Comparison of phytoplankton community structure and water quality in different modes of abalone mariculture
-
摘要:
为研究不同鲍养殖模式对浮游植物群落结构和水环境的影响,于2016年5月至6月初大型海藻龙须菜(Gracilaria lemaneiformis)收获前后,选取汕头市南澳县深澳湾海域鲍单养区(A)、鲍与龙须菜混养区(GA)、过渡海区(M)和对照海区(C),对浮游植物群落及水体理化因子进行了6次高频调查。结果表明,调查海区共记录浮游植物4门45属84种,其中硅藻为优势类群,共37属71种。时间上比较,龙须菜收获后所有调查海区浮游植物细胞密度都显著高于龙须菜收获前(P < 0.05);各养殖区域间比较,龙须菜收获前鲍单养区浮游植物细胞密度显著高于鲍-龙须菜混养区(P < 0.05)。龙须菜收获前,鲍-龙须菜混养区总氮(TN)、总磷(TP)、氨氮(NH4+-N)和叶绿素a(Chl-a)浓度最低,多样性指数(H′)及均匀度指数(J′)最高; 龙须菜收获后各区无显著差异(P>0.05)。影响浮游植物群落结构特征的理化因子为TN、TP、水温和叶绿素a。该研究表明,鲍-大型海藻复合养殖模式可降低鲍养殖水体中氮、磷的浓度,并维持浮游植物群落结构相对的稳定。
Abstract:To study the effects of different modes of abalone mariculture on phytoplankton community structure and water environment, we carried out six surveys on the phytoplankton community and environmental factors in four mariculture areas (abalone culture area, Gracilaria lemaneiformis-abalone polyculture area, transition area and control area) in Shen′ao Bay, Nan′ao Island of Shantou City, from May to June, 2016. Altogether 84 species belonging to 45 genera of 4 phyla were recorded. The diatoms were the most dominant population with 37 genera and 71 species. For all culture areas, the average density of phytoplankton in after-harvest-period was higher than that in before-seaweed-harvest-period significantly (P < 0.05).The average density of phytoplankton in abalone culture area in before-harvest-period was higher than that in G.lemaneiformis-abalone polyculture area in after-harvest-period significantly (P < 0.05).In before-harvest-period, the concentrations of total nitrogen (TN), total phosphorus (TP), ammonia nitrogen (NH4+-N) and chlorophyll-a (Chl-a) in G.lemaneiformis-abalone polyculture area were the lowest, while the values of Shannon-Wiener index and Pielou′s were the highest. No significant difference was found in different culture areas in after-harvest-period. The phytoplankton community structure was affected by TN, TP, water temperature (T) and chlorophyll a significantly. It is indicated that G.lemaneiformis-ablone polyculture system can reduce the concentrations of nitrogen and phosphorus, maintaining relative stable community structure of phytoplankton.
-
Keywords:
- Gracilaria lemaneiformis /
- abalone /
- phytoplankton /
- integrated aquaculture /
- water quality
-
银鲳(Pampus argenteus)隶属鲈形目、鲳科、鲳属[1],分布于印度洋和太平洋西部。中国沿海均有分布,主要产地位于东海北部和黄海南部[2],因其肉质鲜嫩,且无肌间刺而深受消费者的欢迎,开展人工繁殖可以解决日益增长的市场需求。在人工繁育过程中,环境因素是制约银鲳人工规模化养殖的一个难点。在众多环境因素中,温度和盐度是主要的制约因子。迄今为止,施兆鸿等[3]、张晨捷等[4-5]已研究了银鲳在盐度胁迫下的各项生理生化指标的变化规律,但尚未见到有关银鲳在温度胁迫下的各项机能反应的报道。因此研究银鲳在温度胁迫下代谢酶活力、血清离子浓度及鳃和肾脏离子酶活力的变化具有现实意义。
温度是影响鱼类生长和代谢最重要的环境因子之一。由于自然界存在季节更替、气候变化等环境的改变,鱼类生活的环境温度经常出现节律性或突发性的变动[6]。因此,研究短周期温度波动对鱼类的影响具有重要意义。鱼类会通过调节营养代谢、离子平衡以应对环境的变化,减少自身的损伤,使机体在环境胁迫下保持相对稳定的平衡状态。谷草转氨酶(GOT)、谷丙转氨酶(GPT)、碱性磷酸酶(AKP)、酸性磷酸酶(ACP)、乳酸脱氢酶(LDH)是鱼类营养代谢的关键酶类,这些酶类的活力变化可以反映出鱼体代谢水平的高低及生理状态。此外,研究发现鱼类血清中的离子在机体营养代谢、体液渗透压调节以及维持酸碱平衡过程中起着重要作用[7-9]。ATP酶是一类分布广泛的膜结合蛋白酶,其中Na + /K +-ATP酶是维持细胞内高钾(K +)低钠(Na +)的重要离子酶,而Ca2+ /Mg2+-ATP酶是维持细胞内低钙(Ca2+)水平的离子酶[10],通过测定Na + /K +-ATP酶、Ca2+/Mg2+-ATP酶的活力以及Na +、Ca2+的浓度变化,能够深入探究鱼类机体内环境的稳定性、平衡性以及由环境改变而引起的损耗程度。该研究以银鲳幼鱼为材料,分别设计了低温胁迫和高温胁迫,分析了温度胁迫对银鲳幼鱼代谢酶活性、血清离子浓度及鳃和肾脏离子酶活性的影响,旨在探明银鲳幼鱼对温度胁迫的反应,以为银鲳人工养殖中的温度调控提供参考依据。
1. 材料与方法
1.1 实验材料
实验用银鲳幼鱼取自东海水产研究所于2014年自行繁育的银鲳幼鱼,实验在上海市水产研究所江苏启东市的实验基地进行。选取规格均一[平均叉长为(9.1±1.1)cm,平均体质量为(18.8±7.2)g]、体表无伤的银鲳幼鱼作为实验材料。
1.2 饲养管理与实验设计
实验用水采用经网滤、暗沉淀后的天然海水,日换水量为50% · d-1。盐度28±0.5,pH 7.9±0.5,溶解氧6~8 mg · L-1,水温为27 ℃,24 h不间断充气。定时观察水质和鱼活动情况。
实验设计22 ℃、27 ℃和32 ℃ 3个温度梯度,以27 ℃为对照组,每个梯度3个重复,每个重复20尾,组间个体无显著差异(P<0.05)。实验开始将180尾实验用鱼放入3个27 ℃水泥池内,暂养4 d,再将180尾实验用鱼随机分配到9个2.5 m×2.5 m的水泥池。并采用广东日升牌(CW-2500A)冷热水机进行水温调节。实验分别在第0、第12、第24和第48小时取样。
1.3 样品采集及酶液制定
实验期间各实验组均不投食,每个重复随机抽取3尾,每实验组9尾,用200 mg · L-1的MS-222作快速深度麻醉,麻醉后,置于冰盘上采用尾静脉采血,血样于4 ℃冰箱中静置12 h,在4 ℃条件下3 500 r · min-1离心20 min制备血清,上清液移置-70 ℃冰箱中保存备用,血液抽取完毕后,立即解剖取鳃、肝脏和肾脏,样品置于-20 ℃保存,用于生化分析。
酶液制定。将鳃瓣、肝脏或肾脏在匀浆介质[pH 7.4,0.01 mol · L-1Tris-HCl,0.000 1 mol · L-1EDTA-2Na,0.01 mol · L-1蔗糖,0.8%NaCl]中剪碎,用匀浆机15 000 r · min-1研磨制成匀浆。之后在4 ℃下离心15 min,取上清液检测指标。
1.4 检测指标
血清、肝脏、鳃和肾脏检测的指标是GPT、GOT、AKP、ACP、LDH、Na+、K+、Ca2+、氯(Cl-)、Na+/K+-ATP酶、Ca2+/Mg2+-ATP酶。上述指标的测定试剂盒均购自南京建成生物工程研究所,具体实验方法见说明书。其中总蛋白采用南京建成考马斯亮蓝蛋白测定试剂盒,血清离子浓度分析采用全自动生化分析仪(日立7600型)测定。
1.5 数据分析
所得数据以平均值±标准差(X±SD)表示,实验结果用SPSS 19.0软件进行统计与分析,运用单因素方差分析急性温度胁迫后银鲳幼鱼各项检测指标,先进行方差齐性检验,不满足方差齐性时,对数据进行自然对数或平方根转换,采用Duncan′s检验进行多重比较,P<0.05即认为有显著性差异。运用Excel 2010绘制图表。
2. 结果
2.1 GPT
急性温度胁迫下肝脏GPT活性仅在32 ℃实验组有变化,呈波浪式下降趋势,在第48小时下降到最小值(P<0.05),且与对照组差异显著(P<0.05)(图 1-Ⅰ);22 ℃和32 ℃实验组血清中GPT活性变化相反,前者呈上升趋势,后者则呈下降趋势,且分别在第48和第12小时达到最大值和最小值(P<0.05)(图 1-Ⅱ)。在第12、第24和第48小时,实验组GPT与对照组出现显著性差异(P<0.05)。
图 1 急性温度胁迫对银鲳幼鱼肝脏和血清谷丙转氨酶活性的影响图柱上方不同小写字母表示同一实验组不同时间的差异显著(P<0.05),不同大写字母表示同一时间段内不同实验组之间差异显著(P<0.05),后图同此Figure 1. Effect of acute temperature stress on GPT activities in liver and serum of juvenile P.argenteusDifferent small letters above the bar graph indicate significant difference at different time (P < 0.05);capital letters indicate significant difference among experimental groups at the same time (P < 0.05). The same case in the following figures.2.2 GOT
急性温度胁迫下22 ℃实验组肝脏GOT活性呈先下降后上升趋势,而32 ℃实验组则先下降后上升,再下降,2个实验组均在第24小时升高到最大值;第12小时实验组与对照组差异显著(P<0.05);第48小时32 ℃实验组与其余2个处理组差异显著(P<0.05)(图 2-Ⅰ)。血清GOT活性仅在32 ℃实验组有变化,呈先下降后上升趋势,在第12小时下降到最小值,第48小时上升至最大值(P<0.05);第12和第24小时32 ℃实验组均与对照组差异显著(P<0.05)(图 2-Ⅱ)。
2.3 AKP
急性温度胁迫后22 ℃实验组随时间延长,AKP活性逐渐升高,在第48小时升高至最大值;32 ℃实验组则呈下降趋势,在第12小时下降至最小值(图 3-Ⅰ)。第12小时实验组与对照组差异显著(P<0.05);在第24和第48小时,32 ℃实验组与对照组出现显著性差异(P<0.05)。
2.4 ACP
急性温度胁迫后血清中ACP活性在实验组中均呈上升趋势,22 ℃实验组在第24小时达到峰值,32 ℃实验组在第48小时达到峰值(P<0.05)。第24和第48小时22 ℃实验组与对照组出现显著性差异(P<0.05)(图 3-Ⅱ)。
2.5 LDH
急性温度胁迫下血清LDH活性在22 ℃实验组出现波浪式变化,即先下降后上升,在第12小时下降到谷值,在第48小时又达到峰值,且高于初始值(P<0.05);32 ℃实验组LDH活性不随时间的变化而变化(P>0.05)(图 3-Ⅲ)。
2.6 Na+
急性温度胁迫条件下22 ℃实验组Na+浓度出现上升趋势,在第48小时上升至最大值(P<0.05);32 ℃实验组Na+浓度未出现显著性差异(P>0.05)。第48小时22 ℃实验组与对照组差异显著(P<0.05)(图 4-Ⅰ)。
2.7 K+
急性温度胁迫下,22 ℃实验组血清K+浓度呈上升趋势,在第48小时上升到最大值(P<0.05);32 ℃实验组则先上升后下降,第24小时上升到最大值,第48小时再次下降,但高于初始值(P<0.05)。第12小时2个实验组差异显著;第48小时22 ℃实验组与对照组差异显著(P<0.05)(图 4-Ⅱ)。
2.8 Ca2+
3个组的血清Ca2+浓度在急性温度胁迫后均有变化。22 ℃实验组出现缓慢上升后再缓慢下降的趋势,在第12小时上升至峰值,第48小时下降至谷值,且差异显著(P<0.05)(图 4-Ⅲ);32 ℃实验组呈先上升后下降的趋势,即先在第12小时上升至峰值,而后微降(P<0.05)。第12小时实验组与对照组出现显著性差异(P<0.05)。
2.9 Cl-
22 ℃实验组Cl-浓度出现缓慢上升趋势,第48小时上升到最大值(P<0.05);32 ℃实验组出现波浪式变化,即先缓慢下降,再急速上升,最后又下降,且在第24小时上升到最大值,第48小时又回落,但大于初始值(P<0.05)(图 4-Ⅳ)。第48小时22 ℃实验组与对照组差异显著(P<0.05)。
2.10 Na + /K +-ATP酶
急性温度胁迫下22 ℃实验组银鲳幼鱼鳃的Na + /K +-ATP酶活性随着时间的推移,未出现显著性变化(P>0.05)(图 5-Ⅰ);32 ℃实验组随着时间的延长,出现下降趋势,在第48小时下降到最小值(P<0.05);对照组也出现了缓慢下降的趋势,且也在第48小时下降到最小值(P<0.05)。第12和第48小时2个实验组差异显著(P<0.05)。肾脏Na + /K +-ATP酶活性32 ℃实验组随着时间的延长,未出现显著性变化(P>0.05)(图 5-Ⅱ);22 ℃实验组随着时间的推移,出现先升高后降低的趋势,在第24小时升高到最大值,第48小时有所回落,但大于初始值(P<0.05)。
2.11 Ca2+ /Mg2+-ATP酶
鳃Ca2+ /Mg2+ -ATP酶活性在22 ℃实验组和32 ℃实验组均出现先下降后升高的趋势,前者在第12小时下降到谷值,第24小时回升,但小于初始值(P<0.05),而后者则在第24小时下降到谷值,第48小时回升,且小于初始值(P<0.05)(图 6-Ⅰ);对照组出现下降趋势,第48小时下降到最小值(P<0.05)。第48小时22 ℃实验组和对照组出现显著性差异(P<0.05)。肾脏Ca2+ /Mg2+ -ATP酶活性22 ℃和32 ℃实验组均出现先升高后下降趋势,且均在第24小时升高到峰值,在第48小时下降至最低值(P<0.05)(图 6-Ⅱ);第24和第48小时实验组均与对照组差异显著(P<0.05)。
3. 讨论
水体温度可以影响鱼类的生长、营养的消化吸收、鱼体成分、肝脏内的代谢酶类活性等[11-12]。鱼类为适应环境温度的变化,会对鱼体代谢酶类的活性进行调整[13]。转氨酶与动物体内蛋白质代谢、糖代谢及脂代谢有关,其活性大小通常被认为是肝脏功能正常与否的标志[14-16]。GPT和GOT是广泛存在于动物线粒体中的重要氨基酸转氨酶,其中GPT主要分布于肝脏,而GOT则主要分布于心肌细胞[17]。在通常情况下,由于细胞膜的屏障作用,血清中这2种酶的浓度很低[18],但是当鱼体受到外界刺激时,肝脏和心肌细胞受损,细胞膜的通透性增加,大量的GPT和GOT渗入血液中,导致血液中这2种酶的活性增强,而肝脏和心肌细胞中酶的浓度减小[19]。此实验低温组GPT在肝脏没有变化,而在血清中浓度升高;高温组肝脏和血清中的变化相同,均出现下降趋势,因此此实验GPT并未出现与理论相符的变化趋势,这可能是由于急性温度胁迫使银鲳幼鱼产生了应激反应,使得细胞膜通透性加大,肝脏受损。同时,此实验低温胁迫下鱼类血清及肝脏中GPT的变化规律与KUMAR等[20]、刘波等[21]的研究不同,究其原因,可能是实验鱼类的不同导致。低温组,GOT活性在肝脏出现先下降后上升的趋势,但差异不显著,而在血清中没有变化,说明低温胁迫对银鲳幼鱼的心肌细胞造成的损伤并不严重,这与刘波等[22]的实验结果不同;在高温组,胁迫时间达到48 h,GOT活性出现了与理论相符的变化趋势,并且与KUMAR等[20]、桂丹和刘文斌[17]的研究结果一致,说明高温胁迫对银鲳幼鱼心肌细胞产生了损害。
LDH同GOT一样,分布于心肌细胞中,在医学上亦将GOT和LDH称为“心肌酶”[23]。在此实验中,LDH在低温实验组具有浓度上升的趋势,可能是由于低温胁迫刺激了银鲳幼鱼的心肌细胞,使心肌收缩力加强,血液循环速度加快[24],代谢能力增强,细胞膜通透性加大,最终导致血清中LDH浓度上升。高温实验组未产生变化,结合GOT的变化趋势,说明急性温度胁迫对银鲳幼鱼心肌细胞产生了影响。LDH在高温实验组没有出现变化,这可能与实验过程中的饥饿处理以及外界其他环境因素有关。
AKP和ACP是2种重要的代谢调控酶,广泛分布于动植物及微生物体内,在动物代谢过程中发挥着不可替代的作用。这2种酶类是非特异性磷酸水解酶,能催化磷酸单酯的水解,打开磷酸酯键,释放磷酸离子[25],促使磷酸基团的转移反应,这对动物的生存具有重要意义[21]。此外,AKP和ACP在机体生长代谢、保持内环境稳定以及维持机体健康方面亦具有重要的作用,且其功能作用受到生长阶段、营养状况、疾病及环境变化的影响[26-28]。AKP是一种膜结合蛋白,可维持体内适宜的钙磷比例[29]。此实验中AKP在低温处理组出现上升趋势,这可能是由于在低温胁迫下,银鲳幼鱼增加了脂类代谢水平,而AKP与肠内脂质代谢有关,因此血清中AKP浓度增加;在高温处理组,AKP浓度下降,这可能是因为在高温胁迫下,皮质醇促进脂肪降解,因此AKP浓度下降。ACP在实验组均出现上升趋势,说明在急性温度胁迫下,肝脏等组织细胞膜通透性增加,这促使ACP从组织中渗透到血清。
血清离子是维持细胞新陈代谢、酸碱平衡以及调节体液渗透压的重要因子[24, 30]。硬骨鱼类Na+的浓度与pH呈负相关,其浓度的变化可导致鱼类体液酸碱度发生改变,并且可诱发鱼类死亡;K+失衡可使细胞膜破裂,并可能导致细胞死亡[24];Cl-浓度往往随着Na +和K +的变化而变化[7]。此实验中低温胁迫组Na +、K +和Cl-的浓度均呈上升趋势,这与冀德伟等[31]的研究报道不同(其研究指出K +浓度下降,而Na +和Cl-浓度升高);陈超等[7]研究了低温胁迫对七带石斑鱼(Epinephelus septemfasciatus)幼鱼血清生化指标的影响,发现各离子成分均未有显著变化,这亦与此实验结果不同。其原因可能是银鲳幼鱼细胞膜的渗透压调节功能下降,细胞膜通透性增加,从而使得细胞内液流入血液中,引起离子浓度的变化[32]。Ca2 +浓度呈现先上升后下降的趋势,可能是因为低温胁迫初期细胞膜通透性增加,因此Ca2 +浓度在血清中增加,但是随着时间的延长,银鲳幼鱼机体代谢能力降低,肌肉的兴奋性下降,所以Ca2 +浓度下降。在高温胁迫组,4种血清离子的变化各不相同,这说明高温胁迫后,银鲳幼鱼的肝脏、肾脏、心肌和鳃等组织都出现了不同程度损伤,阻碍了机体的正常新陈代谢,最终导致体液内环境稳态遭破坏,因此细胞膜通透性增加,并使得血清中4种离子出现了不同程度的变化。
在众多的环境因素中,除了盐度以外,外界环境温度也可以影响海水鱼类的渗透压平衡及细胞膜的通透性[33]。ATP酶是一类分布广泛的膜结合蛋白,鳃和肾脏是硬骨鱼类中负责执行ATP酶调控的两大重要器官。ATP酶不仅参与生物体的物质转运[34]、能量代谢及氧化磷酸化等生理生化过程,而且还可与细胞膜上磷脂结合,从而影响细胞膜的其他功能[35],因此也是一项评价环境胁迫下鱼体机能的生物学指标。ATP酶活性的下降将影响鱼体的生理功能,因为这能引起细胞膜结构的破坏[26],损害线粒体膜及质膜,从而影响生物体自身正常的代谢活动[36]。Na +/K +-ATP酶活性在离子转运过程中发挥着重要作用,其可通过主动跨膜转运细胞内外的Na +与K +,从而维持细胞内外的离子平衡[37]。此实验中鳃内的Na + /K +-ATP酶活性在低温组没有变化,高温组则出现下降趋势;Ca2 + /Mg2 +-ATP酶活性在2个实验组进行至第48小时均出现降低趋势,这与KONG等[38]的实验结果相似。实验结果表明急性温度胁迫损伤了银鲳幼鱼的鳃,并导致其代谢紊乱。肾脏中2种ATP酶活性在高温胁迫和低温胁迫下皆发生了较大的改变,且两者之间存在差异,表明急性温度胁迫损害了银鲳幼鱼的肾脏,致使其代谢活动发生紊乱,严重危害银鲳幼鱼的健康。
综上所述,在急性温度胁迫下,银鲳幼鱼的代谢系统、排泄系统、血液循环系统及渗透压调节机制等均受到了不同程度的损伤,因此在实际生产操作中,应尽量避免急性温度胁迫或降低胁迫的时间和频率等,以保证银鲳幼鱼的健康生长。
-
表 1 深澳湾浮游植物优势种类名录
Table 1 Catalogue of phytoplankton species in Shen′ao Bay
编号No. 种名species name 龙须菜收获前before harvesting 龙须菜收获后after harvesting 1 中肋骨条藻Skeletonema costatum + + 2 旋链角毛藻Chaetoceros curvisetus + + 3 尖刺拟菱形藻Pseudo-nitzschia pungens + + 4 海链藻Thalassiosira sp. + + 5 菱形藻Nitzschia sp. + + 6 劳式角毛藻Chaetoceros lorenzianus + 7 冕胞角毛藻Chaetoceros diadema + 8 丹麦细柱藻Leptocylindrus danicus + 9 刚毛根管藻Rhizosolenia setigera + 10 柔弱角毛藻Chaetoceros debilis + 11 笔尖形根管藻Rhizosolenia styliformis + 12 短角弯角藻Eucampia zodiacus + 13 具槽直链藻Melosira sulcata + 14 优美旭式藻Schroderella delicatula + + 15 海洋原甲藻Prorocentrum micans + 16 多甲藻Peridinium sp. + 注:+.优势种
Note:+. dominant species -
[1] 柯才焕.我国鲍鱼养殖产业现状与展望[J].中国水产, 2013(1):27-30. http://d.wanfangdata.com.cn/Periodical/zhongguosc201301010 [2] 杨宇峰.近海环境生态修复与大型海藻资源利用[M].北京:科学出版社, 2016:14-21. [3] 王朝晖, 韩博平, 胡韧, 等.广东省典型水库浮游植物群落特征与富营养化研究[J].生态学杂志, 2005, 24(4):402-405. http://d.wanfangdata.com.cn/Periodical/stxzz200504012 [4] 张学成, 费修绠, 王广策, 等.江蓠属海藻龙须菜的基础研究与大规模栽培[J].中国海洋大学学报(自然科学版), 2009, 39(5):947-954. http://d.wanfangdata.com.cn/Periodical/qdhydxxb200905017 [5] 陈宇炜, 高锡云.浮游植物叶绿素a含量测定方法的比较测定[J].湖泊科学, 2000, 12(2):185-188. doi: 10.18307/2000.0215 [6] SHANNON C E. The mathematical theory of communication (Reprinted)[J].Q Rev Biol, 1997, 14(4):306-317.
[7] PIELOU E C. An introduction to mathematical ecology[J].Bioscience, 1969, 24(2):7-12.
[8] 孙军, 刘东艳.多样性指数在海洋浮游植物研究中的应用[J].海洋学报, 2004, 26(1):62-75. http://d.wanfangdata.com.cn/Periodical/hyxb200401007 [9] YANG Y F, LIU Q, CHAI Z Y, et al. Inhibition of marine coastal bloom-forming phytoplankton by commercially cultivated Gracilaria lemaneiformis (Rhodophyta)[J].J Appl Phycol, 2015, 27(6):2341-2352. doi: 10.1007/s10811-014-0486-0
[10] 赖龙玉, 严正凛, 钟幼平. 4种不同藻类与鲍混养的初步试验[J].集美大学学报(自然科学版), 2014, 19(2):89-94. http://d.wanfangdata.com.cn/Periodical/jmdxxb-zr201402002 [11] 孙伟, 张涛, 杨红生, 等.龙须菜在滩涂贝藻混养系统中的生态作用模拟研究[J].海洋科学, 2006, 30(12):72-76. doi: 10.3969/j.issn.1000-3096.2006.12.015 [12] 周凯, 黄长江, 姜胜, 等. 2000-2001年拓林湾浮游植物群落结构及数量变动的周年调查[J].生态学报, 2003, 22(5):688-698. http://www.cnki.com.cn/Article/CJFDTotal-STXB200205010.htm [13] 王亮根, 杜虹, 陈伟洲, 等.深澳湾浮游植物群落特征及其多样性研究[J].生态科学, 2010, 29(3):200-206. http://d.wanfangdata.com.cn/Periodical/stkx201003002 [14] 张俊梅, 刘擎, 王庆, 等.汕头南澳白沙湾浮游植物群落结构及水体营养盐分布特征[J].水生态学杂志, 2012, 33(2):61-68. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=scan201202011&dbname=CJFD&dbcode=CJFQ [15] 汤坤贤, 游秀萍, 林亚森, 等.龙须菜对富营养化海水的生物修复[J].生态学报, 2005, 25(11):3044-3051. doi: 10.3321/j.issn:1000-0933.2005.11.035 [16] 陈露, 李纯厚, 戴明, 等.西沙永兴岛附近海域秋末氮磷营养盐加富对浮游植物生长限制的影响[J].南方水产科学, 2016, 12(4):125-130. http://www.schinafish.cn/CN/abstract/abstract9348.shtml [17] 王璐, 李冰, 孙盛明, 等.复合养殖系统中浮游植物群落结构及其与水环境因子的关系[J].水生态学杂志, 2015, 36(5):81-88. http://d.wanfangdata.com.cn/Periodical/sstxzz201505013 [18] GOLDMAN J C, MANN R. Temperature-influenced variations in speciation and chemical composition of marine phytoplankton in outdoor mass cultures[J].J Exp Mar Bio Ecol, 1980, 46(1):29-39. doi: 10.1016/0022-0981(80)90088-X
[19] 王妍, 张永, 王玉珏, 等.胶州湾浮游植物的时空变化特征及其与环境因子的关系[J].安全与环境学报, 2013, 13(1):163-170. http://d.wanfangdata.com.cn/Periodical/aqyhjxb201301036 [20] 杨晓改, 薛莹, 昝肖肖, 等.海州湾及其邻近海域浮游植物群落结构及其与环境因子的关系[J].应用生态学报, 2014, 25(7):2123-2131. http://d.wanfangdata.com.cn/Periodical/yystxb201407038 [21] MIYAHARA K, NAGAI S, ITAKURA S, et al. First record of a bloom of Thalassiosira diporocyclus in the Eastern Seto Inland Sea[J].Fish Sci, 1996, 62(6):878-882. doi: 10.2331/fishsci.62.878
[22] 陈善文, 高亚辉, 杜虹, 等.双环海链藻(Thalassiosira diporocyclus Hasle)赤潮[J].海洋与湖沼, 2004, 35(2):130-137. http://www.cnki.com.cn/Article/CJFDTotal-HYFZ200402003.htm [23] YAMAMOTO T, TSUCHIYA H. Physiological responses of Si-limited Skeletonema costatum to silicate supply with salinity decrease[J].Bull Plankton Soc Jpn, 1995, 42(1):1-17.
[24] 郭永坚, 罗昭林, 朱长波, 等.水产养殖对流沙湾浮游植物群落特征的影响[J].南方水产科学, 2015, 11(2):57-65. http://www.schinafish.cn/CN/abstract/abstract9197.shtml [25] ABREU M H, PEREIRA R, YARISH C, et al. IMTA with Gracilaria vermiculophylla:productivity and nutrient removal performance of the seaweed in a land-based pilot scale system[J].Aquaculture, 2011, 312(1/2/3/4):77-87.
[26] NEORI A, KROM M D, ELLNER S P, et al. Seaweed biofilters as regulators of water quality in integrated fish-seaweed culture units[J].Aquaculture, 1996, 141(3):183-199.
[27] 岳维忠, 黄小平, 黄良民, 等.大型藻类净化养殖水体的初步研究[J].海洋环境科学, 2004, 23(1):13-15. http://d.wanfangdata.com.cn/Periodical/hyhjkx200401004 [28] KEMP J, BRITZ P J, AGUEERO P. The effect of macroalgal, formulated and combination diets on growth, survival and feed utilisation in the red abalone Haliotis rufescens[J].Aquaculture, 2015, 448:306-314. doi: 10.1016/j.aquaculture.2015.06.016
[29] MULDERIJ G, SMOLDERS A P, DONK E. Allelopathic effect of the aquatic macrophyte, Stratiotes aloides, on natural phytoplankton[J].Freshw Biol, 2006, 51(3):554-561. doi: 10.1111/fwb.2006.51.issue-3
[30] 杨宇峰, 宋金明, 林小涛, 等.大型海藻栽培及其在近海环 境的生态作用[J].海洋环境科学, 2005, 24(3):77-80. http://d.wanfangdata.com.cn/Periodical/hyhjkx200503020 [31] 刘婷婷, 杨宇峰, 叶长鹏, 等.大型海藻龙须菜对两种海洋赤潮藻的生长抑制效应[J].暨南大学学报(自然科学与医学版), 2006, 27(5):754-759. http://d.wanfangdata.com.cn/Periodical/jndxxb200605022 [32] 李雅婷, 陈明, 曾帅霖, 等.饲料中添加龙须菜对眼斑拟石首鱼生长、脂肪酸组成、免疫及肠道的影响[J].南方水产科学, 2016, 12(1):85-93. http://www.schinafish.cn/CN/abstract/abstract9290.shtml [33] 李宵, 杨宇峰, 陈伟洲.大型海藻龙须菜对浮游植物群落结构影响的实验研究[J].生态科学, 2009, 28(2):102-106. http://d.wanfangdata.com.cn/Periodical/stkx200902002 [34] 李顺志, 张言怡, 王宝捷, 等.扇贝海带间养试验研究[J].海洋湖沼通报, 1983(4):71-77. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hyfb198304009&dbname=CJFD&dbcode=CJFQ [35] 欧俊新, 严正凛.南方鲍藻混养技术研究及其效益分析[J].集美大学学报(自然版), 2011, 16(3):172-177. http://d.wanfangdata.com.cn/Periodical/jmdxxb-zr201103003 [36] 赵素芬, 孙会强.杂色鲍与2种海藻混养效果研究[J].水产养殖, 2017, 38(1):40-46. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=scyz201701014&dbname=CJFD&dbcode=CJFQ -
期刊类型引用(4)
1. 高玉倩,夏苏东,高燕,高丽,李茂哲,蒋泽昊,薛东秀. 松江鲈幼鱼性腺分化的组织学观察. 海洋科学. 2024(10): 22-32 . 百度学术
2. 杨育凯,黄小林,舒琥,林黑着,王岚,荀鹏伟,虞为,黄忠,李涛. 不同生境下黄斑篮子鱼肌肉营养成分比较分析. 南方水产科学. 2023(01): 128-135 . 本站查看
3. 韩庆,刘可可,黄艳飞,田汉,王文彬,刘良国. 鲇繁殖生物学特征分析. 南方水产科学. 2023(05): 154-161 . 本站查看
4. 邝杰华,陈刚,马骞,毛非凡,周启苓,黄建盛,施钢,张健东. 军曹鱼(Rachycentron canadum)性腺分化及首周年发育的组织学观察. 海洋学报. 2021(08): 128-138 . 百度学术
其他类型引用(4)