-
Abstract:
The statistical experimental design (Plackett-Burman and Box-Behnken design) was applied to optimize the culture medium of nitrite oxidizing bacteria for improving the nitrite oxidizing rate. Estimated optimum medium composition of the nitrite oxidizing rate was as follows: NaHCO3 2.0 g · L-1; NaNO2 2.36 g · L-1; Na2CO3 0.37 g · L-1; NaCl 0.34 g ·L-1; KH2PO4 0.05 g · L-1; MgSO4 · 7H2O 0.05 g · L-1; and FeSO4 · 7H2O 0.03 g · L-1. The nitrite oxidizing rate reached a maximum at 905.0 mg NO2-N · (g MLSS · d)-1(mixed liquor suspended solids, MLSS).In the field trial, 50 L of nitrite oxidizing bacteria concentrate (1.99 g VSS · L-1)(volatile solid, VSS) with 850 mg NO2-N · (g MLSS · d)-1 were added to 0.6 hectares of the aquaculture water. Nitrite level in all treated ponds remained very low compared to the steady increase observed in all of the control ponds during 7 days.
摘要:为提高硝化菌的亚硝酸盐氧化能力, 利用统计试验设计(Plackett-Burman和Box-Behnken设计)优化得到一最佳培养基: NaHCO3 2.0 g · L-1; NaNO 2 2.36 g · L-1; Na2CO3 0.37 g · L-1; NaCl 0.34 g · L-1; KH2PO4 0.05 g ·L-1; MgSO4 · 7H2O 0.05 g · L-1; FeSO4 · 7H2O 0.03 g · L-1。在此条件下, 硝化菌的最大亚硝酸盐氧化速率达到905.0 mg NO2-N · (g MLSS · d)-1(mixed liquor suspended solids, MLSS, 混合液悬浮固体)。将50 L降解速率为850 mg NO2-N · (g MLSS · d)-1的硝化菌(浓度为1.99 g VSS · L-1)(volatile solid, VSS, 挥发性固体)投加至0.6 hm2的养殖水体中, 7 d内试验水体中的亚硝酸盐浓度即降至安全浓度以下。
-
关键词:
- 硝化细菌 /
- 硝化菌(NOB) /
- 优化 /
- Plackett-Burman设计 /
- 响应面法 /
- Box-Beknken设计
-
-
Table 1 Level of the variables and statistical analysis of Plackett-Burman design
code variable low level (-1) high level (+1) effect t-values P-values X1 NaHCO3 2.0 3.0 33.33 2.29 0.070 X2 Na2CO3 0.2 0.4 150.67 10.36 0.000 X3 NaNO2 1.5 2.5 135.67 9.33 0.000 X4 Glucose 0 0.3 -56.67 -3.90 0.011 X5 FeSO4·7H2O 0.03 0.05 -7.67 -0.53 0.621 X6 NaCl 0.3 0.4 36.67 2.52 0.053 X7 KH2PO4 0.05 0.1 2.33 0.16 0.879 X8 MgSO4·7H2O 0.05 0.1 12.33 0.85 0.435 Table 2 Plackett-Burman design matrix
run X1 X2 X3 X4 X5 X6 X7 X8 nitrite oxidizing rate/mg NO2-N·(g MLSS·d)-1 1 2.5 0.3 2.0 0.15 0.04 0.35 0.075 0.075 857 2 2.0 0.2 1.5 0.00 0.03 0.30 0.050 0.050 613 3 3.0 0.2 2.5 0.00 0.03 0.30 0.100 0.100 796 4 2.0 0.2 1.5 0.30 0.05 0.40 0.050 0.100 597 5 2.5 0.3 2.0 0.15 0.04 0.35 0.075 0.075 878 6 3.0 0.4 1.5 0.30 0.05 0.30 0.100 0.050 743 7 2.0 0.4 1.5 0.00 0.03 0.40 0.100 0.100 795 8 3.0 0.4 2.5 0.00 0.05 0.40 0.050 0.100 974 9 2.0 0.4 2.5 0.30 0.03 0.40 0.100 0.050 873 10 3.0 0.2 1.5 0.00 0.05 0.40 0.100 0.050 641 11 3.0 0.4 1.5 0.30 0.03 0.30 0.050 0.100 716 12 3.0 0.2 2.5 0.30 0.03 0.40 0.050 0.050 742 13 2.5 0.3 2.0 0.15 0.04 0.35 0.075 0.075 884 14 2.0 0.4 2.5 0.00 0.05 0.30 0.050 0.050 863 15 2.0 0.2 2.5 0.30 0.05 0.30 0.100 0.100 671 16 2.5 0.3 2.0 0.15 0.04 0.35 0.075 0.075 857 17 2.0 0.2 1.5 0.00 0.03 0.30 0.050 0.050 613 18 3.0 0.2 2.5 0.00 0.03 0.30 0.100 0.100 796 Note: S=25.18;R2=98.23% Table 3 The Box-Behnken design with three independent variables
run Na2CO3/g·L-1 NaNO2/g·L-1 NaCl/g·L-1 nitrite oxidizing rate/mg
NO2-N·(gMLSS·d)-1X1 Code X1 X2 Code X2 X3 Code X3 1 0.35 0 2.25 0 0.35 0 901 2 0.35 0 2.50 +1 0.40 +1 874 3 0.30 -1 2.00 -1 0.35 0 817 4 0.35 0 2.00 -1 0.30 -1 846 5 0.35 0 2.25 0 0.35 0 895 6 0.30 -1 2.25 0 0.30 -1 842 7 0.35 0 2.00 -1 0.40 +1 803 8 0.40 +1 2.25 0 0.30 -1 883 9 0.30 -1 2.25 0 0.40 +1 831 10 0.35 0 2.50 +1 0.30 -1 854 11 0.40 +1 2.00 -1 0.35 0 863 12 0.40 +1 2.50 +1 0.35 0 894 13 0.35 0 2.25 0 0.35 0 896 14 0.30 -1 2.50 +1 0.35 0 875 15 0.40 +1 2.25 0 0.40 +1 835 Note: S=7.00;R2=98.17% Table 4 Parameters estimates of Box-Behnken design
term coefficient t-value P-value term coefficient t-value P-value constant -3 194.6 -5.862 0.002 X2×X2 -308.7 -5.294 0.003 X1 7 206.7 5.558 0.003 X3×X3 -13 516.7 -9.273 0.000 X2 1 221.0 4.112 0.009 X1×X2 -540.0 -1.928 0.112 X3 7 716.7 5.952 0.002 X1×X3 -3 700.0 -2.642 0.046 X1×X1 -6 316.7 -4.333 0.007 X2×X3 1 260.0 4.498 0.006 Table 5 Analysis of variance
resource DF Adj SS Adj MS F-value P-value regression 9 13 186.43 1 465.16 29.88 0.001 linear 3 2 954.63 984.88 20.09 0.003 square 3 5 788.68 1 929.56 39.35 0.001 interaction 3 1 516.75 505.58 10.31 0.014 residual error 5 245.17 49.03 lack-of-fit 3 224.50 74.83 7.24 0.124 pure error 2 20.67 10.33 total 14 -
[1] FRANCES J, ALLAN G L, NOWAK B F. The effects of nitrite on the shortterm growth of silver perch (Bidyanus bidyanus) [J]. Aquac, 1998, 163(1/2): 63-72. doi: 10.1016/S0044-8486(98)00219-1
[2] SHAN H, OBBARD J P. Ammonia removal from prawn aquaculture water using immobilized nitrifying bacteria[J]. Appl Microbiol Biotechnol, 2001, 57(17): 791-798. doi: 10.1007/s00253-001-0835-1
[3] 任杰, 林炜铁, 罗小春, 等. 硝化菌保藏特性及衰减动力学研究[J]. 中国生物工程杂志, 2007, 27(12): 61-65. doi: 10.3969/j.issn.1671-8135.2007.12.013 [4] 李卓佳, 郭志勋, 冯娟, 等. 应用芽孢杆菌调控虾池微生态的初步研究[J]. 海洋科学, 2006, 30(11): 28-31. doi: 10.3969/j.issn.1000-3096.2006.11.007 [5] 李卓佳, 林亮, 杨莺莺, 等. 芽孢杆菌制剂对凡纳滨对虾Litopenaeus vannamei肠道微生物群落的影响[J]. 南方水产, 2005, 1(3): 54-59. doi: 10.3969/j.issn.2095-0780.2005.03.009 [6] 林影, 张聚宝, 向柱方. 假丝酵母Candida sp. 木糖发酵生产乙醇[J]. 华南理工大学学报: 自然科学版, 2006, 34(5): 33-37. doi: 10.3321/j.issn:1000-565X.2006.05.007 [7] ANBU P, GOPINATH S C B, HILDA A, et al. Optimization of extracellular keratinase production by poultry farm isolate Scopulariopsis brevicaulis[J]. Bioresour Technol, 2006, 98(6): 1 298-1 303. doi: 10.1016/j.biortech.2006.05.047
[8] MAO Xiangzhao, SHEN Yaling, YANG Liang, et al. Optimizing the medium compositions for accumulation of the novel FR-008/Candicidin derivatives CS101 by a mutant of Streptomyces sp. using statistical experimental methods[J]. Process Biochem, 2007, 42(5): 878-883. doi: 10.1016/j.procbio.2007.01.004
[9] JOHN R P, SUKUMARAN R K, NAMPOOTHIRI M K, et al. Statistical optimization of simultaneous saccharification and L (+)lactic acid fermentation from cassava bagasse using mixed culture of lactobacilli by response surface methodology[J]. Biochem Eng J, 2007, 36(3): 262-267. doi: 10.1016/j.bej.2007.02.028
[10] ISAR J, AGARWAL L, SARAN S, et al. A statistical method for enhancing the production of succinic acid from Escherichia coli under anaerobic conditions[J]. Bioresour Technol, 2006, 97(13): 1 443-1 448. doi: 10.1016/j.biortech.2005.07.014
[11] WILEN B M, JIN B, LANT P. The influence of key chemical constituents in activated sludge on surface and flocculating properties[J]. Water Res, 2003, 37(9): 2 127-2 139. doi: 10.1016/S0043-1354(02)00629-2
[12] SALEM S, MOUSSA M S, VAN LOOSDRECHT M C. Determination of the decay rate of nitrifying bacteria[J]. Biotechnol Bioeng, 2006, 94(2): 252-262. doi: 10.1002/bit.20822
[13] GROMMEN R, VAN HAUTEGHEM I, VAN WAMBEKE, et al. An improved nitrifying enrichment to remove ammonium and nitrite from freshwater aquaria systems[J]. Aquac, 2002, 211(1/4): 115-124. doi: 10.1016/S0044-8486(01)00883-3