南海流刺网网目尺寸与主捕对象体型特征关系的初步分析

杨炳忠, 杨吝, 谭永光, 张鹏, 晏磊, 陈森

杨炳忠, 杨吝, 谭永光, 张鹏, 晏磊, 陈森. 南海流刺网网目尺寸与主捕对象体型特征关系的初步分析[J]. 南方水产科学, 2015, 11(6): 94-99. DOI: 10.3969/j.issn.2095-0780.2015.06.013
引用本文: 杨炳忠, 杨吝, 谭永光, 张鹏, 晏磊, 陈森. 南海流刺网网目尺寸与主捕对象体型特征关系的初步分析[J]. 南方水产科学, 2015, 11(6): 94-99. DOI: 10.3969/j.issn.2095-0780.2015.06.013
YANG Bingzhong, YANG Lin, TAN Yongguang, ZHANG Peng, YAN Lei, CHEN Sen. Preliminary analysis of relationship between mesh size of gillnet and body characteristics of target species in the South China Sea[J]. South China Fisheries Science, 2015, 11(6): 94-99. DOI: 10.3969/j.issn.2095-0780.2015.06.013
Citation: YANG Bingzhong, YANG Lin, TAN Yongguang, ZHANG Peng, YAN Lei, CHEN Sen. Preliminary analysis of relationship between mesh size of gillnet and body characteristics of target species in the South China Sea[J]. South China Fisheries Science, 2015, 11(6): 94-99. DOI: 10.3969/j.issn.2095-0780.2015.06.013

南海流刺网网目尺寸与主捕对象体型特征关系的初步分析

基金项目: 

公益性行业(农业)科研专项经费项目 201203018

详细信息
    作者简介:

    杨炳忠(1984-),男,硕士,助理研究员,从事渔具选择性研究。E-mail:ybzaaa@163.com

    通讯作者:

    杨吝(1954-),男,研究员,从事渔具渔法研究。E-mail:scsfish@21cn.com

  • 中图分类号: S972.11

Preliminary analysis of relationship between mesh size of gillnet and body characteristics of target species in the South China Sea

  • 摘要:

    利用南海北部流刺网调查的相关资料对3种流刺网网目尺寸与主捕对象体型特征的关系进行了分析。结果表明,康氏马鲛(Scomberomorus commersoni)、中国鲳(Pampus chinensis)和龙头鱼(Harpodon nehereus)的体型特征为流刺网捕捞提供了有利的条件;相对体围值对应的渔获率变化曲线形状与刺网钟形选择性曲线相似;454尾主捕对象中仅1尾(占0.002%)相对体围值小于0.8;41尾相对体围值大于1.20,占0.09%;当相对体围值为1.0~1.1时,渔获率最高;白鲳刺网、龙头鱼刺网和马鲛刺网的最小网目尺寸分别为144 mm、35 mm和72 mm。建议结合选择性试验与体型特征研究,为制定南海区流刺网最小网目尺寸提供参考。

    Abstract:

    We analyzed the relationship between mesh size of gillnet and body characteristics of target species for three kinds of gillnet fisheries. The results reveal that the morphological characteristics of Scomberomorus commersoni, Pampus chinensis and Harpodon nehereus are beneficial for gillnet fisheries. The catch rate curve of relative girth was similar to the selective curve of normal gillnet. Only 1 fish of 454 target species whose relative girth was less than 0.8, amounting to 0.002% of the total catch, and the relative girth of 41 fish was higher than 1.2, accounting for 0.09% of the total catch. The capture rate reached the maximum when the relative girth was 1.0~1.1. The minimal mesh sizes of three gillnet were 144 mm, 35 mm and 72 mm, respectively. It is suggested that the selectivity research should be combined with this study to provide references for promulgation of the minimal mesh size of gillnet in the South China Sea.

  • 海洋双壳类贝壳的颜色过去仅被作为分泌产物而一直被忽视。事实上双壳类贝壳的颜色不仅与它们的生态和行为有关,还与其生长、存活等性状有关[1-9]。目前,对贝类壳色多态现象的研究有一些相关报道[10-11],但对于不同壳色贝类间的杂交研究很少。INNES和HALEV[12]通过单体杂交,研究了贻贝(Mytilus edulis)壳色多态的可遗传性,发现少见的棕壳色个体受一对显性等位基因控制,而常见的黑壳色个体受另外一对等位基因控制,并且认为壳色主要受基因决定,环境只是起到影响作用;NEWKIRK[13]通过杂交,研究了贻贝壳色的可遗传性,确认贻贝的壳色的确是由简单的遗传基因决定的,这与INNES和HALEV的观点一致,且杂交后代表现出一定的杂种优势。TAKI[14]报道了菲律宾蛤仔(Ruditapes philippinarum)壳面花纹的变异现象及左右壳花纹的不对称性;PEIGNON等[15]通过相同壳色蛤仔的近缘杂交,分析了菲律宾蛤仔壳色的决定机制,并主要研究了壳色、壳面花纹的遗传变异和出现壳色纯合的原理。闫喜武等[16-18]发现,不同壳色蛤仔生长存在显著差异,壳色可以稳定的遗传给后代,并通过“海洋红(ocean red,R)”与“斑马蛤(zebra,Z)”的群体杂交,获得子一代“红斑马(red zebra,RZ)”。菲律宾蛤仔壳型变化很大,壳面颜色和花纹变化各异[19],这为不同壳色蛤仔间的杂交奠定了基础。此试验利用F1代海洋红、斑马蛤为材料,开展了品系间的群体杂交,旨在评价F2代杂种优势,为种质改良,培育壳色新品系及杂种优势利用提供理论依据。

    亲贝为2006年10月繁育的苗种,在大连海量水产食品有限公司生态虾池中养成。通过定期检测其性腺发育程度,将处于临产状态的F1代海洋红、斑马蛤各100个作为繁殖群体。

    2007年10月初,将临产状态的亲贝阴干12 h,4 h后亲贝开始产卵排精,将正在产卵排精的个体取出,用自来水冲洗干净,单独放到盛有新鲜海水的2.0 L红色塑料桶中继续产卵排精。分别选取海洋红、斑马蛤雌雄各25个,收集的精卵分别单独放置,采用双列杂交法,建立RR和ZZ 2个自交组,RZ和ZR 2个正反交组,共4个试验组(表 1)。受精前检查卵子是否已经受精,已受精个体的卵子弃掉,换取未受精的个体进行杂交,将获得的精卵按照表 1组合受精,在事先处理好的100 L白色塑料桶中迅速混合,搅拌均匀,调整密度10~12 ind · L-1,充气孵化。在水温20.8~21.6℃,盐度为25,pH 7.96的条件下,大约经过25 h,发育至D形幼虫。整个操作过程中,各试验组严格隔离,防止混杂。

    表  1  2种壳色品系蛤仔群体杂交的试验设计
    Table  1.  The design of double-hybrids for two shell color strains on clam
    亲本
    parents
    海洋红
    ocean red(R,♂)
    斑马蛤
    zebra(Z,♂)
    海洋红
    ocean red(R,♀)
    RR RZ
    斑马蛤
    zebra(Z,♀)
    ZR ZZ
    下载: 导出CSV 
    | 显示表格

    幼虫在100 L的白塑料桶中培育,密度为3~4 ind · mL-1,各试验组分别设3个重复。每2天换1次水,换水量为100%。饵料每天投喂2次,前期为绿色巴夫藻(Pavloca viridis),后期为绿色巴夫藻和小球藻(Chlorella vulgaris) (1 : 1)混合投喂,投饵量视幼虫摄食情况而定。为防止不同试验组幼虫之间混杂,换水网箱单独使用。幼虫培育期间,水温为18.2~20.6℃,盐度为25~28,pH 7.96~8.04。为了消除培育密度的影响,在幼虫期定期对密度进行调整,使每个重复密度保持一致。幼虫变态后,稚贝培育水温为16.4~18.2℃,投饵量随着稚贝摄食量增大而增加,其它管理同幼虫培育。

    参照CRUZ和IBARRA[20]与郑怀平[21]使用的方法,用下面公式计算杂种优势(heterosis,H):

    $$ H(\%)=\frac{(\mathrm{RZ}+\mathrm{ZR})-(\mathrm{RR}+\mathrm{ZZ})}{\mathrm{RR}+\mathrm{ZZ}} \times 100 $$ (1)
    $$ H_{\mathrm{RZ}}(\%)=\frac{\mathrm{RZ}-\mathrm{RR}}{\mathrm{RR}} \times 100 $$ (2)
    $$ H_{\mathrm{ZR}}(\%)=\frac{\mathrm{ZR}-\mathrm{ZZ}}{\mathrm{ZZ}} \times 100 $$ (3)

    式中RR、RZ、ZR和ZZ表示各试验组的F2在同一日龄的表型值(生长、存活)。公式(1)表示双列杂交的杂种优势;公式(2)和(3)分别表示双列杂交中正、反交组的杂种优势。

    用SPSS 13.0统计软件对数据进行分析处理,差异显著性设置为P<0.05。

    表 2所示,海洋红与斑马蛤亲贝的壳长、重量及产卵量差异显著(P<0.05)。壳色表现见图 1图 2。海洋红经过一代的纯化,背景颜色全部为红色;斑马蛤的壳面花纹均为斑马条纹,且纹路间距一致。

    表  2  海洋红与斑马蛤亲贝形态及产卵量
    Table  2.  Shell length, weight and fecundity of ocean red, and zebra strains  Mean±SD
    类别
    items
    海洋红
    ocean red(R)
    斑马蛤
    zebra(Z)
    壳长/mm
    shell length
    17.12a±0.79 14.76b±1.30
    重量/g·ind-1
    weight
    0.85a±0.11 0.55b±0.14
    产卵量/×103·ind-1
    fecundity
    45a 36b
    注:同行有相同字母表示没有显著性差异(P>0.05)
    Notes:The same letters in each line mean no significant difference (P>0.05).
    下载: 导出CSV 
    | 显示表格
    图  1  海洋红F1
    Figure  1.  Ocean red strain F1
    图  2  斑马蛤F1
    Figure  2.  Zebra strain F1

    表 3所示,2个壳色品系的卵径无显著差异(P>0.05);自交组与杂交组间的受精率近乎100%,无显著差异(P>0.05),但杂交组RZ和ZR的孵化率显著高于相应对照组(P<0.05);D形幼虫大小各试验组间无显著差异(P>0.05)。

    表  3  菲律宾蛤仔各试验组卵径、受精率、孵化率、D形幼虫大小比较
    Table  3.  Comparison of egg-diameter, fertilized rate, hatching rate, size of D larvae of each experimental groups  Mean±SD
    试验组
    experiment groups
    测定指标measuring iterms
    卵径/μm
    egg-diameter
    受精率/%
    fertilized rate
    孵化率/%
    hatching rate
    D形幼虫/μm
    the size of D larvae
    RR 70.23a±0.56 99.96a±0.28 85.67a±5.27 100.15a±1.20
    RZ 70.23a±0.56 99.82a±0.32 90.28b±4.65 100.09a±1.11
    ZR 70.08a±0.63 99.67a±0.19 92.95b±3.88 100.28a±1.05
    ZZ 70.08a±0.63 99.89a±0.25 80.54a±6.15 100.32a±1.94
    注:同一列中上标具有相同字母表示差异不显著(P>0.05),下同
    Notes:The same letters in each column mean no significant difference (P>0.05), the same below.
    下载: 导出CSV 
    | 显示表格

    各试验组幼虫在3、6、9日龄的平均壳长、生长速度和杂种优势见表 4。浮游期间,幼虫生长尚未表现出明显的生长优势和母本效应。0~3日龄,各试验组幼虫大小无显著差异,杂种优势值为0,6~9日龄,杂交组RZ和ZR的幼虫大小显著大于相应对照组(P<0.05),其生长的杂种优势分别为(1.63±0.81)%和(2.58±0.67)%。RZ和ZR的生长速度分别为(8.64±0.32)和(8.67±0.31)μm · d-1,显著高于对照组,杂种优势分别为5.10%和4.96%。

    表  4  浮游期各试验组幼虫的平均壳长、生长速度和杂种优势
    Table  4.  Mean shell length, growth rate and heterosis of larvae for experiment groups during the pelagic period  Mean±SD
    试验组
    experiment groups
    幼虫日龄/d age of larvae 生长速度/μm·d-1
    growth rate
    3 6 9
    平均壳长/μm
    average shell
    length
    RR 130.17a±2.45 155.67a±4.87 174.00a±3.57 8.22a±0.40
    RZ 130.00a±3.22 157.33b±5.68 177.83b±2.84 8.64b±0.32
    ZR 130.33a±2.25 158.00b±3.85 178.00b±2.82 8.67b±0.31
    ZZ 130.83a±2.65 153.33a±4.22 174.33a±3.88 8.26a±0.43
    杂种优势/%
    heterosis
    H 0 1.40 2.15 5.04
    HRZ 0 1.06 2.20 5.10
    HZR 0 3.05 2.10 4.96
    下载: 导出CSV 
    | 显示表格

    4个试验组幼虫在3、6、9日龄的存活及杂种优势见表 5。将D形幼虫的存活率定义为100%,3~9日龄期间,幼虫的存活率均在60%以上,RZ和ZR存活率显著高于相应的对照组(P<0.05),其杂种优势平均值分别为(10.30±1.92)%和(16.30±1.04)%。

    表  5  浮游期各试验组幼虫的存活率和杂种优势
    Table  5.  Survival rate and heterosis of larvae for experiment groups during the pelagic period  Mean±SD; %
    试验组
    experiment groups
    幼虫日龄/d age of larvae
    3 6 9
    存活率
    survival rate
    RR 65.52a±3.47 63.50a±4.18 60.35a±2.22
    RZ 72.66b±2.27 68.68b±3.92 67.50b±1.57
    ZR 80.62b±2.34 72.30b±2.22 70.57b±1.93
    ZZ 69.69a±2.86 62.47a±2.74 60.04a±2.34
    杂种优势
    heterosis
    H 13.36 11.92 14.69
    HRZ 10.90 8.15 11.84
    HZR 15.68 15.73 17.50
    下载: 导出CSV 
    | 显示表格

    各试验组稚贝的平均壳长、生长速度和杂种优势见表 6。室内培育期间,稚贝表现出明显的生长优势。24~40日龄,RZ和ZR的生长优势平均值分别为(11.25±2.98)%和(20.31±2.10)%;RZ和ZR的生长速度分别为(9.88±1.45)和(10.79±1.32)μm · d-1,其杂种优势为25.86%和30.16%,显著高于对照组(P<0.05)。

    表  6  室内培育期各试验组稚贝的平均壳长、生长速度和杂种优势
    Table  6.  Mean shell length, growth rate and heterosis of juvenile for experiment during the indoor period  Mean±SD
    试验组
    experiment groups
    稚贝日龄/d age of juvenile 生长速度/μm·d-1
    growth rate
    平均壳长/μm
    mean shell length
    RR 246.33a±17.12 340.08a±25.23 372.00a±45.14 7.85a±1.41
    RZ 266.33b±18.85 379.46b±27.52 424.33b±46.36 9.88b±1.45
    ZR 296.00ab±28.84 415.07ab±40.41 468.67ab±42.08 10.79ab±1.32
    ZZ 249.33a±12.02 347.23a±26.90 382.00a±46.94 8.29a±2.93
    杂种优势/%
    heterosis
    H 13.45 15.60 18.44 28.07
    HRZ 8.12 11.58 14.06 25.86
    HZR 18.72 19.53 22.69 30.16
    下载: 导出CSV 
    | 显示表格

    各试验组稚贝的存活率和杂种优势见表 7。将刚刚完成变态的稚贝存活率定义为100%,此时的存活优势值为0。24~40日龄,RZT ZR稚贝表现出较高的存活率,约90%左右,显著高于相应对照组(P<0.05);其存活优势平均值分别为(40.85±9.90)%和(57.08±11.98)%,且ZR>RZ。

    表  7  室内培育期各试验组稚贝的存活率和杂种优势
    Table  7.  Survival rate and heterosis of juvenile for experiment groups during the indoor period  Mean±SD; %
    试验组
    experiment groups
    稚贝日龄/d age of juvenile
    存活率
    survival rate
    RR 75.55a±4.21 68.48a±3.27 60.44a±3.37
    RZ 99.29b±4.45 95.85b±4.87 91.37b±4.40
    ZR 90.48b±2.76 90.06b±3.51 89.58b±2.72
    ZZ 62.30a±2.52 57.42a±2.82 52.95a±2.15
    杂种优势
    heterosis
    H 37.66 47.66 52.95
    HRZ 31.42 39.97 51.17
    HZR 45.23 56.84 69.18
    下载: 导出CSV 
    | 显示表格

    杂种优势是一种复杂的生物学现象,亲本间的遗传差异无疑是重要的原因之一,如果2个基础群体的基因频率不同,那么它们之间的杂交有可能表现出杂种优势。当一个种的不同群体能够用来进行人工杂交时,必须评估2个群体间是否有足够的差异[21]。菲律宾蛤仔由于壳色和壳面花纹各异,曾经被分类学家定义为许多不同的种[19]。闫喜武等[16-17]发现,菲律宾蛤仔存在壳色多态现象,在天然群体中,斑马蛤仅占0.20%~0.25%,海洋红占0.4%~0.43%。如此稀少的种群密度却能保存下来,且很少与其它壳色和壳面花纹的蛤仔发生自然杂交,说明它们有很强的抗逆性和生存能力,这种抗逆性和生存能力或许与不同壳色和壳面花纹蛤仔间遗传差异有关。2003~2006年间对不同壳色菲律宾蛤仔品系生长发育研究结果表明,虽然不同壳色的蛤仔的产卵期相同,但是产卵的时间段不同[18],这可能是其自然杂交很难发生的原因;虽然海洋红和斑马蛤有很强的抗逆性和生存能力,但由于在天然群体中所占比例很低,繁殖时相同壳色蛤仔精卵在水中的密度和受精的机会远低于杂色的菲律宾蛤仔,因此,它们在天然群体中所占比例也不会增大。海洋红与斑马蛤在生长、存活2个性状上存在差异,从生长上看,海洋红>对照组(杂色的菲律宾蛤仔)>斑马蛤,尤其到成体阶段,彼此间个体大小差异极显著;从存活情况上划分,斑马蛤>对照组>海洋红,且彼此间差异显著,这与对天然群体中菲律宾蛤仔调查结果一致。说明海洋红与斑马蛤仔2品系间存在遗传差异,这奠定了壳色间群体杂交的基础。在试验条件相同的情况下,可以排除环境对性状的影响,不同壳色品系间的差异主要来自于遗传差异[22]

    2个或2个以上不同遗传类型的物种、品种、品系或自交系杂交产生的子一代,在生长、生活力、抗病力、产量和质量超过双亲的现象,称为杂种优势[22]。从试验结果上看,杂交使得各杂交组个体在生长、存活表现出不同程度的杂种优势。就生长而言,杂种优势的平均水平在不同阶段表现不同,随着个体发育,生长这一性状在不同壳色之间差异越来越明显,生长优势不断增大,幼虫期(1.78±0.53)%<稚贝期(15.83±2.50)%,这与闫喜武等[16-18]对不同壳色蛤仔生长发育的研究结果一致。对于杂交是否会提高受精率、孵化率,大多学者没有报道,可能是受精率和孵化率的高低不仅反映精、卵质量,也反映精、卵之间的亲和力。精、卵不熟或过熟都会影响受精率和孵化率及以后的发育[23]。由于杂交时精、卵亲和性不同,卵的受精率和孵化率一般不会表现出杂种优势,此试验结果显示,卵的受精率没有表现出杂种优势,但孵化率表现出一定的杂种优势,其原因尚有待进一步探讨。就存活而言,在幼虫期和室内培育期表现出明显的杂种优势,且幼虫期(13.32±1.39)%<稚贝期(46.09±7.76)%。综合生长、存活的杂种优势,正反杂交组的杂种优势大小顺次为ZR>RZ。由于不同壳色蛤仔间存在着一定的遗传差异,这些结果与FALCONER和MACKAY[24]提出的“如果2个基础群体的基因频率不同,那么它们之间的杂交将表现出杂种优势”、“不同群体配对表现出不同的杂种优势大小”等观点相吻合。通过建立正反杂交组合,从中筛选出有效的杂交组,为改良贝类的种质,充分利用杂种优势奠定了基础。

  • 图  1   目标种类体长(叉长)分布图

    Figure  1.   Body (fork) length distribution of target species

    图  2   目标种类体长(叉长)和体围线性回归

    Figure  2.   Relationship of body length (fork length) and girth of target species

    图  3   主捕对象体型和主要刺捕部位

    Figure  3.   Body shape and main captured part of target species

    图  4   目标种类相对渔获率曲线

    Figure  4.   Relative frequency curve of target species

    表  1   南海流刺网渔获组成调查情况表

    Table  1   Gillnet survey in the South China Sea

    网具类型
    gillnet
    调查时间
    survey time
    渔船
    fishing vessel
    渔场
    fishing ground
    目标种类
    target species
    网具主尺度
    main dimension
    网目尺寸
    mesh size
    白鲳刺网
    P.chinensis gillnet
    2013年1月、2013年4月 粤西24313
    (10.4 m,20.2 kW)
    阳江市沙扒镇近海
    (111°30′ E~111°33′ E,21°24′ N~20°26′ N)
    中国鲳
    P.chinensis
    72.00 m×4.27 m 190 mm
    马鲛刺网
    S.commersoni gillnet
    2012年4月、2012年11月 粤电渔42073
    (33 m,132 kW)
    海南岛东北部
    (111°08′~111°26′E,20°18′N~20°39′N)
    康氏马鲛
    S.commersoni
    43.60 m×45.16 m 142 mm
    龙头鱼刺网
    H.nehereus gillnet
    2012年9月 粤阳东18111
    (21 m,95 kW)
    珠海市三灶镇近海
    (113°22′E~113°25′E,21°51′N~21°56′N)
    龙头鱼
    H.nehereus
    68.08 m×5.33 m 43 mm
    下载: 导出CSV

    表  2   流刺网最小网目尺寸

    Table  2   Minimal mesh sizes of three gillnets

    种类
    species
    体长(L)与体周(G)的关系
    relationship of length and girth
    开捕规格/mm
    minimal landing size
    相对体围峰值点
    relative length
    体周长/mm
    relative girth
    最小网目尺寸/mm
    minimal mesh size
    中国鲳P.chinensis G=0.840 1L+162.4 140 1.03 288 144
    龙头鱼H.nehereus G=0.409L+4.1054 160[21] 1.00 70 35
    康氏马鲛S.commersoni G=0.395 1L+22.285 280[4] 1.09 144 72
    下载: 导出CSV
  • [1] 杨吝, 卢伙胜, 吴壮, 等. 南海区海洋渔具渔法[M]. 广州: 广东科技出版社, 2002: 13-32.
    [2] 黄锡昌. 海洋捕捞手册[M]. 北京: 农业出版社, 1990: 306-307.
    [3] 中华人民共和国农业部渔业局. 中国渔业统计年鉴2012 [M]. 北京: 中国农业出版社, 2013.
    [4] 杨炳忠, 杨吝, 谭永光, 等. 南海北部马鲛流刺网渔获组成初步分析[J]. 南方水产科学, 2013, 9 (1): 16-21. doi: 10.3969/j.issn.2095-0780.2013.01.003
    [5] 张鹏, 杨吝, 张旭丰, 等. 南海北部金线鱼流刺网渔业情况分析[J]. 南方水产, 2008, 4(6): 101-107. doi: 10.3969/j.issn.2095-0780.2008.06.015
    [6]

    HE P G. Behavior of marine fishes: capture processes and conservation challenges[M]. Oxford: Wiley-Blackwell, 2010: 183-203.

    [7]

    HAMLEY J M. Review of gillnet selectivity [J]. J Fish Res Board Can, 1975, 32 (2): 1943-1969. doi: 10.1139/f75-233

    [8]

    REIS E G, PAWSON M G. Fish morphology and estimating selectivity by gillnets [J]. Fish Res, 1999, 39(3): 263-273. doi: 10.1016/S0165-7836(98)00199-4

    [9] 张鹏, 杨吝, 张旭丰, 等. 刺网网目尺寸对南海区金线鱼选择性研究[J]. 南方水产, 2005, 1(2): 61-66. doi: 10.3969/j.issn.2095-0780.2005.02.012
    [10] 张鹏, 杨吝, 张旭丰, 等. 南海区金线鱼刺网网目选择性[J]. 中国水产科学, 2010, 17(5): 1085-1093. https://www.zhangqiaokeyan.com/academic-journal-cn_journal-fishery-sciences-china_thesis/0201261551000.html
    [11] 杨炳忠, 杨吝, 谭永光, 等. 马鲛体型特征与网目尺寸关系的初步探讨[J]. 南方水产科学, 2013, 9 (5): 120-125. doi: 10.3969/j.issn.2095-0780.2013.05.018
    [12] 杨炳忠, 杨吝, 谭永光, 等. 龙头鱼流刺网网目捕获机理的初步研究[J]. 渔业现代化, 2013, 40(3): 46-50. doi: 10.3969/j.issn.1007-9580.2013.03.010
    [13]

    SPARRE P, URSIN E, VENEMA S C. Introduction to tropical fish stock assessment (Part 1 manual)[J]. FAO Fisheries Technical Paper, 1989: 306. doi: 10.1067/mge.2000.107714

    [14] 孙满昌, 张健, 钱卫国, 等. 渔具渔法选择性[M]. 北京: 中国农业出版社, 2004: 111-118.
    [15] 张健, 孙满昌. 刺网渔具选择性研究进展[J]. 中国水产科学, 2006, 16(6): 1040-1048. doi: 10.3321/j.issn:1005-8737.2006.06.027
    [16]

    MILLAR R B, FRYER R J. Estimating of size-selection curves of towed gear, traps, nets and hooks [J]. Rev Fish Biol Fish, 1999, 9(1): 89-116. doi: 10.1023/A:1008838220001

    [17]

    MILLAR R B. Estimation the size-selectivity of fishing gear by condition to trouser trawls [J]. J Amer Stat Assoc, 1992, 87(420): 962-968. doi: 10.1080/01621459.1992.10476250

    [18] 李灵智, 黄洪亮, 王磊, 等. 东黄海区银鲳流刺网网目尺寸选择性研究[J]. 海洋渔业, 2010, 32(1): 89-94. doi: 10.3969/j.issn.1004-2490.2010.01.013
    [19] 尤宗博, 李显森, 赵宪勇, 等. 蓝点马鲛大网目流刺网的选择性研究[J]. 水产学报, 2014, 38(2): 289-296. doi: 10.3724/SP.J.1231.2014.48950
    [20] 杨炳忠, 杨吝, 谭永光, 等. 南海北部龙头鱼流刺网渔获组成初步分析[J]. 广东农业科学, 2013, 39(2): 99-102. doi: 10.3969/j.issn.1004-874X.2013.02.034
    [21] 林龙山. 东海区龙头鱼数量分布及其环境特征[J]. 上海海洋大学学报, 2009, 18 (1): 66-71. https://www.zhangqiaokeyan.com/academic-journal-cn_detail_thesis/0201294218597.html
    [22]

    QUEIROLO D, GAETE E, AHUMADA M. Gillnet selectivity for Chilean hake (Merluccius gayi gayi Guichenot, 1848) in the bay of Valparaiso [J]. J Appl Ichthyol, 2013, 29(4): 775-781. doi: 10.1111/jai.12209

    [23]

    PARK H H, MILLAR R B, BAE B S et al. Size selectivity of Korean flounder (Glyptocephalus stelleri) by gillnets and trammel nets using an extension of SELECT for experiments with differing mesh sizes[J]. Fish Res, 2011, 107(1/2/3): 196-200. doi: 10.1016/j.fishres.2010.10.020

图(4)  /  表(2)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-03
  • 修回日期:  2015-02-11
  • 刊出日期:  2015-12-04

目录

/

返回文章
返回