Studies on the interaction between shellfish long-line culture and environment in Sungo Bay
-
摘要:
2003年6~10月和2004年3月利用YSI6600多参数水质监测仪和SD6000全自动海流计以及石膏块对桑沟湾扇贝筏式养殖区养殖设施内外、扇贝养殖笼内外部分环境参数(pH、DO、叶绿素a、海流)的动态变化进行了系统研究。实验结果表明:(1)扇贝筏式养殖区内外流速及叶绿素a浓度衰减显著:经过20排筏架(约105 m)后,养殖区内的海水平均流速由区外的7.50±5.29降到5.28±3.23 cm · s-1,降低了29.6%,区内外海流的主流向没有显著改变;进入养殖系统的叶绿素a浓度由2.48降低到了1.19 μg · L-1,减少了52%;养殖区内的pH和溶解氧与区外相比变化不大;(2)扇贝养殖笼内外环境因子发生显著的变化:2003年7月1日养殖笼内外水交换率可达80.5%,1个月后下降到只有23.6%;2004年10月份养殖笼内叶绿素a浓度降低到仅有1.57 μg ·L-1,较之笼外的4.20 μg · L-1来说,减少了62.6%;养殖笼外pH基本保持在8.0左右,笼内的pH却一直趋于下降趋势,到9月份降到了最低值7.46;在附着生物附着盛期的8、9月份,笼内溶解氧最低值降低到了5.13 mg · L-1,比起笼外的7.04 mg · L-1来说,减少了27.1%。
Abstract:Field experiments were carried out from June to October of 2003 and March of 2004 to monitor some environmental factors such as water velocity, pH, dissolved oxygen inside and outside scallop culture lantern net and long-line culture area by using YSI6600 water quality monitoring instrument, SD6000 automatic water velocity and gypsum in Sungo Bay. The results showed: (1) the average seawater velocity inside the lease area were decreased from 7.50±5.29 to 5.28±3.23 cm · s-1, decreased by 29.6%. And the average chlorophyll a concentration was decreased from 2.48 to 1.19 μg · L-1, decreased by 52%. (2) The average chlorophyll a concentration was 4.13 and 4.60 μg · L-1 respectively for the water samples inside and outside the lantern nets at the beginning, but decreased to 1.57 and 4.20 μg · L-1 respectively in the end. pH kept stabile outside the lantern nets, but it declined continuously inside, and reached the lowest value (7.46) in September. During the blooming period of fouling organisms, there was significant difference of dissolved oxygen outside and inside the nets. Compare to 7.04 mg · L-1 outside the lantern nets, the dissolved oxygen inside is only 5.13 mg · L-1, decreased by 27.1%.
-
Keywords:
- long-line culture /
- environmental factors /
- interaction /
- Sungo Bay
-
硫酸盐还原菌(sulfate-reducing bacteria,SRB)在生态系统中是属于土著微生物类群,是兼性厌氧菌,广泛存在于各种环境中,是自然界硫循环中SO42-异化还原的专门承担者,将SO42-还原同时降解有机物获取能量,产物为对周围环境有害的有毒气体H2S。目前,国内外对海洋沉积物中SRB研究多集中在海洋工程、石油勘探、管道铺设等金属防腐方面[1-2]。近年来因病害使国内外海水养殖产量出现大幅度的滑坡,其主要原因是养殖环境恶化,尤其是底质的污染严重,大部分养殖海区投喂天然饵料,饵料系数较高,养殖年限较长,网箱底部堆积大量富含有机物的沉积物,为SRB大量繁殖提供了有利条件,SRB繁殖会产生大量有毒气体H2S,造成水体污染并毒害养殖生物,使养殖水体环境状况进入恶性循环状态。目前,国内外对网箱养殖环境中SRB的相关研究报道不多[3],因此,开展网箱养殖海区沉积物中SRB生态特性和相关防治是很有必要的。本文通过研究大鹏澳网箱养殖海域的SRB,了解此环境中SRB的生态特性、SRB数量变化,以及SRB与其他环境因子之间的关系,为以后修复养殖水体环境,提高养殖生物产量,实现海水网箱养殖业的可持续发展提供理论依据。
大鹏澳是大亚湾西南部的一个小内湾,水面面积约1 400 km2。20世纪90年代以来,海水网箱养殖得到了迅速发展。目前,网箱养殖区水面面积约有20 km2,养殖网箱约4 200箱,养殖区平均水深4.5 m,污染相对比较严重[4-5]。
1. 材料与方法
1.1 样品采集
2006年11月,在大亚湾大鹏澳网箱养殖海域利用GPS定位5个站点,其中1、2、3号站位于鱼类网箱养殖区,4号站位于浮筏贝类养殖区,5号站作为对照站,采样站点如图 1所示。在每个站用柱状采泥器采集柱状沉积物样品2管,将沉积物置于内径为5 cm的PVC管内并用橡胶塞密封好,其中1管用于测定硫化物、氧化还原电位(oxidation-reduction potential,ORP)和pH,另1管用于测定SRB含量,并清晰标记样品垂直方向,其中柱状沉积物SRB计数按照1 cm层、5 cm层、10 cm层深度进行取样。
1.2 SRB培养基配方和计数方法
培养基配方为K2HPO4 0.5 g · L-1,NH4Cl 1.0 g · L-1,MgSO4 2.0 g · L-1,Na2SO4 0.5 g · L-1,CaCI2 0.1 g · L-1,酵母膏1.0 g · L-1,乳酸钠4 mL ·L-1依次加入净化陈海水中溶解。调节pH值约为7.0~7.5[6]。密封后用蒸气压力灭菌器121~125℃灭菌15~20 min后冷却至室温。称取硫酸亚铁铵1.2 g,抗坏血酸0.4 g,在无菌箱(室)内均匀地摊在离紫外线灯30 cm处灭菌30 min。在无菌操作下,把硫酸亚铁铵和维生素C溶解于事先准备好的40 mL无菌水中。按每100 mL培养基各加入1.0 mL硫酸亚铁铵溶液和1.0 mL维生素C溶液。
硫酸盐还原菌的计数(本标准适用于工业循环冷却水中硫酸盐还原菌的测定,也适用于原水、生活用水及粘泥中硫酸盐还原菌的测定)采用我国国家标准《工业循环冷却水中硫酸盐还原菌的测定》(GB/T14643.5-1993)规定的MPN法[7]。
1.3 沉积物硫化物、ORP、pH的测定
1.3.1 硫化物的测定
沉积物中硫化物的测定采用《海洋监测规范》[8]中的硫离子选择电极法。取5.00 g混匀的湿样置于50 mL烧杯中,加入20 mL抗氧化络合剂使用液,充分搅拌5 min,静置,待沉积物完全沉淀后,用倾斜法将上清液倒入50 mL量瓶中;再重复2次用15 mL抗氧化络合剂使用液按上述步骤浸取残留的沉积物,合并3次上清液,再用抗氧化络合剂使用液定容至刻度。测定时将上清液移入50 mL烧杯中,插入参比电极和活化后的硫离子选择电极,一边搅拌至读数稳定后记录结果。每次测定后均需用蒸馏水洗涤电极并用滤纸吸干,以备下一样品测定。
1.3.2 ORP的测定
沉积物ORP的测定参照《海洋监测规范》[8]中的电位计法。
1.3.3 pH的测定
沉积物pH的测定按照《海洋监测规范》[8]规定采用复合电极方法。
上述分析仪器为上海雷磁PHSJ-4A实验室pH/ORP测定仪,配有硫离子选择电极、参比电极、氧化还原电极、感温电极和pH复合电极。
2. 数据处理
利用Microsoft Excel对SRB的检出率、含量、变化幅度等按照不同站位、不同层次进行分析,利用数理统计软件SPSS对SRB与硫化物、ORP、pH做相关分析。
3. 结果与讨论
3.1 沉积物中的SRB的数量
2006年11月大亚湾大鹏澳网箱养殖海域沉积物中SRB的数量如表 1所示,沉积物中SRB数量波动范围在900~110 000 ind · g-1之间。
表 1 大鹏澳网箱养殖海域沉积物中SRB的数量Table 1. Content of SRB in cage culture area sediment in Dapeng′ao Coveind · g-1 垂直深度/cm
vertical depth1号站
station 12号站
station 23号站
station 34号站
station 4对照站
control station1 45 000 45 000 110 000 25 000 30 000 5 30 000 4 500 45 000 15 000 15 000 10 11 500 2 500 4 500 900 4 500 图 2显示了各个站位表层沉积物SRB的分布情况,SRB平面分布特征是鱼类网箱区>对照区>浮筏贝类区,网箱区的数量明显高于对照区和浮筏贝类区,这可能是由于网箱区内的网箱设置比较密集,饵料主要是冰鲜小杂鱼,残饵和粪便形成的生物沉积,为SRB的生长提供了有利的环境;浮筏贝类区SRB数量最少,可能是由于此区域的养殖生物为太平洋牡蛎,无需投饵,故底部富含有机质的沉积物较少,SRB含量也较少。
各个站位沉积物中SRB的垂直分布如图 3所示,可以明显看出SRB数量的分布特征为1 cm层>5 cm层>10 cm层,呈现由上到下逐渐减少的趋势。验证了海洋沉积物中硫酸盐还原菌数量是由上向下逐渐降低的结论[9],这也与高爱国等[10]在北极楚科奇海调查得到的SRB分布规律相似。
3.2 沉积物中的硫化物
2006年11月大亚湾大鹏澳网箱养殖海域5个站位沉积物中硫化物的含量如表 2所示,其硫化物含量波动范围为372.48~703.98 μg · g-1。
表 2 表层沉积物中SRB与其他环境因子Table 2. The amount of SRB and other factors of surface sediment站位
stationSRB数量
content of SRB硫化物含量/μg·g-1
sulfide content氧化还原电位
ORPpH 1号站 station 1 45 000 529.44 -226.5 8.12 2号站 station 2 45 000 527.76 -270.3 8.18 3号站 station 3 110 000 703.98 -384.5 8.16 4号站 station 4 25 000 372.48 -171.5 8.21 对照站 control station 30 000 445.18 -199.5 8.17 由图 4可以明显看出,鱼类网箱养殖区(1、2、3号站)沉积物中硫化物含量要高于贝类区和对照区,其主要原因是鱼类网箱区需要大量投饵,底部富含有机质,这一环境利于SRB大量繁殖,异化还原硫酸盐形成硫化物;浮筏贝类养殖区的硫化物含量最低,这是因为贝类养殖过程中不需投饵,底部沉积物有机质含量较少;另外,该海域贝类区养殖年限较短,水体底部的溶解氧和pH值均较高,不利于SRB的生长,因此,硫化物含量较低。而对照区的5号站,其硫化物含量相对较高于贝类养殖区,这可能是因为5号站位于大鹏澳湾口,在海流作用下,受网箱区沉积物往湾口外迁移的影响要大于贝类区有关。
3.3 沉积物中的ORP
各采样站位沉积物的氧化还原电位如表 2所示,其波动范围在-171.5~-384.5 mV之间。图 5显示了2006年11月大亚湾大鹏澳网箱养殖海域5个站位沉积物的ORP平面分布特征。可以看出,鱼类网箱区的ORP要低于贝类区和对照区,其主要原因是由于网箱区残饵和排泄粪便长期积累,网箱区底部富含有机质,微生物分解大量有机质,产生还原性的物质(如:S2-、NH4+、Fe2+等),从而导致氧化还原电位较低。
3.4 沉积物中的pH
图 6显示了2006年11月大亚湾大鹏澳网箱养殖海域各个站位沉积物的pH值,其特征为网箱区低于对照区和贝类区,影响沉积物pH变化的主要因素是呼吸作用[11],因为网箱区沉积物的有机质含量高于对照区和贝类区,所以网箱区沉积物中的细菌呼吸作用和有机质在细菌参与下的分解作用相对活跃,导致pH下降。
3.5 SRB与其他因子的相关关系
2006年11月大亚湾大鹏澳网箱养殖海域表层沉积物中SRB含量、硫化物含量、ORP、pH值如表 2所示。利用SPSS对SRB与其他环境因子所做的相关分析结果显示,SRB与硫化物的含量为显著性正相关(R=0.96, P < 0.05,表 3),这与李培英等[12]研究的浙江至闽北陆架积物硫酸盐还原菌与硫化物的相关关系的结果相一致。由于SRB在沉积物环境中主要电子受体是硫酸盐,当SRB大量存在时就会有更多的还原态的硫化物生成。SRB含量与Eh的关系显示极显著性负相关关系(R=-0.97,P < 0.01,表 3),这与陈皓文等[13]对北部湾东侧沉积物SRB研究结果相一致。ORP的高低主要取决于沉积物中的DO含量,当沉积物处于严重缺氧时,有机物最终分解为还原态物质,Eh为负值,而厌氧的低氧化还原状态环境适合SRB的大量繁殖,所以这一分析结果与理论相一致。而SRB与pH的关系系数为R=-2.71(P>0.05,表 3),两者不具有显著性相关关系,由此可以看出,硫化物含量和ORP是反映SRB数量的2个非常重要的指标。
表 3 SRB与其他因子的相关系数Table 3. Correlation between SRB and other chemical factors对子 parallelism 相关系数R correlation coefficient n number of sample P significance factor SRB-硫化物 SRB-sulfide 0.96 5 0.011 SRB-氧化还原电位 SRB-ORP -0.97 5 0.006 SRB-pH -2.71 5 0.611 -
图 2 养殖区内外流速流向变化
a. 扇贝区海水流速变化;b. 海流流向变化;c. 牡蛎区海水流速变化;d. 海带区海水流速变化
Figure 2. Variation of velocity and current direction outside and inside the culture area
a. variation of seawater velocity inside scallop area; b. variation of sea water current direction; c. variation of seawater velocity inside oyster area; d. variation of seawater velocity inside kelp area
表 1 筏式养殖区内外部分环境因子变化
Table 1 Variation of the main environmental factors inside and outside long-line culture area
调查时间
date站点
station平均海流流速/cm·s-1
velocity叶绿素a /μg·L-1
chlorophyll a溶解氧/mg·L-1
dissolved oxygenpH 区内
inside区外
outside区内
inside区外
outside区内
inside区外
outside区内
inside区外
outside2004.3 扇贝养殖区
scallop area5.10 7.74 1.19 2.48 7.39 7.54 7.94 7.98 牡蛎养殖区
oyster area7.76 8.64 1.62 2.32 7.57 7.93 7.97 8.01 海带养殖区
kelp area6.66 9.32 3.35 3.35 8.02 8.00 7.94 8.00 -
[1] GRANT J, BACHER C. A numerical model of flow modification induced by suspended aquaculture in a Chinese bay [J]. Can J Fish Aquat Sci, 2001, 58(5): 1003-1011. doi: 10.1139/f01-027
[2] 朱明远, 张学雷, 李瑞香, 等. 海水贝类养殖对生态系统的影响[J]. 青岛海洋大学学报, 2000, 30(2): 53-57. http://qikan.cqvip.com/Qikan/Article/Detail?id=1001110049 [3] CLAEREBOUDE M R. Fouling development and its effect on the growth of juvenile giant scallop(Placopecten magellanicus) in suspended culture[J]. Aquac, 1994, 121(4): 327-342. doi: 10.1016/0044-8486(94)90268-2
[4] FRECHETTE M, BUTMAN C A, GEYER W R. The importance of boundary-layer flows in supplying phytoplankton to the benthic suspension feeder, Mytilus edulis L[J]. Limnol Oceanogr, 1989, 34(2): 19-36. doi: 10.4319/lo.1989.34.1.0019
[5] 于瑞海, 王如才. 栉孔扇贝大面积死亡原因分析及预防的措施[J]. 海洋湖沼通报, 1998(3): 70-71. [6] 张福绥, 杨红生. 栉孔扇贝大规模死亡问题的对策与应急措施[J]. 海洋科学, 1999, 23(2): 38-42. doi: 10.3969/j.issn.1000-3096.1999.02.017 [7] 宋微波, 王崇明, 王秀华, 等. 栉孔扇贝大规模死亡的病原研究新进展[J]. 海洋科学, 2001, 25(12): 23-26. doi: 10.3969/j.issn.1000-3096.2001.12.007 [8] 蒋增杰, 方建光, 门强, 等. 石膏法测定海水流速[J]. 海洋水产研究, 2004, 25(1): 58-63. [9] PILDITCH C A, GRANT J, BRYAN K R. Seston supply to sea scallops(Placopecten magellanicus)in suspended culture [J]. Can J Fish Aquat Sci, 2001, 58(2): 241-253. doi: 10.1139/f00-242
[10] BOYD A J, HEASMAN K G. Shellfish mariculture in the Benguela system: Water flow pattern within a mussel farm in Saldanha Bay, South Africa [J]. J Shellf Res, 1998, 17(1): 25-32. https://www.nstl.gov.cn/paper_detail.html?id=c39f709497cf7e1fd00b23131f66ae43
[11] GIBBS M M, JAMES M R, PICKMERE S E, et al. Hydrodynamic and water column properties at six stations associated with mussel farming in Pelorus Sound, 1984-85[J]. Mar Freshwater Res, 1991, 25(2): 239-254. doi: 10.1080/00288330.1991.9516476
[12] 孙耀, 宋云利, 崔毅. 桑沟湾养殖水域的初级生产力及其影响因素的研究[J]. 海洋水产研究, 1996, 17(2): 32-40. https://www.cqvip.com/QK/90269X/199602/2370623.html [13] WANG R, LI C L, WANG K, et al. Feeding activities of zooplankton in the Bohai Sea [J]. Fish Oceanogr, 1998, 7(2): 265-271. doi: 10.1046/j.1365-2419.1998.00067.x
[14] NUNES J P, FERREIRA J G, GAZEAU F, et al. A model for sustainable management of shellfish polyculture in coastal bays [J]. Aquac, 2003, 219(1/4): 257-277. doi: 10.1016/S0044-8486(02)00398-8
[15] BAMBER R N. The effects of acidic seawater on young carpet-shell clams Venerupis decussata (L. )(Mollusca: Veneracea) [J]. Mar Bio Ecol, 1987, 108(3): 241-260. doi: 10.1016/0022-0981(87)90088-8
[16] 袁有宪, 陈聚法. 栉孔扇贝对环境变化适应性研究-盐度、pH对存活、呼吸、摄食及消化的影响[J]. 中国水产科学, 2000, 7(4): 73-77. doi: 10.3321/j.issn:1005-8737.2000.04.017 [17] 李丹萍. pH对海水鱼虾养殖的影响[J]. 科学养鱼, 1998 (9): 40-40. https://d.wanfangdata.com.cn/periodical/Ch9QZXJpb2RpY2FsQ0hJTmV3UzIwMjQxMTA1MTcxMzA0Eg5RSzE5OTgwMDM2NDQ5ORoIczI1cTNnOTU%3D [18] 沈国英, 施并章. 海洋生态学[M]. 2版. 北京: 科学出版社, 2002: 86-91. https://xueshu.baidu.com/usercenter/paper/show?paperid=358c512581341647de3eb0cd4b368df1&site=xueshu_se [19] 胡国宏, 孙广华, 顾权, 等. 低溶解氧对怀头鲇呼吸代谢耗氧率的影响[J]. 动物学杂志, 2002, 37(2): 47-47. [20] 张学雷, 朱明远, 李瑞香, 等. 贝类养殖环境的多参数同步连续监测[J]. 海洋科学进展, 2004, 22(7): 340-345. doi: 10.3969/j.issn.1671-6647.2004.03.012 [21] CLARK B C. Ecological energetic of mussels Choromytilus meridionalis under simulated intertidal rock pool conditions[J]. J Exp Mar Bio Ecol, 1990, 137(1): 63-77. doi: 10.1016/0022-0981(90)90060-P