Statistical optimization of fermentation media for nitrite oxidizing bacteria

REN Jie, LIN Weitie, LUO Xiaochun, XIE Mingquan

REN Jie, LIN Weitie, LUO Xiaochun, XIE Mingquan. Statistical optimization of fermentation media for nitrite oxidizing bacteria[J]. South China Fisheries Science, 2008, 4(3): 7-14.
Citation: REN Jie, LIN Weitie, LUO Xiaochun, XIE Mingquan. Statistical optimization of fermentation media for nitrite oxidizing bacteria[J]. South China Fisheries Science, 2008, 4(3): 7-14.
任杰, 林炜铁, 罗小春, 谢明权. 统计优化硝化菌发酵培养基[J]. 南方水产科学, 2008, 4(3): 7-14.
引用本文: 任杰, 林炜铁, 罗小春, 谢明权. 统计优化硝化菌发酵培养基[J]. 南方水产科学, 2008, 4(3): 7-14.

Statistical optimization of fermentation media for nitrite oxidizing bacteria

More Information
    Author Bio:

    REN Jie (1977-), male, Ph.D.candidate, mainly researches on industrial microbe and enviromental microbe. E-mail: renjiescut2001@163.com

    Corresponding author:

    LIN Weitie, E-mail: 13902202933@139.com

统计优化硝化菌发酵培养基

详细信息
  • 中图分类号: Q819

  • Abstract:

    The statistical experimental design (Plackett-Burman and Box-Behnken design) was applied to optimize the culture medium of nitrite oxidizing bacteria for improving the nitrite oxidizing rate. Estimated optimum medium composition of the nitrite oxidizing rate was as follows: NaHCO3 2.0 g · L-1; NaNO2 2.36 g · L-1; Na2CO3 0.37 g · L-1; NaCl 0.34 g ·L-1; KH2PO4 0.05 g · L-1; MgSO4 · 7H2O 0.05 g · L-1; and FeSO4 · 7H2O 0.03 g · L-1. The nitrite oxidizing rate reached a maximum at 905.0 mg NO2-N · (g MLSS · d)-1(mixed liquor suspended solids, MLSS).In the field trial, 50 L of nitrite oxidizing bacteria concentrate (1.99 g VSS · L-1)(volatile solid, VSS) with 850 mg NO2-N · (g MLSS · d)-1 were added to 0.6 hectares of the aquaculture water. Nitrite level in all treated ponds remained very low compared to the steady increase observed in all of the control ponds during 7 days.

    摘要:

    为提高硝化菌的亚硝酸盐氧化能力, 利用统计试验设计(Plackett-Burman和Box-Behnken设计)优化得到一最佳培养基: NaHCO3 2.0 g · L-1; NaNO 2 2.36 g · L-1; Na2CO3 0.37 g · L-1; NaCl 0.34 g · L-1; KH2PO4 0.05 g ·L-1; MgSO4 · 7H2O 0.05 g · L-1; FeSO4 · 7H2O 0.03 g · L-1。在此条件下, 硝化菌的最大亚硝酸盐氧化速率达到905.0 mg NO2-N · (g MLSS · d)-1(mixed liquor suspended solids, MLSS, 混合液悬浮固体)。将50 L降解速率为850 mg NO2-N · (g MLSS · d)-1的硝化菌(浓度为1.99 g VSS · L-1)(volatile solid, VSS, 挥发性固体)投加至0.6 hm2的养殖水体中, 7 d内试验水体中的亚硝酸盐浓度即降至安全浓度以下。

  • Figure  1.   The corresponding contour plot and response surface plot showing the effects of Na2CO3, NaNO2 and their mutual interaction on nitrite oxidizing rate, with 0 level of NaCl(0.35 g · L-1)

    Figure  2.   The corresponding contour plot and response surface plot showing the effects of Na2CO3, NaCl and their mutual interaction on nitrite oxidizing rate, with 0 level of NaNO2(2.25 g · L-1)

    Figure  3.   The corresponding contour plot and response surface plot showing the effects of NaNO2, NaCl and their mutual interaction on nitrite oxidizing rate, with 0 level of Na2CO3(0.35 g · L-1).

    Figure  4.   Variation of nitrite concentration in shrimp aquaculture water as a function of time (2006.7.8~2006.7.15)

    Table  1   Level of the variables and statistical analysis of Plackett-Burman design

    code variable low level (-1) high level (+1) effect t-values P-values
    X1 NaHCO3 2.0 3.0 33.33 2.29 0.070
    X2 Na2CO3 0.2 0.4 150.67 10.36 0.000
    X3 NaNO2 1.5 2.5 135.67 9.33 0.000
    X4 Glucose 0 0.3 -56.67 -3.90 0.011
    X5 FeSO4·7H2O 0.03 0.05 -7.67 -0.53 0.621
    X6 NaCl 0.3 0.4 36.67 2.52 0.053
    X7 KH2PO4 0.05 0.1 2.33 0.16 0.879
    X8 MgSO4·7H2O 0.05 0.1 12.33 0.85 0.435
    下载: 导出CSV

    Table  2   Plackett-Burman design matrix

    run X1 X2 X3 X4 X5 X6 X7 X8 nitrite oxidizing rate/mg NO2-N·(g MLSS·d)-1
    1 2.5 0.3 2.0 0.15 0.04 0.35 0.075 0.075 857
    2 2.0 0.2 1.5 0.00 0.03 0.30 0.050 0.050 613
    3 3.0 0.2 2.5 0.00 0.03 0.30 0.100 0.100 796
    4 2.0 0.2 1.5 0.30 0.05 0.40 0.050 0.100 597
    5 2.5 0.3 2.0 0.15 0.04 0.35 0.075 0.075 878
    6 3.0 0.4 1.5 0.30 0.05 0.30 0.100 0.050 743
    7 2.0 0.4 1.5 0.00 0.03 0.40 0.100 0.100 795
    8 3.0 0.4 2.5 0.00 0.05 0.40 0.050 0.100 974
    9 2.0 0.4 2.5 0.30 0.03 0.40 0.100 0.050 873
    10 3.0 0.2 1.5 0.00 0.05 0.40 0.100 0.050 641
    11 3.0 0.4 1.5 0.30 0.03 0.30 0.050 0.100 716
    12 3.0 0.2 2.5 0.30 0.03 0.40 0.050 0.050 742
    13 2.5 0.3 2.0 0.15 0.04 0.35 0.075 0.075 884
    14 2.0 0.4 2.5 0.00 0.05 0.30 0.050 0.050 863
    15 2.0 0.2 2.5 0.30 0.05 0.30 0.100 0.100 671
    16 2.5 0.3 2.0 0.15 0.04 0.35 0.075 0.075 857
    17 2.0 0.2 1.5 0.00 0.03 0.30 0.050 0.050 613
    18 3.0 0.2 2.5 0.00 0.03 0.30 0.100 0.100 796
    Note: S=25.18;R2=98.23%
    下载: 导出CSV

    Table  3   The Box-Behnken design with three independent variables

    run Na2CO3/g·L-1 NaNO2/g·L-1 NaCl/g·L-1 nitrite oxidizing rate/mg
    NO2-N·(gMLSS·d)-1
    X1 Code X1 X2 Code X2 X3 Code X3
    1 0.35 0 2.25 0 0.35 0 901
    2 0.35 0 2.50 +1 0.40 +1 874
    3 0.30 -1 2.00 -1 0.35 0 817
    4 0.35 0 2.00 -1 0.30 -1 846
    5 0.35 0 2.25 0 0.35 0 895
    6 0.30 -1 2.25 0 0.30 -1 842
    7 0.35 0 2.00 -1 0.40 +1 803
    8 0.40 +1 2.25 0 0.30 -1 883
    9 0.30 -1 2.25 0 0.40 +1 831
    10 0.35 0 2.50 +1 0.30 -1 854
    11 0.40 +1 2.00 -1 0.35 0 863
    12 0.40 +1 2.50 +1 0.35 0 894
    13 0.35 0 2.25 0 0.35 0 896
    14 0.30 -1 2.50 +1 0.35 0 875
    15 0.40 +1 2.25 0 0.40 +1 835
    Note: S=7.00;R2=98.17%
    下载: 导出CSV

    Table  4   Parameters estimates of Box-Behnken design

    term coefficient t-value P-value term coefficient t-value P-value
    constant -3 194.6 -5.862 0.002 X2×X2 -308.7 -5.294 0.003
    X1 7 206.7 5.558 0.003 X3×X3 -13 516.7 -9.273 0.000
    X2 1 221.0 4.112 0.009 X1×X2 -540.0 -1.928 0.112
    X3 7 716.7 5.952 0.002 X1×X3 -3 700.0 -2.642 0.046
    X1×X1 -6 316.7 -4.333 0.007 X2×X3 1 260.0 4.498 0.006
    下载: 导出CSV

    Table  5   Analysis of variance

    resource DF Adj SS Adj MS F-value P-value
    regression 9 13 186.43 1 465.16 29.88 0.001
    linear 3 2 954.63 984.88 20.09 0.003
    square 3 5 788.68 1 929.56 39.35 0.001
    interaction 3 1 516.75 505.58 10.31 0.014
    residual error 5 245.17 49.03
    lack-of-fit 3 224.50 74.83 7.24 0.124
    pure error 2 20.67 10.33
    total 14
    下载: 导出CSV
  • [1]

    FRANCES J, ALLAN G L, NOWAK B F. The effects of nitrite on the shortterm growth of silver perch (Bidyanus bidyanus) [J]. Aquac, 1998, 163(1/2): 63-72. doi: 10.1016/S0044-8486(98)00219-1

    [2]

    SHAN H, OBBARD J P. Ammonia removal from prawn aquaculture water using immobilized nitrifying bacteria[J]. Appl Microbiol Biotechnol, 2001, 57(17): 791-798. doi: 10.1007/s00253-001-0835-1

    [3] 任杰, 林炜铁, 罗小春, 等. 硝化菌保藏特性及衰减动力学研究[J]. 中国生物工程杂志, 2007, 27(12): 61-65. doi: 10.3969/j.issn.1671-8135.2007.12.013
    [4] 李卓佳, 郭志勋, 冯娟, 等. 应用芽孢杆菌调控虾池微生态的初步研究[J]. 海洋科学, 2006, 30(11): 28-31. doi: 10.3969/j.issn.1000-3096.2006.11.007
    [5] 李卓佳, 林亮, 杨莺莺, 等. 芽孢杆菌制剂对凡纳滨对虾Litopenaeus vannamei肠道微生物群落的影响[J]. 南方水产, 2005, 1(3): 54-59. doi: 10.3969/j.issn.2095-0780.2005.03.009
    [6] 林影, 张聚宝, 向柱方. 假丝酵母Candida sp. 木糖发酵生产乙醇[J]. 华南理工大学学报: 自然科学版, 2006, 34(5): 33-37. doi: 10.3321/j.issn:1000-565X.2006.05.007
    [7]

    ANBU P, GOPINATH S C B, HILDA A, et al. Optimization of extracellular keratinase production by poultry farm isolate Scopulariopsis brevicaulis[J]. Bioresour Technol, 2006, 98(6): 1 298-1 303. doi: 10.1016/j.biortech.2006.05.047

    [8]

    MAO Xiangzhao, SHEN Yaling, YANG Liang, et al. Optimizing the medium compositions for accumulation of the novel FR-008/Candicidin derivatives CS101 by a mutant of Streptomyces sp. using statistical experimental methods[J]. Process Biochem, 2007, 42(5): 878-883. doi: 10.1016/j.procbio.2007.01.004

    [9]

    JOHN R P, SUKUMARAN R K, NAMPOOTHIRI M K, et al. Statistical optimization of simultaneous saccharification and L (+)lactic acid fermentation from cassava bagasse using mixed culture of lactobacilli by response surface methodology[J]. Biochem Eng J, 2007, 36(3): 262-267. doi: 10.1016/j.bej.2007.02.028

    [10]

    ISAR J, AGARWAL L, SARAN S, et al. A statistical method for enhancing the production of succinic acid from Escherichia coli under anaerobic conditions[J]. Bioresour Technol, 2006, 97(13): 1 443-1 448. doi: 10.1016/j.biortech.2005.07.014

    [11]

    WILEN B M, JIN B, LANT P. The influence of key chemical constituents in activated sludge on surface and flocculating properties[J]. Water Res, 2003, 37(9): 2 127-2 139. doi: 10.1016/S0043-1354(02)00629-2

    [12]

    SALEM S, MOUSSA M S, VAN LOOSDRECHT M C. Determination of the decay rate of nitrifying bacteria[J]. Biotechnol Bioeng, 2006, 94(2): 252-262. doi: 10.1002/bit.20822

    [13]

    GROMMEN R, VAN HAUTEGHEM I, VAN WAMBEKE, et al. An improved nitrifying enrichment to remove ammonium and nitrite from freshwater aquaria systems[J]. Aquac, 2002, 211(1/4): 115-124. doi: 10.1016/S0044-8486(01)00883-3

图(4)  /  表(5)
计量
  • 文章访问数:  5801
  • HTML全文浏览量:  151
  • PDF下载量:  3553
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-02-27
  • 修回日期:  2008-03-13
  • 刊出日期:  2008-06-04

目录

    /

    返回文章
    返回