倪凯

王阳光, 倪凯. 速冻方式对梭子蟹贮藏理化指标和品质的影响[J]. 南方水产科学, 2008, 4(4): 42-48.
引用本文: 王阳光, 倪凯. 速冻方式对梭子蟹贮藏理化指标和品质的影响[J]. 南方水产科学, 2008, 4(4): 42-48.
WANG Yang-guang, NI Kai. Impact of different quick-freezing ways on physical and chemical indicators and meat quality of Portunus pelagicus in the storage process[J]. South China Fisheries Science, 2008, 4(4): 42-48.
Citation: WANG Yang-guang, NI Kai. Impact of different quick-freezing ways on physical and chemical indicators and meat quality of Portunus pelagicus in the storage process[J]. South China Fisheries Science, 2008, 4(4): 42-48.

速冻方式对梭子蟹贮藏理化指标和品质的影响

基金项目: 

浙江省重大科技攻关项目 2006C11224

详细信息
    作者简介:

    王阳光(1974-),男,博士,副教授,从事水产品贮藏与加工研究。E-mail: ygw0510@sohu.com

  • 中图分类号: S984.2+1

Impact of different quick-freezing ways on physical and chemical indicators and meat quality of Portunus pelagicus in the storage process

  • 摘要:

    以速冻速度、盐溶性蛋白、ATPase活性、巯基含量、失水率及感官评定为指标,研究采用-50℃液体浸渍、-50℃液氮喷洒、-35℃空气隧道式、-20℃冰柜直接冻结梭子蟹Portunus pelagicus,其肉蛋白质理化指标及品质变化情况。结果表明,用温度记录仪测定液体浸渍速冻最快,其次为液氮喷洒、空气隧道式,最慢为冰柜直接冻结。4种方式速冻的蟹,在冻藏过程中随时间的延长,其肌动球蛋白盐溶性、ATPase活性及巯基含量均呈下降趋势,但低温快速冻处理能降低蟹肉蛋白质冷冻变性的程度,-50℃液体浸渍对梭子蟹品质的保持最好,最差的是-20℃冰柜直接冻结。

    Abstract:

    Changes of protein physicochemical indicators and quality of Portunus pelagicus were investigated, such as salt insoluble protein, ATPase activity, sulfhydryl content, moisture-loss ratios and the sensory evaluation, through spraying liquid nitrogen of -50℃, soaking in liquid of -50℃, air tunnel way freezing at -35℃, and fridge freezing under -20℃.The results indicated that the solubility of actomyosin, ATPase activities and -SH content of myofibrillar protein decreased during storage.Quick-freezing was able to reduce the denaturation of the protein.Soaking in liquid of -50℃ was the best way in maintaining the quality of P.pelagicus, while fridge freezing under -20℃was the worst.

  • 为推进我国水产养殖方式的转变,近年来封闭式工厂化养殖已逐渐成为对虾养殖的重要发展方向,但由于该模式以人工投饵为主,而且养殖密度高、投饵量大,养殖过程中易产生并积累大量的残饵、粪便和生物残体等物质。这些污染物长期处于水体下层,在厌氧的环境中分解产生氨氮、亚硝酸氮、硫化氢、有机酸、胺类、低级脂肪酸和甲烷等对养殖动物有毒的中间产物,成为养殖水体污染的重要内源[1]。如何调控好养殖水质,降低养殖污染,尽可能利用少的空间,获得高产优质的产品,成为对虾养殖中的焦点问题。

    一般的理化方法控制水质技术存在种种弊端。从可持续发展的要求来说,利用微生物制剂对养殖水质因子进行生物调控是改善养殖生态环境,减少病害发生及保持水产养殖健康、稳定发展的重要手段。微生物制剂在虾塘方面使用情况的研究进行得较多,但对工厂化养殖水体研究的报道还较少[2-5]

    本实验研究了地衣芽孢杆菌(Bacillus licheni-formis, BL)、荚膜红假单胞菌(Rhodopseudomonas capsulata, RC)和乳酸杆菌(Lactobacillus spp.,LB)对凡纳滨对虾(Litopenaeus vannamei)封闭式高密度养殖水质的调控效果。探索实际生产中对虾养殖水质的调控方法,为进一步研究构建具有南方特色的对虾工厂化养殖模式及对虾工厂化高密度养殖水质调控提供科学依据。

    荚膜红假单胞菌为液体型,活菌数为5×108CFU · mL-1; 地衣芽孢杆菌为粉末型,活菌数为2×109CFU · g-1;乳酸杆菌为液体型,活菌数为2×109CFU · mL-1。3种微生物制剂均由中国水产科学研究院南海水产研究所健康养殖中心提供。凡纳滨对虾初始平均体长3.1 cm,平均体重0.87 g。

    实验于2005年8月15日至2005年10月3日在广东省湛江市东海岛国家863海水养殖种子工程南方基地进行。实验海水经二级沙滤后72 h暗处静止备用。实验容器为玻璃钢桶,容积0.3 m3,水深0.65 m,有独立的给排水系统及完善的供气系统,室内自然光照,全程充气。

    实验历时45 d。实验前用高锰酸钾消毒玻璃钢桶,养殖用水经二氧化氯消毒剂消毒,其后采用曝气24 h方式去除水体中的余氯。对虾暂养7 d后开始实验。具体实验设计见表 1,各组均设置3个重复。每组随机放养凡纳滨对虾100尾。每日投饵4次,投喂量根据对虾的具体摄食情况而定。实验过程中适量添加淡水补充蒸发水量,其余管理措施各组均一致。每天虹吸残饵和粪便。

    表  1  各组施用微生物制剂的情况
    Table  1.  The method of using microbiological preparation in each group
    组别
    group
    对照组
    control group
    地衣芽孢杆菌+ 荚膜红假单胞菌(G1)
    B.licheniformis +R.capsulate
    地衣芽孢杆菌+ 荚膜红假单胞菌(G2)
    B.licheniformis +R.capsulata
    地衣芽孢杆菌+ 乳酸杆菌(G3)
    B.licheniformis +Lactobacillus spp.
    地衣芽孢杆菌+ 乳酸杆菌(G4)
    B.licheniformis +Lactobacillus spp.
    施用频率
    frequency
    - 1次/7 d 1次/3 d 1次/7 d 1次/3 d
    施用配比
    ratio
    - 2:1 2:1 1:2 1:2
    施用量
    quantity
    -1.5 g +3 mL 3 g+6 mL 1.5 g+3 mL 3 g+6 mL
    总活菌量
    total quantity of bacteriums
    - 4.5×109CFU 9×109CFU 9×109CFU 1.8×1010CFU
    下载: 导出CSV 
    | 显示表格

    本实验主要监测水体中硝酸氮(NO3-)、氨氮(NH4+)、亚硝酸氮(NO2-)、化学耗氧量(COD)、活性磷酸盐(PO43-)等各项水质指标的变化情况。水样现场采集后立即进行测定。测定方法参考《海洋监测规范》(BG 17378.4-1998)[6]

    各处理组间NO3-含量除28 d外差异不显著(P>0.05)。实验开始时各组水体中的NO3-含量基本一致;到第7天各处理组NO3-含量均低于对照组,但差异不显著(P>0.05);在第28天低于对照组,且差异显著(P<0.05)。实验结束时G2组NO3-较高,其余各处理组硝酸氮含量与对照组间有差异但不显著(P>0.05)。各组NO3-含量均在21 d达到峰值,随后略有降低(图 1)。

    图  1  各组水中硝酸氮的变化
    Figure  1.  The change of NO3-in water

    图 2所示,仅G1、G3组在28 d略有降低,各处理组NH4+浓度整体呈积累趋势,但均达到良好水质标准,且始终低于对照组。第7~35天各组NH4+含量差异显著(P<0.05),第14天时各处理组间差异显著(P<0.05)。第7天NH4+降低到最低值,其中G1低达0.009 mg · L-1。在第28天水体中NH4+含量急剧增加,对照组上升较快。处理组G1、G2、G3、G4的NH4+的相对降解率[(对照组-处理组) /对照组×100%]分别为62%、60%、65%、49%。实验前21 d,G2组NH4+含量波动较小,相对降低解为79%。

    图  2  各组水中氨氮的变化
    Figure  2.  The change of NH4+in water

    实验开始的1~7 d各处理组水体中NO2-的含量较低,随实验的进行含量有所升高,但始终明显低于对照组。G1组的NO2-含量最低,并一直保持至实验结束(图 3)。处理组G1、G2、G3、G4的相对降解率46%、22%、22%、40%。第7、14、21、和35天时各处理组NO2-含量显著低于对照组(P<0.05),在第14天各处理组间差异显著(P<0.05)。NO2-含量实验中呈先上升后降低的趋势,到第21天对照组NO2-的浓度已达0.725 mg · L-1

    图  3  各组水中亚硝酸氮的变化
    Figure  3.  The change of NO2-in water

    实验期间水中的PO43-含量随养殖时间的推移而增加,各处理方法都不能很好的缓解水体中PO43-的积累。各组PO43-的含量在第7、21、28天有差异,但差异不显著(P>0.05)(表 2)。

    表  2  水中活性磷酸盐含量变化
    Table  2.  The change of PO43-in water Mean±SD; mg · L-1
    时间/d
    time
    对照
    control group
    G1 G2 G3 G4
    0 0.029±0.002c 0.042±0.003a 0.035±0.002b 0.034±0.000b 0.034±0.001b
    7 0.340±0.010c 0.398±0.010a 0.391±0.012ab 0.366±0.016abc 0.372±0.020abc
    14 0.677±0.003 0.710±0.018 0.707±0.012 0.711±0.017 0.719±0.019
    21 1.008±0.022ia 0.990±0.031ab 0.945±0.021ab 0.920±0.013b 0.926±0.022ab
    28 1.464±0.012a 1.424±0.022ab 1.310±0.065b 1.418±0.029ab 1.424±0.014ab
    35 1.916±0.036 1.966±0.060 1.833±0.077 1.986±0.088 1.989±0.070
    注: 同行数据中上标具不同字母者标记的值表示存在显著差异(P<0.05)
    Note: Different letters in the same rows show significant difference.
    下载: 导出CSV 
    | 显示表格

    COD随着养殖时间的推移呈上升趋势。各组COD在第21天上升至较高值,但从结果来看,组间无显著差异(P>0.05),其中G1、G2组COD相对较低(表 3)。

    表  3  水中COD的变化
    Table  3.  The change of COD in water  Mean±SD; mg · L-1
    时间/d
    time
    对照
    control group
    G1 G2 G3 G4
    0 1.097±0.012 1.076±0.048 1.105±0.002 1.104±0.034 1.108±0.028
    7 2.113±0.140a 1.921±0.112ab 1.704±0.108b 1.940±0.023ab 2.029±0.191ab
    14 2.899±0.248 3.093±0.058 2.908±0.136 2.985±0.136 2.860±0.046
    21 3.944±0.431bc 6.384±0.522a 6.618±0.062a 3.218±0.417c 5.873±0.386a
    28 19.023±0.510ab 7.584±0.213c 13.185±0.783bc 20.362±6.443ab 24.755±1.456a
    35 38.848±0.841a 29.020±4.370bc 32.020±0.470b 29.982±0.524bc 24.438±1.629c
    注: 同行数据中上标具不同字母者标记的值表示存在显著差异(P<0.05)
    Note: Different letters in the same rows show significant difference.
    下载: 导出CSV 
    | 显示表格

    处理组NH4+含量显著低于对照组,均达到良好水质标准(NH4+ <0.6 mg · L-1),表明微生物制剂对养殖水体氨氮的去除有较明显的效果。实验前期0~7 d内氨氮、亚硝酸盐的含量比较低是因为幼虾摄食量低,排泄物较少,这同祁真等[7]的研究结论一致。到第21天各组水质变差,表明水体中有机物积累已超过微生物制剂的处理限度,提示微生物制剂分解有机物的能力有一定的限度,与王彦波等[8]和朱忠琴等[9]的结论一致。

    在本实验中,各实验组的NH4+整体呈上升的趋势,这可能是亚硝酸盐的还原产物中含有NH4+ [10],导致了NH4+的积累。水体NO2-向NH4+和NO3-转化反应中,会表现出较低的NO2-浓度,较高的NO3-浓度。曝气条件下的游离混合微生物可以将氨氧化成硝态氮与亚硝态氮。实验过程中连续充氧,溶解氧的存在,反硝化脱氮会受到影响,也会造成水中硝态氮的积累。

    在实验中氮化合物均呈现出随养殖时间积累的趋势。对虾工厂化养殖中,提高了水的利用率,减少了养殖废水的排放; 但投饵量的增加和养殖密度的增大,致使饵料和对虾排泄物等在养殖水体中积累。如果在养殖中后期长期不换水,这些物质溶解在水体中,分解后可产生大量氨氮、亚硝酸氮等有害物质,导致水质氮化合物含量上升。

    本实验中COD和PO43-均较高,呈现出上升趋势。在高密度、高投饵的对虾工厂化养殖水体中,作为主要营养元素的无机磷含量普遍较高,且随时间增加而升高。在水环境中有机物的分解产生磷,浮游植物的生长消耗磷。本实验是室内小水体实验,水中浮游植物含量极少,造成磷酸盐含量升高。邱德全等[11]研究表明在高密度对虾养殖中活性磷的含量都比较高。胡菊香等[12]测定的养殖水中COD也较高,达11~23 mg · L-1。由测定结果来看,实验中各微生物制剂对降低COD的作用没有显著差异,这同马江耀等[13]研究光合细菌、水产EM原液、益生菌(主要为芽孢杆菌Bacillus sp.)对COD无明显效果的结论是一致的。在长期不换水的情况下,水中的残饵、粪便等随养殖时间的推移不断积累,从而造成了各实验组COD和活性磷酸盐随养殖时间推进,不同程度的升高。

    光合细菌能够分解小分子有机物,具有降低养殖水体中氨氮、亚硝态氮和COD等有害物质,净化水质等重要作用,它可以促进异养菌的生长。芽孢杆菌能够将大分子有机物分解成小分子有机物和氨基酸等,促进H2S、亚硝酸盐氧化,对水体中氨氮和有机物的分解作用比较明显[14]。乳酸菌能降解亚硝酸盐的含量,但研究较多的是通过饵料添加以中和动物体内的毒性物质,如抑制胺和氨的合成。荚膜红假单胞菌与地衣芽孢杆菌、乳酸杆菌与地衣芽孢杆菌之间在机理上可形成协同作用的关系。多种微生物联合使用,菌群在其生长过程中可直接吸收利用水体中的小分子含氮化合物,迅速分解水中的有机物,同时依靠协同作用,可以降低水中耗氧量、氮化合物含量,调控养殖水质。

    实验结果表明,本实验在虾池中添加微生物制剂,可以减少换水量,缓解氨氮、亚硝酸盐积累的问题,减少由换水带入的病菌,从而达到净化水质的目的。其他学者的研究也表明多种微生物能较好地调控养殖水质,如宫兴文等[15]将玉垒菌和光合细菌联用,结果表明可以增加水体溶氧、起到降低NH4+的作用; 李卓佳等[16]研究表明以芽抱杆菌为主体的复合微生物可改善鱼塘水质条件,降低氨氮和亚硝酸盐浓度; 叶乐等[17]将芽孢杆菌和光合细菌用于对虾育苗池可降低H2S、NH4+的含量。

    使用不同的微生物制剂,其作用效果各不相同。在实验进行的前21 d,降低水体中氨氮的最佳组为地衣芽孢杆菌+荚膜红假单胞菌3 d使用1次,21 d后地衣芽孢杆菌+乳酸杆菌7 d使用1次的作用较为明显; 降低亚硝酸氮的最佳方案是地衣芽孢杆菌+荚膜红假单胞菌组合7 d使用1次。但各处理组对PO43-均无明显效果,而在降低水体COD的方面地衣芽孢杆菌+荚膜红假单胞菌组合相对较好。在水中施用地衣芽孢杆菌和荚膜红假单胞菌制剂,可以明显降低养殖水体的氨氮等物质的含量。

    对水质的调控效果综合分析表明,微生物制剂3 d施用1次与7 d施用1次无显著差异。增加微生物制剂的使用频率并不能更好地改善养殖水质。对微生物制剂的使用间隔时间并非越短越好,微生物制剂的浓度也并非越高越好。从节约养殖成本考虑,使用微生物制剂的时间间隔可在1周以上。粉末状的地衣芽孢杆菌在水中的沉积系数大于液体制剂的乳酸杆菌、荚膜红假单胞菌,前者更适合于净化塘底,而后两者对富营养化养殖池水质的净化更为理想。不同季节、不同品种对虾养殖的环境条件不相同,对微生物制剂的使用方法、比例、用量和施用频率有待进一步研究。

  • 图  1   不同速冻方式的冻结梭子蟹速度比较

    a.-20℃冰柜直接冻结;b.-50℃液体浸渍;c.-50℃液氮喷洒;d.-35℃空气隧道式

    Figure  1.   Comparison of the freezing speeds under different quick-freezing ways for P.pelagicus

    a.freezing under -20℃; b.soaking in liquid of-50℃; c.spraying liquid nitrogen of-50℃; d.air tunnel way freezing at-35℃

    图  2   不同速冻处理的梭子蟹在冻藏期间肌动球蛋白溶出量的变化

    Figure  2.   Changes of contents of dissolved actomyosin of P.pelagicus under different quick-freezingways during storage

    图  3   不同速冻处理的梭子蟹在冻藏过程中ATPase活性的变化

    a.-20℃冰柜直接冻结;b.-50℃液氮喷洒;c.-50℃液体浸渍;d.-35℃空气隧道式

    Figure  3.   Changes of ATPase activities under different quick-freezing ways for P.pelagicus during storage

    a.froze under -20℃; b.spraying of liquid nitrogen at -50℃; c.soaking of liquid at -50℃; d.air tunnel way freezing at -35℃

    图  4   不同速冻处理的梭子蟹在冻藏过程中巯基含量的变化

    Figure  4.   Change of -SH content from different quick-froze P.pelagicus during storage

    表  1   不同速冻处理的梭子蟹冰冻感观评定和失水率

    Table  1   Sensory evaluation and moisture-loss ratios in different quick-froze P.pelagicus

      色泽color 气味flavor 组织形态microstructure shape 肌肉弹性textures of muscle 失水率/% moisture-loss ratios
    -50℃液氮喷洒spraying of liquid nitrogen at -50℃ 45.5 46.7 46.1 46.2 10.42
    -50℃液体浸渍soaking of liquid at -50℃ 45.4 46.2 46.9 46.1 11.53
    -35℃空气隧道式air tunnel way at -35℃ 41.3 38.9 40.2 39.4 13.81
    -20℃冰柜冻结frozen under -20℃ 32.3 30.6 16.8 28.8 14.52
    下载: 导出CSV

    表  2   水煮后的梭子蟹肉感官评定

    Table  2   Sensory evaluation of boiled P.pelagicus meat

      色泽color 气味flavor 汤汁混浊度turbid of soup juice
    -50℃液氮喷洒spraying of liquid nitrogen at -50℃ 46.3 46.2 46.9
    -50℃液体浸渍soaking of liquid at -50℃ 46.5 45.9 46.7
    -35℃空气隧道式air tunnel way at -35℃ 38.7 39.1 29.6
    -20℃冰柜冻结frozen under -20℃ 26.8 16.5 20.1
    下载: 导出CSV
  • [1]

    SUVANICH V, JAHNCKE M L, MARSHALL D L. Changes in selected chemical quality characteristics of channel catfish frame mince during chill and frozen storage[J]. J Food Sci, 2000, 65(1): 24-29. doi: 10.1111/j.1365-2621.2000.tb15950.x

    [2]

    LIAN P Z, LEE C M, HUFNAGEL L. Phisicochemical properties of frozen red hake mince as affected by cryoprotective ingredients[J]. J Food Sci, 2000, 65(7): 1 117-1 123. doi: 10.1111/j.1365-2621.2000.tb10249.x

    [3]

    FUKUDA Y, KAKEHATA K I, ARAI K I. Denaturation of myobrillar protein in deep sea fish by freezing and storage[J]. Bull Jap Soc Sci Fish, 1981, 47(5): 663-672. doi: 10.2331/suisan.47.663

    [4] 侯温甫, 薛长湖, 杨文鸽, 等. 低温速冻处理对美国红鱼-20℃冻藏生化特性的影响[J]. 水产科学, 2006, 25(2): 55-58. doi: 10.3969/j.issn.1003-1111.2006.02.001
    [5] 侯温甫, 薛长湖, 杨文鸽, 等. 低温速冻处理对鲻鱼冻藏生化特性的影响[J]. 海洋水产研究, 2006, 27(3): 73-77. doi: 10.3969/j.issn.1000-7075.2006.03.014
    [6]

    OKADA T, OHTA F, INOUE N, et al. Denaturation of carp myosin B in KCl solution during frozen storage[J]. Bull Jap Soc Sci Fish, 1985, 51(11): 1 887-1 892. doi: 10.2331/suisan.51.1887

    [7]

    HATANO S. Effect of freezing and storage on the enzyme activities[J]. Refrigeration (Jap), 1968, 43(1): 14-16.

    [8]

    SOMPONGSE W, ITOH Y, OBATAKE A. Effect of cryoprotectants and a reducing reagent on the stability of actomyosin during ice storage[J]. Fish Sci, 1996, 62(1): 73-79. doi: 10.2331/fishsci.62.73

    [9]

    FUKUDA Y, KAKEHATA K I, ARAI K I. Denaturation of myobrillar protein in deep sea fish by freezing and stroge[J]. Bull Jap Soc Sci Fish, 1981, 47(5): 663-672. doi: 10.2331/suisan.47.663

    [10]

    JIANG S T, HWANG B S, TSAO C Y. Effect of adenosine nucleotides and their derivatives on the denaturation of myofibrillar proteins in vitro during frozen storage at -20℃[J]. J Food Sci, 1987, 52(1): 117-123. doi: 10.1111/j.1365-2621.1987.tb13985.x

    [11]

    LIAN P Z, LEE C M, HUFNAGEL L. Phisicochemical properties of frozen red hake mince as affected by cryoprotective ingredients[J]. J Food Sci, 2000, 65(7): 1 117-1 123. doi: 10.1111/j.1365-2621.2000.tb10249.x

    [12]

    JIANG S T, HWANG D C, CHEN C S. Effect of storage temperature on the formation of disulfides and denaturation of milkfish actomyosin[J]. J Food Sci, 1988, 53(5): 1 333-1 335. doi: 10.1111/j.1365-2621.1988.tb09270.x

    [13]

    HAMADA I, TSUJI K, NAKAYAMA J, et al. Oxidative denaturation of actomyosin[J]. Bull Jap Soc Sci Fish, 1977, 43(5): 1 105-1 108.

图(4)  /  表(2)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-04-13
  • 修回日期:  2008-05-01
  • 刊出日期:  2008-08-04

目录

/

返回文章
返回