世界黄鳍金枪鱼渔业现状和生物学研究进展

孟晓梦, 叶振江, 王英俊

孟晓梦, 叶振江, 王英俊. 世界黄鳍金枪鱼渔业现状和生物学研究进展[J]. 南方水产科学, 2007, 3(4): 74-80.
引用本文: 孟晓梦, 叶振江, 王英俊. 世界黄鳍金枪鱼渔业现状和生物学研究进展[J]. 南方水产科学, 2007, 3(4): 74-80.
MENG Xiaomeng, YE Zhenjiang, WANG Yingjun. Review on fishery and biology of yellofin tuna(Thunnus albacares)[J]. South China Fisheries Science, 2007, 3(4): 74-80.
Citation: MENG Xiaomeng, YE Zhenjiang, WANG Yingjun. Review on fishery and biology of yellofin tuna(Thunnus albacares)[J]. South China Fisheries Science, 2007, 3(4): 74-80.

世界黄鳍金枪鱼渔业现状和生物学研究进展

详细信息
    作者简介:

    孟晓梦(1978-),女,硕士研究生,从事渔业资源方面的研究。E-mail: wzrmxm@126.com

  • 中图分类号: S931.4; Q959.485

Review on fishery and biology of yellofin tuna(Thunnus albacares)

  • 摘要:

    黄鳍金枪鱼(Thunnus albacares)是金枪鱼渔业的重要经济鱼种。文章叙述了世界黄鳍金枪鱼最近20多年来的渔业历史和现状,并按照不同渔具对黄鳍金枪鱼在各海区的渔业历史和现状进行了分析。叙述了渔场时空分布以及各海区主要从事黄鳍金枪鱼作业国家的渔业产量。此外,还对黄鳍金枪鱼的分布、洄游、种群、生长、繁殖及食性等基本生物学特性进行了综述。

    Abstract:

    Yellofin tuna(Thunnus albacares)is an important component of tuna fisheries. The yellowfin tuna catches in recent 20 years and recent status of yellowfin tuna fishery is reviewed. The fishery of each ocean is analyzed by different fishing gears. In addition, the spatial-temporal distribution of yellowfin tuna and the catches of the countries were discussed. The basic biological characteristics of yellowfin tuna including the distribution, migration model, physiology feature, age and growth, spawning, diet and population structure were discussed.

  • 在鲍的各种病害中,细菌性疾病最为常见, 是主要病害之一,它具有爆发快、流行广、死亡率高等特点,给我国鲍养殖产业造成了重大损失[1]。然而,鲍的细菌性疾病多数是由致病性弧菌引起的,目前已报道的鲍病原弧菌包括:溶藻弧菌(Vibrio alginolyticus)、副溶血弧菌(V. parahaemolyticus)、创伤弧菌(V.vulnificus)、鲨鱼弧菌(V.carchariae)、河流弧菌(V.fluvialis)、坎氏弧菌(V.cambellii)、亮弧菌(V.splendidus-Ⅱ)、塔氏弧菌(V.tubiashii)等[2-4]。但有关弧菌在杂色鲍养殖环境中分布的系统研究尚未见报道。作者对杂色鲍养殖环境中的弧菌分布进行了调查,用TCBS平板进行弧菌检测和数量分析,并应用自主研发的致病弧菌快速检测试剂盒[5, 6]对4种常见致病弧菌进行了检测,以期为鲍类的健康养殖和疾病预防提供科学依据。

    实验样本包括养殖池中的环境生物、水样及饵料(江蓠)3大类。选取深圳南澳某鲍鱼场(F1)苗池、深圳官湖某鲍鱼场(F2)苗池和成鲍池以及深圳大鹏某鲍鱼养殖场(F3)亲鲍池作为采样点。其中F1苗池进水为该海区表面海水,隔2 d冲池1次;F2成鲍进水为该海区表面海水,隔天冲池1次;F2苗池进水则用沙井过滤海水,隔天冲池1次;F3亲鲍进水为深层沙井过滤海水,隔2 d冲池1次。采样时间为2004年3~4月,采样期间的水温为22.2~25.8℃。每个采样点采集的同类样本数大于等于8。江蓠菜在养殖池内采集,池水样从养殖池水表层以下20 cm处定量采集。

    样品的处理:(1)环境生物和饵料样品分别用无菌海水冲洗3遍,匀浆,备用。⑵水样离心浓缩,备用。⑶用于PCR检测的样品均速冻保存于-70℃[6]

    采集到的环境生物分为多毛类、枝角类、浮游生物(桡足类等)、盘管虫、海绵、海鞘、海蟑螂、等足类共8大类。生物样本按类别分别进行检测。从TCBS平板上分离菌落参照文献[6]进行生理生化鉴定,进一步确定所筛选出的菌落为弧菌属细菌。

    水样处理参照《微生物学实验》[8]吸取0.1 mL均匀涂布于TCBS平板上;环境生物样品称取0.10 g,加入1 mL灭菌海水研磨、稀释,按水样方法涂布;TCBS平板置于27℃的培养箱中培养24 h,计数,统计实验结果。以上样品处理均在采样后2 h内完成。

    水样经煮沸、冷却后作为模板;其它生物组织样品参照酚/氯仿/异戊醇抽提法[9]提取总DNA作为模板,引物分别为溶藻弧菌(V.alginolyticus)、副溶血弧菌(V.parahaemolyticus)、河流弧菌(V.fluvialis)、创伤弧菌(V.vulnificus)4种弧菌的IGSIA特异性引物对序列[6],由上海生工合成。用Eppendorf PCR仪扩增特异性条带。

    PCR反应体系总体积50.0 μL,包括:5 μL 10×PCR缓冲液,dNTP 200 μM,引物1.0 μM,2.5U Taq DNA聚合酶,模板0.5 μg。PCR反应条件:94℃预变性3 min,94℃ 60 s,47~64℃ 45 s,72℃ 90 s,循环35次;72℃延伸10 min。其中溶藻弧菌的退火温度为51℃,副溶血弧菌的退火温度为64℃,河流弧菌的退火温度为49℃,创伤弧菌的退火温度为47℃。反应结束后取扩增产物10 μL用1.0%琼脂糖凝胶电泳检测,于凝胶成像系统下分析结果[5]

    在杂色鲍养殖场4个采样点采集的8份水样中,7份水样分离到弧菌,阳性率87.5%;19份环境生物样中18份分离到弧菌,阳性率94.7%;从4个采样点采集的饵料江蓠4份样品中全部分离到了弧菌,阳性率100%。弧菌分布情况见表 1

    表  1  弧菌分布调查结果
    Table  1.  Distribution results of vibrios
    样品类别
    sample sort
    采样地点 sampling site
    F2成鲍池
    adult pond of F2
    F2苗池
    juvenile pond of F2
    F1苗池
    juvenile pond of F1
    F3亲鲍池
    brood stock pond of F3
    进水 influent + + + -
    池水 pond water + + + +
    多毛类 Polychaeta + \ \ \
    盘管虫 Hydroides + \ + \
    海绵 Sponge + \ + \
    海蟑螂 Ligidae + \ \ +
    海鞘 Ascidian + + + -
    浮游生物 Planktons + \ + +
    等足类 Isopod + + \ +
    江蓠 Gracilaria + + + +
    贻贝 Mussel + + \ \
    注:“+”表示阳性,“-”表示阴性,“\”表示无样品
    Note: “+”denotes postive, “-”negative, “\”no sample.
    下载: 导出CSV 
    | 显示表格

    养殖水体中总弧菌数的测定结果为样品弧菌数的平均数。

    单位水体中F3亲鲍池和F2成鲍池池水的弧菌数量明显多于其进水,而单位水体中F2苗池和F1苗池的进水与池水的弧菌数差别不明显(表 2)。可从单位体积进水中含的弧菌数反应出,F3亲鲍池的进水质量最好,F1苗池进水质量最差,而F2苗池的进水质量稍微好于成鲍进水。尽管F3亲鲍池的进水几乎不含弧菌,但其池水中单位水体含弧菌的数量仍较高。

    表  2  水样中弧菌数统计表
    Table  2.  The vibrio density of water samples 103 CFU·mL-1
    采样地点 sampling site 进水 influent 池水 pond water
    F2成鲍池 adult pond of F2 0.006 0.890
    F2苗池 juvenile pond of F2 0.002 0.004
    F1苗池 juvenile pond of F1 2.500 5.900
    F3亲鲍池 brood stock pond of F3 0.000 11.00
    下载: 导出CSV 
    | 显示表格

    各种环境生物的单位质量中所携带的弧菌数有很大的差异,其中盘管虫、海蟑螂、等足类所携带的弧菌较多,达106 CFU·g-1以上;而海鞘携带的弧菌数最少,其它养殖环境生物中弧菌数约为104~105 CFU·g-1(表 3)。比较在不同采样点中采集的同类环境生物单位质量携带的弧菌数发现,海鞘类携菌数差别最大,在F3亲鲍养殖池中的海鞘没有检测到弧菌,而在其它采样点采集的海鞘单位质量携带弧菌在103以上。

    表  3  不同养殖池内单位质量环境生物携带的弧菌数
    Table  3.  The results of vibrio population in different samples 104 CFU·g-1
    样品类别
    sample sort
    采样地点(sampling site)
    F1苗池
    juvenile pond of F1
    F2成鲍池
    adult pond of F2
    F2苗池
    juvenile pond of F2
    F3亲鲍池
    brood stock pond of F3
    多毛类 Polychaeta \ 4.800 \ \
    盘管虫 Hydroides 74.30 190.0 \ \
    海绵 Sponge 17.00 11.00 \ \
    海蟑螂 Ligidae \ 61.20 \ 7.200
    海鞘 Ascidian 6.810 0.220 0.230 0.000
    浮游生物 Planktons 3.440 0.038 \ 0.009
    等足类 Isopod \ 110.0 67.00 280.0
    贻贝 Mussel \ 32.40 \ \
    注:“\”为未采集到样品
    Note: “\”denotes no samples can be collected.
    下载: 导出CSV 
    | 显示表格

    结果表明,各采样点的单位质量饵料江蓠所携带的弧菌数差别不大,较为稳定(表 4)。

    表  4  饵料江蓠携带弧菌总数统计
    Table  4.  The vibrio density of Gracilaria 104 CFU·g-1
    采样点 sampling site 弧菌数 vibrio density
    F1苗池 juvenile pond of F1 7.1±9.60%
    F2成鲍池 adult pond of F2 6.5±4.85%
    F2苗池 juvenile pond of F2 3.4±9.38%
    F3亲鲍池 brood stock pond of F3 7.8±8.50%
    下载: 导出CSV 
    | 显示表格

    从4种常见病原弧菌的检测结果看,仅在F1苗池水样中检测到了创伤弧菌阳性,大小约400 bp,与创伤弧菌阳性对照条带一致;在F2江篱中检测到了溶藻弧菌阳性,大小约为300 bp,与溶藻弧菌阳性对照条带一致(图 1)。而此次所采集的大多数样品中没有检测到溶藻弧菌(V.alginolyticus)、副溶血弧菌(V.parahaemolyticus)、河流弧菌(V.fluvialis)、创伤弧菌(V.vulnificus),阳性率分别为3.4%,具体分布见表 5

    图  1  部分阳性样品电泳条带
    M.Marker 2000,1.为溶藻弧菌阳性对照;2.F2江蓠藻样品;3.F1苗池水样品;4.创伤弧菌阳性对照
    Figure  1.  Band of positive samples
    M.Marker 2000;1.positive control of V.alginolyticus; 2.the Gracilaria of Guanhu; 3.the water of Haizhenpin; 4.the positive control of V.vulnificus
    表  5  不同养殖池中所采集样品中4种致病性弧菌的检测结果
    Table  5.  The results of detection from different pond using 4 specific primers
    样品类别
    sample sort
    采样地 点sampling site
    F1苗池
    juvenile pond of F1
    F2成鲍池
    adult pond of F2
    F2苗池
    juvenile pond of F2
    F3亲鲍池
    brood stock pond of F3
    VA VF VP VV VA VF VP VV VA VF VP VV VA VF VP VV
    进水 influent - - - - - - - - - - - - - - -
    池水 pond water - - - + - - - - - - - - - - - -
    多毛类 Polychaeta - - - -
    盘管虫 Hydroides - - - - - - - -
    海绵 Sponge - - - - - - - -
    海蟑螂 Ligidae - - - - - - - -
    海鞘 Ascidian - - - - - - - - - - - - - - - -
    浮游生物 Planktons - - - - - - - - - - - -
    等足类 Isopod - - - - - - - - - - - -
    江蓠 Gracilaria - - - - - - - - + - - - - - - -
    贻贝 Mussel - - - -
    注:VA、VF、VP、VV分别是溶藻弧菌、河流弧菌、副溶血弧菌和创伤弧菌的特异性引物,“-”为阴性,“+”为阳性
    Note: VA, VF, VP and VV denotes V.alginolyticus, V.fluvialis, V.parahaemolyticus and V.vulnificus, respectively.“-”denotes negative and“+” positive.
    下载: 导出CSV 
    | 显示表格

    (1) TCBS检测统计结果发现弧菌阳性率很高,其中江蓠带菌率最高(100%),环境生物次之(94.7%),水样最少(87.5%),说明弧菌在杂色鲍养殖环境中是广泛存在的。徐怀恕等[10]报道弧菌广泛分布于近岸海水、海洋生物体表和肠道中,本调查的研究结果有力地证实了这一论点。

    (2) 弧菌数统计结果显示,表面海水与深层沙井过滤海水所含弧菌数有较大的差异。单位质量不同环境生物之间携带的弧菌数有较大的差异,而不同养殖场同类生物单位质量所携带的弧菌数也有差异。是否在不同季节下各类生物携带的弧菌数有差别,还有待进一步的研究。而饵料江蓠中含有的弧菌数相当稳定可能与各养殖场所购江蓠的产地相近和前处理措施(清洗)相同有关。

    (3) PCR检测结果显示,4种常见致病弧菌的总检出率为6.9%。由于采样期间是水温较低的春季,并不能代表全年的致病菌检测结果,需做进一步的检测试验来调查在其它季节中这4种致病菌的阳性率。结合文献[10]和采样期间各养殖场无病害发生的现实情况分析,可认为养殖环境中此次检出的多数弧菌属于正常菌群。有文献报道弧菌例如哈维氏弧菌等具有条件致病性的特点[11],本次调查发现的大多数弧菌也可能是养殖过程中的潜在致病菌,其致病性与致病诱因等有待于进一步实验证实。

    (4) 深圳地区海域在我国南方沿海杂色鲍人工养殖的分布中,处于南北向的中间地带。根据广东、海南沿海地方水文监测部门提供的资料表明,3~4月间的深圳海域水文与湛江、海南海区的2~3月水文相似,而与汕尾、汕头等海区的4~5月期间的水文相似。因此,本次调查虽然只选择了深圳海域中在地理分布上具有代表性的3个杂色鲍养殖场,但对其它海域的杂色鲍养殖环境中相应时期的弧菌分布特征也有一定的参考作用。

  • 图  1   黄鳍金枪鱼各大洋和世界产量

    Figure  1.   Global catch by ocean of yellofin tuna(T.albacares)

    表  1   西中太平洋黄鳍金枪鱼的von Bertalanffy方程参数

    Table  1   Summary of von Bertalanffy growth parameters for yellowfin tuna caught in the central and western Pacific Ocean

    方法
    method
    生长参数 von Bertalanffy growth parameters 作者
    reference
    L K t0
    鳞片  scales 190 0.33 -0.0 YABUTA等,1960
    耳石  otolith 170 0.38 - UCHIYAMA和STRUHSAKER,1981
    重频分布  weight frequency 192 0.44 -0.22 MOORE,1951
    长频分布  length frequency 168 0.55 -0.35 YABUTA和YUKINAWA,1957
    长频分布  length frequency 150 0.66 -0.4 YABUTA和YUKINAWA,1959
    长频分布  length frequency 181 0.29 - WANKOSKI,1981
    长频分布  length frequency 175 0.30 - YESAKI,1983 -Male-Female
    173 0.32 -
    下载: 导出CSV
  • [1]

    FAO. Global capture production 1950-2005[EB/OL]. [2007.5] http://www.fao.org/fi/website/FIRetrieveAction.do?dom=species&fid=2497

    [2] 叶振江, 梁振林, 邢智良, 等. 印度洋东部黄鳍金枪鱼的渔业生物学[J]. 海洋水产研究, 2001, 22(3): 37-41. https://www.cqvip.com/qk/90269X/200103/5992025.html
    [3] 苗振清, 黄锡昌. 黄鳍金枪鱼资源利用状况分析[J]. 浙江海洋学院学报: 自然科学版, 2003, 22(1): 7-11. doi: 10.3969/j.issn.1008-830X.2003.01.002
    [4]

    HAMPTON J, FOURNIER D A. A spatially disaggregated, length-based, age-structured population model of yellowfin tuna (Thunnus albacares) in the western and central Pacific Ocean[J]. Mar Freshw Res, 2001, 52 (7): 937-963. doi: 10.1071/MF01049

    [5]

    ANONYMOUS. Report of international commission for the conservation of Atlantic tunas[R]. ICCAT Report, 2002-2003 (Ⅱ)

    [6]

    The Secretariat of the Pacific Community. SPC tuna fishery yearbook[R]. [S. l. ]: The Secretariat of the Pacific Community, 2004.

    [7] 崔雪森, 樊伟, 张晶. 太平洋黄鳍金枪鱼延绳钓渔获分布及渔场水温浅析[J]. 海洋通报, 2005, 24(5): 54-59. doi: 10.3969/j.issn.1001-6392.2005.05.009
    [8] 沈建华, 崔雪森. 中西太平洋金枪鱼围网黄鳍金枪鱼渔获时空分析[J]. 海洋渔业, 2006, 28(2): 129-135. doi: 10.3969/j.issn.1004-2490.2006.02.008
    [9]

    WARD R D, ELLIOTT N G, INNES B H, et al. Global population structure of yellowfin tuna, Thunnus albacares, inferred from allozyme and mitochondrial DNA variation[J]. Fish Bull, 1997, 95(3): 566-575. https://www.semanticscholar.org/paper/Global-population-structure-of-yellowfin-tuna%2C-from-Ward-Elliott/c02b94f2c4a91d12b91dc1f8e91ec5e55d3454ad

    [10]

    APPLEYARD S A, GREWE P M, INNES B H, et al. Population structure of yellowfin tuna(Thunnus albacares) in the western Pacific Ocean, inferred from microsatellite loci[J]. Mar Biol, 2001, 139 (2): 383-393. doi: 10.1007/s002270100578

    [11]

    DÍAZ-JAIMES P, URIBE-ALCOCER M. Spatial differentiation in the eastern Pacific yellowfin tuna revealed by microsatellite variation[J]. Fish Sci, 2006, 72(3): 590-596. doi: 10.1111/j.1444-2906.2006.01188.x

    [12]

    FONTENEAU A. Population structure of the Atlantic albacore: Some considerations on migrations and modeling: Canary Islands (Spain): meet of the ICCAT working group to evaluate Atlantic yellowfin tuna, 3-9 Jun 1993 [C]. Canary Islands: Spain, 1993.

    [13]

    NISHIDA T. Considerations of stock structure of yellowfin tuna (Thunnus albacares) in the Indian Ocean based on fishery data[R]. Mahe (Seychelles): 5. Expert consultation on Indian Ocean tunas, 4-8 Oct 1993. doi: 10.1111/j.1365-2419.1992.tb00033.x

    [14]

    LESSA R, DUARTE-NETO P. Age and growth of yellowfin tuna (Thunnus albacares) in the western equatorial Atlantic, using dorsal fin spine[J]. Fish Res, 2004, 69 (2): 157-170. doi: 10.1016/j.fishres.2004.05.007

    [15]

    KIKKAWA B S, CUSHING J W. Growth of yellowfin tuna (Thunnus albacares) in the equatorial western Pacific Ocean: 15th Meeting of the Standing Committee on Tuna and Billfish, Honolulu, Hawaii, 22-27 July 2002[C]. Hawaii, 2002. http://soest.hawaii.edu/PFRP/sctb15/papers/YFT-4.pdf

    [16]

    SUN Chi-Lu, SU Nan-Jay, YEH Su-Zan. Estimation of growth parameters and age composition for yellowfin tuna, Thunnus albacares, in the western Pacific using the length-based MULTIFAN method: 16th Meeting of the Standing Committee on Tuna and Billfish, Australia, 2003[C]. Australia, 2003 https://www.semanticscholar.org/paper/Estimation-of-Growth-Parameters-and-Age-Composition-Sun-Su/7092b631eddca4c6d7592da133648f4de10159aa

    [17]

    HAMPTON J. Natural mortality rates in tropical tunas: size really does matter[J]. Fish Aquat Sci, 2000, 57(5): 1 002-1 010. doi: 10.1139/f99-287

    [18]

    LANG K L, GRIMES C B, SHAW R F. Variations in the age and growth of yellowfin tuna larvae, Thunnus albacares, collected about the Mississippi River plume[J]. Environ Biol Fishes, 1994, 39(3): 259-270. doi: 10.1007/BF00005128

    [19]

    KAYMARAM F, EMADI H, KIABI B. Population parameters and feeding habits of yellowfin tuna(Thunnus albacares) in the Oman Sea[R]. WPTT/00/06, 2000. https://www.fao.org/fishery/docs/CDrom/IOTC_Proceedings(1999-2002)/files/proceedings/proceedings3/wptt/TT00-06.pdf

    [20]

    WEXLER J B, SCHOLEY V P, OLSON R J, et al. Tank culture of yellowfin tuna, Thunnus albacares: developing a spawning population for research purposes[J]. Aquac, 2003, 220 (1/4): 327-353. https://www.sciencedirect.com/science/article/pii/S0044848602004295

    [21]

    NIWA Yukiyasu, NAKAZAWA Akio, MARGULIES D, et al. Genetic monitoring for spawning ecology of captive yellowfin tuna (Thunnus albacares) using mitochondrial DNA variation[J]. Aquac, 2003, 218 (1/4): 387-395. https://www.sciencedirect.com/science/article/abs/pii/S0044848603000152

    [22]

    MCPHERSON G R. Reproductive biology of yellowfin tuna in the eastern Australian fishing zone, with special reference to the north-western coral sea[J]. Mar Freshw Res, 2005, 42 (5): 465-477. https://www.semanticscholar.org/paper/Reproductive-biology-of-yellowfin-tuna-in-the-Zone%2C-Mcpherson/6cc7df2dc68c8aa0e887c20ac8cdb209e5122abc

    [23]

    ITANO D G. The reproductive biology of yellowfin tuna(Thunnus albacares) in Hawaiian waters and the western tropical Pacific Ocean: project summary[R]. 2001. https://www.semanticscholar.org/paper/The-Reproductive-Biology-of-Yellowfin-Tuna-(-)-in-:-Itano/257dfdb7baaa079167fa2bab3c6adcc20ef6e907

    [24]

    AROCHA F, LEE D W, MARCANO L A, et al. Update information on the spawning of yellowfin tuna, Thunnus albacares, in the western central Atlantic[R]. 2001. https://www.iccat.int/Documents/CVSP/CV052_2001/n_1/CV052010167.pdf

    [25] 于光溥, 王书昌, 张云尚, 等. 金枪鱼类的生物学特征与资源概况[J]. 齐鲁渔业, 1998, 15(3): 40-43. https://www.cqvip.com/QK/96676X/19983/3136552.html
    [26]

    STÉQUERT B, RODRIGUEZ J N, CUISSET B, et al. Gonadosomatic index and seasonal variations of plasma sex steroids in skipjack tuna (Katsuwonus pelamis) and yellowfin tuna (Thunnus albacares) from the western Indian Ocean[J]. Aquat Living Resour, 2001, 14 (5): 313-318. doi: 10.1016/S0990-7440(01)01126-3

    [27]

    POTIER M, MARSAC F, CHEREL Y, et al. Forage fauna in the diet of three large pelagic fishes (lancetfish, swordfish and yellowfin tuna) in the western equatorial Indian Ocean[J]. Fish Res, 2007, 83 (1): 60-72. doi: 10.1016/j.fishres.2006.08.020

    [28]

    MÉNARD F, STÉQUERT B, RUBIN A. Food consumption of tuna in the Equatorial Atlantic Ocean: FAD-associated versus unassociated schools[J]. Aquat Living Resour, 2000, 13 (4): 233-240. doi: 10.1016/S0990-7440(00)01066-4

    [29] 朱国平, 陈新军, 许柳雄. 印度洋中西部黄鳍金枪鱼生物学特性的初步研究[J]. 海洋渔业, 2006, 28(1): 25-29. doi: 10.3969/j.issn.1004-2490.2006.01.005
    [30] 宋利明, 陈新军, 许柳雄. 大西洋中部金枪鱼延绳钓渔场黄鳍金枪鱼(Thunnus albacares)生物学特性的初步研究[J]. 海洋与湖沼, 2004, 35(6): 538-542. doi: 10.3321/j.issn:0029-814X.2004.06.009
    [31]

    BIGELOW K A, HAMPTON J, MIYABE N. Effective longline effort within the yellowfin habitat and standardized CPUE: 12th Meeting of the Standing Committee on Tuna and Billfish, Papeete, Tahiti, 16th-23rd June 1999[C]. Tahiti, 1999. https://www.semanticscholar.org/paper/Effective-longline-effort-within-the-yellowfin-and-Bigelow-Hampton/c4f5c08f1de2b4adb9842da43a53dc3b6f7647dc

    [32]

    BLOCK B A, KEEN J E, CASTILLO B, et al. Environmental preferences of yellowfin tuna (Thunnus albacares) at the northern extent of its range[M]. Germany: Springer Berlin, 1997: 119-132. doi: 10.1007/s002270050231

    [33]

    BRILL R W, BLOCK B A, BOGGS C H, et al. Horizontal movements and depth distribution of large adult yellowfin tuna (Thunnus albacares) near the Hawaiian Islands, recorded using ultrasonic telemetry: implications for the physiological ecology of pelagic fishes[J]. Mar Biol, 1999, 133 (3): 395-408. doi: 10.1007/s002270050478

    [34]

    CAYRE P. Behavior of yellowfin tuna (Thunnus albacares) and skipjack tuna (Katsuwonus pelamis) around fish aggregating devices (FADs) in the Comoros Islands as determined by ultrasonic tagging[J]. Aquat Living Resour, 1991, 4(1): 1-12. doi: 10.1051/alr/1991000

    [35]

    DAGORN L, HOLLAND K N, HALLIER Jean-Pierre, et al. Deep diving behavior observed in yellowfin tuna (Thunnus albacares)[J]. Aquat Living Resour, 2006, 19 (1): 85-88. doi: 10.1051/alr:2006008

    [36] 宋利明, 陈新军, 许柳雄. 大西洋中部黄鳍金枪鱼(Thunnus albacares)的垂直分布与有关环境因子的关系[J]. 海洋与湖沼, 2004, 35(1): 64-68. doi: 10.3321/j.issn:0029-814X.2004.01.010
    [37]

    BLOCK B A, KEEN J E, CASTILLO B, et al. Environmental preferences of yellowfin tuna (Thunnus albacares) at the northern extent of its range[M]. Germany: Springer Berlin, 1997: 119-132. doi: 10.1007/s002270050231

    [38]

    HAMPTON J, GUNN J. Exploitation and movements of yellowfin tuna (Thunnus albacares) and bigeye tuna (T. obesus) tagged in the north-western Coral Sea[J]. Mar Freshw Res, 1998, 49 (6): 475-489. doi: 10.1071/MF97210

    [39]

    DE ANDA-MONTANEZ J A, AMADOR-BUENROSTRO A, MARTKINEZ-AGUILAR S, et al. Spatial analysis of yellowfin tuna (Thunnus albacares) catch rate and its relation to El Niño and La Nina events in the eastern tropical Pacific[J]. Deep-Sea Res Ⅱ, 2004, 51 (5/6): 575-586. https://www.sciencedirect.com/science/article/pii/S0967064504000530

    [40]

    KORSMEYER K E, LAI N C, SHADWICK R E, et al. Heart rate and stroke volume contributions to cardiac output in swimming yellowfin tuna: response to exercise and temperature[J]. Exp Biol, 1997, 200 (14): 1 975-1 986. doi: 10.1242/jeb.200.14.1975

    [41]

    MAURY O, GASCUEL D, MARSAC F, et al. Hierarchical interpretation of nonlinear relationships linking yellowfin tuna (Thunnus albacares) distribution to the environment in the Atlantic Ocean[J]. Fish Aquat Sci, 2001, 58 (3): 458-469. doi: 10.1139/f00-261

    [42]

    ZAGAGLIA C R, LORENZZETTI J A, STECH J L. Remote sensing data and longline catches of yellowfin tuna (Thunnus albacares) in the equatorial Atlantic[J]. Remote Sensing of Environment, 2004, 93 (1/2): 267-281. https://www.sciencedirect.com/science/article/pii/S0034425704002354

    [43] 王飞. 我国大洋性金枪鱼渔业发展探讨[J]. 浙江海洋学院学报: 自然科学版, 2001, 20(3): 217-129. doi: 10.3969/j.issn.1008-830X.2001.03.009
图(1)  /  表(1)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-04-26
  • 修回日期:  2007-05-10
  • 刊出日期:  2007-08-04

目录

/

返回文章
返回