罗氏沼虾6个养殖群体遗传多样性的微卫星分析

孙成飞, 叶星, 董浚键, 田园园, 梁健辉

孙成飞, 叶星, 董浚键, 田园园, 梁健辉. 罗氏沼虾6个养殖群体遗传多样性的微卫星分析[J]. 南方水产科学, 2015, 11(2): 20-26. DOI: 10.3969/j.issn.2095-0780.2015.02.003
引用本文: 孙成飞, 叶星, 董浚键, 田园园, 梁健辉. 罗氏沼虾6个养殖群体遗传多样性的微卫星分析[J]. 南方水产科学, 2015, 11(2): 20-26. DOI: 10.3969/j.issn.2095-0780.2015.02.003
SUN Chengfei, YE Xing, DONG Junjian, TIAN Yuanyuan, LIANG Jianhui. Genetic diversity analysis of six cultured populations of Macrobrachium rosenbergii using microsatellite markers[J]. South China Fisheries Science, 2015, 11(2): 20-26. DOI: 10.3969/j.issn.2095-0780.2015.02.003
Citation: SUN Chengfei, YE Xing, DONG Junjian, TIAN Yuanyuan, LIANG Jianhui. Genetic diversity analysis of six cultured populations of Macrobrachium rosenbergii using microsatellite markers[J]. South China Fisheries Science, 2015, 11(2): 20-26. DOI: 10.3969/j.issn.2095-0780.2015.02.003

罗氏沼虾6个养殖群体遗传多样性的微卫星分析

基金项目: 

广州市科技计划项目 2013J010

农业部基础性长期性专项 201403-057

详细信息
    作者简介:

    孙成飞(1985-),男,助理研究员,硕士,从事水产生物技术研究。E-mail: scfsec@163.com

    通讯作者:

    叶星(1962-),女,研究员,博士,博士生导师,从事水产生物技术研究。E-mail: gzyexing@163.com

  • 中图分类号: S917.4

Genetic diversity analysis of six cultured populations of Macrobrachium rosenbergii using microsatellite markers

  • 摘要:

    采用微卫星分子标记技术比较了中国和泰国罗氏沼虾(Macrobrachium rosenbergii)养殖群体的遗传多样性及遗传结构。使用12对荧光标记微卫星引物扩增3个广东罗氏沼虾养殖群体、1个江苏养殖群体以及2个泰国养殖群体,结果显示所检测的12个微卫星位点均具有较高的多态性[多态信息含量(PIC)=0.853~0.941]。各群体均具有较高的遗传多样性水平[期望杂合度(He)=0.848~0.896]。群体间遗传分化指数(Fst)及AMOVA分析显示,群体间遗传分化属于中低水平(Fst<0.15),遗传变异有5.27%来自群体之间,94.73%来自于群体内部。遗传距离分析显示江苏群体和广东群体2的遗传距离(Da)最近(0.160 8);而广东群体1和泰国群体2之间的遗传距离最远(0.695 8)。基于遗传距离构建的UPGMA系统进化树显示,6个群体聚为2个大支,广东3个群体与江苏群体聚为一支,泰国的2个群体聚为另一支。研究结果显示所分析的中国和泰国罗氏沼虾养殖群体均具有较高的遗传多样性,但彼此亲缘关系较远。

    Abstract:

    We compared the genetic diversity and structure of cultivated population of Macrobrachium rosenbergii collected from different areas in China and Thailand by microsatellite analysis. Twelve fluorescently labeled primers were used to amplify microsatellite DNA from three Guangdong cultivated populations (GD1, GD2 and GD3), one Jiangsu cultivated population (JS) in China and two cultivated populations in Thailand (TG1 and TG2). The results show that the detected microsatellite loci possessed high polymorphism (PIC=0.853~0.941). All the populations analyzed displayed high genetic diversity (He=0.848~0.896). Genetic differentiation index (Fst) and AMOVA analysis reveal that the genetic differentiation within populations was relatively low (Fst < 0.15). About 5.27% genetic variation was derived from inter-populations, while 94.73% variation was derived from intra-population. Nei′s genetic distance indicates that the genetic distance between JS and GD2 population was the lowest (0.160 8), while that between the GD1 population and TG2 population was the highest (0.695 8). Phylogenetic analysis displays that these six M.rosenbergii populations could be divided into two groups. GD1, GD2, GD3 and JS populations were clustered together as one group and TG1 population was clustered with the TG2 population as another group. The results demonstrate that the analyzed cultivated M.rosenbergii populations maintained relatively high genetic diversity, and there was low kinship between China and Thailand populations.

  • 带鱼 (Trichiurus japonicus) 隶属鲈形目、带鱼科、带鱼属,为广泛分布于温带、亚热带和热带水域的暖水性底层鱼类,是我国沿海的重要经济鱼种,也是南海北部底拖网和刺网的主要渔获对象[1]。朱江峰和邱永松[2]根据20世纪90年代调查数据对南海北部带鱼的生长、死亡等参数进行了估算,并利用动态综合模型模拟其资源开发状况,结果表明南海北部带鱼能承受较大的捕捞压力,但幼鱼遭到过度捕捞,资源利用不合理;王跃中等[3]对南海北部带鱼的渔获量、捕捞努力量及环境数据进行了综合分析,探讨了其渔获量对捕捞压力及气候变化的响应;颜云榕[4]通过对北部湾带鱼食物组成的定量分析,研究了带鱼的摄食习性和摄食生态。

    鱼类生长、死亡和性成熟等生物学参数的评估是探索渔业资源变动规律和开展渔业资源评估的基础[5],尤其在数据缺乏条件下的渔业资源评估中具有重要意义[6]。随着捕捞压力增大和环境恶化加剧,鱼类的生长、死亡等生物学特征必将产生相应的变化,如渤、黄海的小黄鱼 (Larimichthys polyactis)[7]、东海鲐鱼 (Scomber japonius)[8]和北部湾的短尾大眼鲷 (Priacanthus macracanthus)[9]等均出现了个体规格小型化、性成熟提前和生长速度加快等现象。然而,近20年来南海北部带鱼的生物学特征是否发生了转变尚缺乏相应的研究。因此,本文根据2014—2015年南海北部底拖网调查的渔业生物学资料,对该时期带鱼的渔获率、群体结构进行分析,并估算其生长及死亡等参数,以期为南海北部带鱼资源的评估及合理利用提供基础数据。

    研究样品数据来自2014—2015年南海北部底拖网调查资料,调查站点根据其资源按水深分布[10]的特点设计,站位图 (图1) 与蔡研聪等[11]的研究一致。调查按季节进行,分别是2014年夏季 (7—8月)、秋季 (10—11月) 与2015年冬季 (1—2月)、春季 (4—5月)。采集的带鱼样本冷冻保存后带回实验室测定肛长、体质量、性成熟度和胃饱满度等生物学数据。每个站位带鱼的尾数大于50尾时测定50尾,少于50尾时全部测定,4个航次调查共测定带鱼1 128尾 (表1)。

    图  1  南海北部渔业资源调查站点示意图
    Figure  1.  Survey stations in northern South China Sea
    表  1  带鱼的群体结构
    Table  1.  Population structure of T. japonicus
    采样时间
    Sampling time
    尾数
    Number
    性比 (♀/♂)
    Sex ratio
    肛长 Anal length/mm 体质量 Body mass/g
    范围
    Range
    均值
    Mean
    优势组
    Dominant
    范围
    Range
    均值
    Mean
    优势组
    Dominant
    春 Spring 243 2.96 70~451 185.0 130~170 11~1200 128.5 20~60; 80~90
    夏 Summer 428 1.66 61~505 184.1 160~210 10~1462 101.7 30~50; 60~80
    秋 Autumn 178 0.67 87~500 246.8 230~250 9~1400 232.4 190~200
    冬 Winter 279 1.11 92~528 199.9 160~200 13~1650 136.8 50~90
    下载: 导出CSV 
    | 显示表格

    带鱼样本按肛长10 mm为组距分组,分别进行肛长频次分析,其中占样品总数8%及以上的肛长组定义为优势肛长组。采用非参数Kol-mogorov-Smirnov Z检验分析雌、雄个体肛长组成的显著性差异;采用单因素方差分析研究4个季度带鱼肛长均值的显著性差异。

    带鱼肛长、体质量的测定分别精确到1 mm和1 g。肛长与体质量关系由函数W=aLb进行拟合,式中W表示体质量,L为肛长,a为生长的条件因子,b为异速生长因子。运用t检验分析雌雄个体的肛长体质量关系是否存在显著性差异。将相对体质量rw (%) 的平均值表示为肥满度[12],计算公式为rw=(W/aLb)×100%。

    统计每个季度以及肛长组中带鱼的雌、雄个体数目及性腺发育状况,性腺按Ⅰ—Ⅵ期标准进行划分,规定Ⅲ期及以上的为性成熟个体,通过适合性卡方检验对不同季度和肛长组的雌雄比例是否为1∶1进行分析。根据带鱼的生殖习性,采用春、夏季雌性样品计算50%性成熟肛长 (L50),由最小二乘法 (Least square method, LSM) 拟合以下逻辑斯蒂模型得到[13]

    $${P_i} = \frac{1}{{1 + {{\rm e}^{[ - r({L_i} - {L_{50}})]}}}}$$ (1)

    其中Pi为肛长组Li对应的成熟个体比例,r为模型参数。

    带鱼的生长关系可由von Bertalanffy生长方程[5]进行拟合:

    $$\begin{split} &\;\qquad \qquad \qquad \\ &{L_t} = {L_\infty }\{ 1 - \exp [ - K(t - {t_0})]\} \end{split}$$ (2)

    式中Ltt龄的肛长,L表示渐近肛长,K为生长系数,t0表示肛长为0时的理论年龄。参数LK通过FISAT II (FAO-ICLARM Stock Assessment Tool II) 软件中的ELEFAN I (Electronic Length Frequency Analysis I) 估算。t0及体质量生长拐点tp可用以下经验公式求得[5]

    $$ {\log _{10}}( - {t_0}) = - 0.392\;2 - 0.275{\log _{10}}{L_\infty } - 1.038{\log _{10}}K $$ (3)
    $${t_p} = \frac{{{\rm{ln}}b}}{K} + {t_0}$$ (4)

    根据生长参数LK的评估结果,总死亡系数 (Z) 由线性体长变换渔获曲线法求得[5]Z的95%置信区间利用线性回归计算。自然死亡系数(M)通过Pauly经验公式估算[14]:

    $${\rm{ln}}(M)= - 0.152-0.279{\rm{ln}}({L_\infty })+0.654{\rm{ln}}K + 0.463{\rm{ln}}T$$ (5)

    其中T为栖息海域的年平均水温 (℃)。本研究中平均水温为调查站点的实际测量数据,为23.4 ℃。

    捕捞死亡系数(F)和开发率(E)分别通过以下公式计算[5]

    $$ F = Z - M $$ (6)
    $$E = F/Z$$ (7)

    本研究中,南海北部带鱼主要分布在水深小于100 m的海域,且渔获率随季节变化明显 (图2)。夏季渔获率较高的区域集中在北部湾和海南岛东北部海域;春、秋季渔获率较高的区域分布广泛,从北部湾至广东省东南部沿海海域皆有分布;冬季带鱼群体渔获率较低。

    图  2  带鱼渔获率随季节的变化
    Figure  2.  Seasonal variation in catch rate of T. japonicus

    从2014—2015年南海北部带鱼肛长频率分布 (图3-a表1) 分析可知,带鱼肛长频率分布为明显的单峰型,肛长介于61~528 mm,优势肛长组为160~190 mm,占29.2%,雌、雄个体肛长组成无显著差异 (P>0.05)。秋季的带鱼个体最大,肛长均值为246.8 mm,体质量均值为232.4 g,远超其他三季,其次是春季,夏季个体最小,单因素方差分析表明4个季节的肛长均值差异显著 (P<0.05)。

    图  3  带鱼肛长频率分布、肛长与体质量关系和肥满度随肛长的变化
    Figure  3.  Distribution in anal length frequency, relation between anal length and body mass and relative fatness by anal length of T. japonicus

    用LSM方法评估2014—2015年带鱼肛长体质量关系为W=4.09×10−5L2.79a的95%置信区间为 (3.30×10−5,4.88×10−5),b的95%置信区间为 (2.76, 2.82),经t检验,雌雄个体的肛长体质量关系无显著差异 (P>0.05)。由肥满度随肛长变化 (图3-c) 得出,肛长介于100~150 mm,肥满度波动较大,肛长大于150 mm时肥满度保持约100%,无较明显的变化;当肛长为380 mm时肥满度最低 (88%)。此外,由于未测定纯质量数据,仅用体质量进行分析的情况下,存在一定的偏差,肛长小于100 mm时肥满度较高 (最高超过200%)。

    除去151尾雌雄不分个体,2014—2015年南海北部带鱼雌、雄个体性比为1.54。从4个季节性比可看出,春季雌性个体占比较大,夏季雌性个体占比有所下降,秋季雌性个体数远低于雄性,冬季雌性个体占比回升 (表1)。适合性卡方检验分析表明,4个季节雌雄比与1∶1均差异显著 (P<0.05)。性比随肛长变化 (图4-a),肛长组60~70 mm、80~90 mm、380~390 mm、400~410 mm、430~440 mm、450~470 mm、490~500 mm、520~530 mm均为雄性,肛长组360~370 mm均为雌性。肛长组130~140 mm、260~270 mm、300~310 mm、330~340 mm、350~360 mm、420~430 mm、500~510 mm性比与1∶1无显著差异 (P>0.05) 外,其他肛长组性比与1∶1均有显著差异。

    图  4  带鱼性比随肛长的变化 (a)、性成熟比例与肛长拟合的逻辑斯蒂曲线 (b)
    Figure  4.  Sex ratio by anal length (a), logistic model fitted for the relationship between anal length and percentage of mature (b) of T. japonicus

    4个季节中秋季雄性的性成熟比例高于雌性,而春、夏、冬季雌性性成熟比例均高于雄性(图5)。雌性中夏季的性成熟比例高于其他三季,秋季性成熟比例最低;而雄性中秋季性成熟比例最高,春季性成熟比例最低。各季度中未达到性成熟的个体占比均超过50%,且雄性中无性腺成熟度达到Ⅵ期的个体。南海北部带鱼样品分析表明,2014—2015年南海北部带鱼的最小性成熟肛长为113 mm。逻辑斯蒂方程拟合结果 (图4-b) 表明,50%性成熟肛长为241.5 mm。

    图  5  带鱼性成熟度 (Ⅱ—Ⅵ) 组成随季节的变化
    Figure  5.  Seasonal variation in percentage of maturity stages (II−VI) for female and male T. japonicus

    由ELEFAN I技术估算得到带鱼von Bertalanffy生长参数LK分别为585 mm和0.2 a−1,由经验公式 (3) 求得t0为0.37年。因此带鱼的生长方程为:

    $${L_t} = 585 \times (1 - {{\rm{e}}^{ - 0.20 \times (t + 0.37)}})$$ (8)
    $${W_t} = 1\;763 \times {(1 - {{\rm{e}}^{ - 0.20 \times (t + 0.37)}})^{2.79}}$$ (9)

    Wtt龄的体质量。根据体质量生长方程求得的体质量拐点年龄为4.76龄,对应拐点的体质量为722 g。线性体长变换渔获量曲线法估算的总死亡系数为1.172 (图6),95%置信区间为 (0.582, 1.762)。由经验公式 (5) 算得M为0.475,由公式 (6) 和 (7) 可算得F为0.697,E为0.59。

    图  6  线性渔获量曲线法估算的带鱼总死亡系数
    Figure  6.  Estimated total mortality coefficient of T. japonicus based on length converted catch curve

    不同海区带鱼的生长、死亡和性成熟等生物学参数均存在较大差异 (表2)。由于不同海域的捕捞压力和生活环境相差较大,带鱼个体规格存在显著差异。福建海区带鱼个体的平均规格最小,印尼阿拉弗拉海的平均规格最大,而北部湾带鱼肛长的分布范围最广,最大肛长可达896 mm,最小仅20 mm。肛长体质量关系式中b与鱼类生活环境相关,本研究与其他海域相比,b差异较大,东海区带鱼b最大,印尼阿拉弗拉海带鱼的最小。这种不同海域的差异可能主要是由其营养条件所致[5]LK是描述鱼类个体生长规律的重要参数,分别代表了鱼类极限体长和生长曲线的平均曲率[5]。与本研究相比,伊朗阿曼湾海域带鱼极限肛长和生长参数均偏大,而东海海域带鱼极限肛长最小,生长参数最大。这种差异可能是不同海域带鱼的种群密度、栖息水温和饵料生物等不同所引起的。L50是带鱼渔业管理中重要的生物学参考点,由表2可知,各海域带鱼的L50差异显著,当前南海北部带鱼的最小,印尼阿拉弗拉海带鱼的最大。ME是反映渔业资源开发现状的重要参数,以Gulland[23]提出的鱼类最适E为0.5作为判断依据,南海北部带鱼处于过度开发状态。

    表  2  不同海区带鱼的种群参数
    Table  2.  Population parameters of T. japonicus in different sea areas
    海区及采样时间
    Sea area and sampling time
    肛长范围
    Anal length range/mm
    平均
    肛长
    Mean anal
    length/mm
    异速生
    长因子
    b
    渐近肛长
    L/mm
    生长
    系数
    K/a
    50%性
    成熟肛长
    L50/mm
    自然死
    亡系数
    M
    总死亡
    系数
    E
    参数评估方法
    Assessment method for parameters
    印尼阿拉弗拉海 (2008)[15]
    Arafura Sea of Indonesia
    123~650 343.00 2.420 368.0 体长频率法
    Length-frequency method
    缅甸外海 (2012—2013)[16]
    Andaman Sea of Myanmar
    101~422 212.26 2.752 242.7 体长频率法
    Length-frequency method
    伊朗阿曼湾 (2017—2018)[17]
    Iran's Gulf of Oman
    119~580 2.914 610.4 0.220 242.3 体长频率法
    Length-frequency method
    福建闽南渔场 (2000—2002)[18]
    Minnan Sea of Fujian
    52~332 160.00 2.529 体长频率法
    Length-frequency method
    东海 (2002—2004)[19]
    East China Sea
    3.006 493.0 0.346 年龄鉴定法
    Age-determination method
    东海近海 (2007—2008)[20]
    Costal waters of East China Sea
    126~332 182.62 2.795 164.7 体长频率法
    Length-frequency method
    北部湾 (2006—2007)[21]
    Beibu Gulf
    20~896 2.970
    南海北部 (1981—1982)[22]
    Northern South China Sea
    132~605 342.84 2.400 622.0 0.160 322.0 0.212 0.71 体长频率法
    Length-frequency method
    南海北部 (1997—1999)[2]
    Northern South China Sea
    20~670 187.60 3.028 700.0 0.270 276.0 0.390 0.87 体长频率法
    Length-frequency method
    南海北部 (2014—2015) (本研究)
    Northern South China Sea (This study)
    61~528 198.10 2.790 585.0 0.200 241.5 0.475 0.59 体长频率法
    Length-frequency method
    注:−. 文献中未查找到相应的参数值或评估方法 Note: −. Values of parameter or assessment method are not found in the References.
    下载: 导出CSV 
    | 显示表格

    大多数鱼类的表型特征在经过较强的捕捞压力胁迫后会产生适应性响应,其中个体规格的变化较为明显[24]。3个时期南海北部带鱼肛长频率分布对比表明,在持续多年的捕捞胁迫下,南海北部带鱼的群体结构发生了较明显的转变,肛长频率分布从20世纪80年代初的多峰型变为90年代末的双峰型,至今已变为较明显的单峰型 (图7),渔获物肛长从342.84 mm下降至187.60 mm,虽然当前其平均肛长小幅度上升至198.1 mm (表2),但群体结构依然呈现简单化的趋势。需要注意的是,不同时期调查所使用的网具和调查船存在一定的差异,可能会对结果造成一定影响。相关渔业研究表明,当前南海带鱼群体组成以1龄鱼和当年鱼为主,渔获物趋于小型化,渔获质量显著下降[25-26]。从渐近肛长和50%性成熟肛长来看,LL50分别从80年代的622和322.0 mm减小到现在的585和241.5 mm (表2),表明南海北部带鱼存在明显的小型化和性成熟提前现象,这可能是对捕捞压力的响应,并且与北部湾深水金线鱼 (Nemipterus bathybius)[27]、东海小黄鱼[28]等一致。K从20世纪80年代至今增加了0.04,表明南海北部带鱼生长加快,且b呈增大趋势,这可能是带鱼对资源结构性衰退的生物学适应性响应所致[29]

    图  7  南海北部带鱼肛长频率分布的年际变化
    Figure  7.  Annual change of anal length frequency distribution of T. japonicus in northern South China Sea

    在较高强度捕捞压力下,南海北部带鱼的生物学特征发生了明显变化,结构趋于简单,个体小型化,造成种群参数变化的原因可归结于2个:1) 高强度的捕捞压力使得种群密度降低,来自捕食及种间竞争的压力减小,剩余群体能够获得相对充足的饵料供给,从而使得小型个体迅速进入渔业[30],这种变化在降低捕捞压力的情况下是可逆的,如日本北海道的大麻哈鱼 (Oncorhynchus keta)[31];2) 捕捞驱动进化 (Fisheries-induced evolution, FIE),即长期的过度捕捞迫使种群的某种基因发生变化,该变化为不可逆。笔者分析认为南海北部带鱼表型特征变化可能是由第一种原因所引起。自1999年起,我国政府开始对南海区域的渔船数和渔船功率进行管控,调整了渔业生产结构,同时大力建设人工鱼礁并开展增殖放流,加上休渔期的实施和捕捞成本的不断攀升,使得南海渔业资源的开发强度有所降低[32]。有研究表明,南海近年来的渔业政策对鱼类生物学特征的变化存在积极影响,如北部湾二长棘犁齿鲷 (Evynnis cardinalis) 的平均体长、L50等有所恢复[33]。本研究中数据显示南海北部带鱼资源的E从20世纪80年代初的0.71上升至90年代末的0.87,至今降至0.59,捕捞强度明显减小,但仍处于过度捕捞状态。在捕捞强度下降期间,带鱼的平均肛长由187.6 mm恢复至198.1 mm,K则从0.27减小至0.20,其生长加快的现象有所缓解,这一变化趋势与北部湾蓝圆鲹 (Decapterus maruadsi) 类似[34]。因此,亟需控制带鱼的捕捞压力,探索开展总量管理和限额捕捞[35],并加大对网具及开捕规格的管理,帮助其资源的恢复。

    由于本研究按季节采样,样本量有限,而基于肛长频率 (ELEFAN) 对生物学样本量和频率分布要求较高,因此在估算LK时会产生一定误差;此外,解释捕捞压力对经济鱼类的影响及其种群产生的适应性变化还需要来自种群遗传学和室内生态受控实验的进一步证据。

  • 图  1   基于Nei′s遗传距离构建的6个罗氏沼虾群体的UPGMA聚类树

    Figure  1.   UPGMA dendrograrn of six populations of M.rosenbergii based on Nei′s genetic distance

    图  2   参试罗氏沼虾群体在K=4时的遗传结构图

    Figure  2.   Cluster analysis based on 14 microsatellite loci for M.rosenbergii specimens from STRUCTURE (K=4)

    表  1   用于罗氏沼虾微卫星扩增的引物序列及其退火温度

    Table  1   Primer sequence and annealing temperature for microsatellite marker amplification

    序号No. 位点loci 重复序列repeat sequence 引物序列primer sequence 片段大小production size 复性温度/℃ annealing
    1 EMR-31B (CA)7 F: FAM-GCTGTGCTCCAAAATCTCTCTC
    R: CTCACCCATACTTGACAACGAC
    210 58
    2 EMR-55 (TTA)13 F: FAM-GAAGTCATCCGACAAACTTCAC
    R: AGTAATCATGTGGCCTAGCCTAG
    200 58
    3 EMR81 (CT)15 F: TAMRA-GGAACCAGTGAAAAAGCAATGA
    R: GGGGTGCATTCAAAAATAGGT
    240 58
    4 EMR85 (AG)12 F: FAM-GACGGACAGACATTCATTAGCC
    R: ATTCACCCCACACTTTGACATT
    220 58
    5 Mbr1 (GA)24 F: HEX-CCCACCATCAATTCTCACTTACC
    R: TCCTTTTCACATCGTTTCCAGTC
    272~320 60
    6 Mbr-2 (GT)22 F: HEX-TTCCCGACCAATTTCTCTTTCTC
    R: GGCAAAAATGATCTTGGATTCAC
    298~336 60
    7 Mbr-3 (AG)14 F: TAMRA-CAACTCTATGTTTCGGCATTTGG
    R: GGGGAATTTTACCGATGTTTCTG
    232~284 62
    8 Mbr-4 (GT)29 F: HEX-CCACCTACCGTACATTCCCAAAC
    R: CGGGGCGACTTTTAGTATCGAC
    288~326 62
    9 Mbr-5 (AG)25 F: HEX-CAAGGCTCGTGTCTCTTGTTTC
    R: GCTTGTACTTGTTCAGCTTTTGC
    286~328 62
    10 Mbr-9 (TG)5(AG)17 F: TAMRA-TTGTTTGCTTGTTTAGTGTCAAGG
    R: CTCCAAAACCGAAAAATCCTCAC
    240~284 60
    11 Mbr11 (AG)31 F: TAMRA-GTATTGAGAACAAAGGCGCACAG
    R: ATCTCTTTCCAAAACAGGGCACA
    263~291 60
    12 MRMB25 (CT)17 F: FAM-CCGGTCCAAAGGAATACAGA
    R: GTGGGTGGTGTCCCTATGTT
    194~216 46
    下载: 导出CSV

    表  2   罗氏沼虾12个微卫星位点的等位基因数、杂合度及多态信息含量

    Table  2   Number of alleles, heterozygosity and polymorphic information content of 12 microsatellite loci of M.rosenbergii

    位点locus 等位基因数Na 有效等位基因数Ne Shannon指数I 观测杂合度Ho 期望杂合度He 多态信息含量PIC
    EMR-31B 22 12.71 2.766 0.673 0.924 0.915
    EMR-55 14 10.79 2.506 0.906 0.910 0.908
    EMR81 23 13.72 2.853 0.980 0.930 0.919
    EMR85 21 14.70 2.840 0.853 0.935 0.933
    Mbr1 19 12.96 2.725 0.671 0.926 0.897
    Mbr-2 13 6.61 2.124 0.691 0.852 0.853
    Mbr-3 16 8.68 2.449 0.590 0.888 0.887
    Mbr-4 24 18.33 3.024 0.723 0.948 0.941
    Mbr-5 19 11.40 2.666 0.891 0.915 0.914
    Mbr-9 28 16.57 3.045 0.713 0.943 0.939
    Mbr11 17 8.41 2.439 0.488 0.884 0.886
    MRMB25 14 7.88 2.321 0.994 0.876 0.876
    均值mean 19.17 11.90 2.646 0.765 0.911 0.906
    下载: 导出CSV

    表  3   6个罗氏沼虾养殖群体的遗传多样性

    Table  3   Genetic diversity of six populations of M.rosenbergii

    参数index 广东1 GD1 江苏JS 广东2 GD2 广东3 GD3 泰国1 TG1 泰国2 TG2
    等位基因数Na 13.000 12.750 12.000 13.833 12.500 10.917
    有效等位基因数Ne 7.409 7.204 6.791 8.947 8.274 6.558
    Shannon指数I 2.207 2.159 2.135 2.348 2.239 2.046
    观测杂合度Ho 0.821 0.751 0.720 0.761 0.808 0.683
    期望杂合度He 0.871 0.858 0.861 0.896 0.881 0.848
    多态信息含量PIC 0.850 0.846 0.845 0.880 0.857 0.806
    下载: 导出CSV

    表  4   6个罗氏沼虾养殖群体的遗传分化指数

    Table  4   Fixation index (Fst) of six populations of M.rosenbergii

    广东1 GD1 江苏JS 广东2 GD2 广东3 GD3 泰国1 TG1 泰国2 TG2
    广东1 GD1
    江苏JS 0.023 0
    广东2 GD2 0.024 5 0.006 3
    广东3 GD3 0.031 0 0.046 9 0.041 0
    泰国1 TG1 0.071 3 0.073 4 0.074 9 0.058 4
    泰国2 TG2 0.093 1 0.077 8 0.082 5 0.072 9 0.006 1
    下载: 导出CSV

    表  5   6个罗氏沼虾养殖群体的AMOVA分析

    Table  5   AMOVA analysis among six populations of M.rosenbergii

    变异来源source of variation 自由度df 平方和sum of squares 方差组分variance component 百分率/% percentage
    群体间among populations 5 108.518 0.296 76 5.273 51
    群体内within populations 312 1663.064 5.330 52 94.726 49**
    总变异total 317 1771.582 5.627 28
    注:* *. 1 023次模拟检验后显示为极显著(P<0.01)
    Note:* *. very significance (P<0.01) after 1 023 permutation tests
    下载: 导出CSV

    表  6   6个罗氏沼虾养殖群体的遗传距离(对角线下)和遗传相似度(对角线上)

    Table  6   Nei′s genetic distance (below diagonal)and genetic similarity (above diagonal)of six populations of M.rosenbergii

    广东1 GD1 江苏JS 广东2 GD2 广东3 GD3 泰国1 TG1 泰国2 TG2
    广东1 GD1 - 0.760 4 0.737 4 0.664 0 0.393 9 0.311 7
    江苏JS 0.273 9 - 0.851 5 0.572 2 0.407 7 0.432 5
    广东2 GD2 0.304 6 0.160 8 - 0.597 4 0.382 2 0.390 0
    广东3 GD3 0.409 4 0.458 2 0.415 2 - 0.423 5 0.379 7
    泰国1 TG1 0.611 7 0.597 1 0.661 8 0.559 3 - 0.814 2
    泰国2 TG2 0.695 8 0.568 1 0.611 7 0.628 4 0.205 5 -
    下载: 导出CSV
  • [1]

    NEW M B, SINGHOLKA S. Freshwater prawn farming. A manual for the culture of Macrobrachium rosenbergii[M]. FAO Fish Tech, 1985, 225: 1-118. doi: 10.1016/0044-8486(84)90320-X

    [2] 杨国梁, 陈雪峰, 王军毅, 等. 罗氏沼虾产业在中国持续增长的经济与社会原因分析[J]. 浙江海洋学院学报, 2011, 30(5): 450-457. doi: 10.3969/j.issn.1008-830X.2011.05.015
    [3] 张海琪, 何中央, 徐晓林, 等. 罗氏沼虾缅甸野生群体和浙江养殖群体的遗传多样性比较[J]. 中国水产科学, 2004, 11(6): 506-512. doi: 10.3321/j.issn:1005-8737.2004.06.004
    [4] 蒋钦杨, 杨学明, 郭亚芬, 等. 3个不同群体罗氏沼虾线粒体16S rRNA基因序列分析及遗传差异[J]. 水产科学, 2005, 24(10): 28-31. doi: 10.3969/j.issn.1003-1111.2005.10.009
    [5] 杨学明, 郭亚芬, 陈福艳, 等. 罗氏沼虾3个群体线粒体COI基因的序列差异和遗传标记研究[J]. 遗传, 2006, 28(5): 540-544. doi: 10.3321/j.issn:0253-9772.2006.05.008
    [6] 姚茜, 杨频, 陈立侨, 等. 罗氏沼虾三群体线粒体D-loop基因序列差异的初步研究[J]. 水产学报, 2007, 31(1): 18-22. https://cstj.cqvip.com/Qikan/Article/Detail?id=25387846&from=Qikan_Article_Detail
    [7] 陈雪峰, 杨国梁, 孔杰, 等. 人工养殖与选育对罗氏沼虾遗传多样性的影响[J]. 水生生物学报, 2012, 36(5): 866-873. doi: 10.3724/SP.J.1035.2012.00866
    [8]

    CHAREONTAWEE K, POOMPUANG S, NA-NAKORN U, et al. Genetic diversity of hatchery stocks of giant freshwater prawn (Macrobrachium rosenbergii) in Thailand[J]. Aquaculture, 2007, 271(1): 121-129. doi: 10.1016/j.aquaculture.2007.07.001

    [9] 朱其建, 戴习林, 邹卫丽, 等. 罗氏沼虾抗病选育群体的抗病性能及其遗传多样性分析[J]. 水产学报, 2013, 30(10): 1468-1478. doi: 10.3724/SP.J.1231.2013.38664
    [10] 农业部渔业局. 中国渔业年鉴[M]. 北京: 中国农业出版社, 2012: 1-134. https://xueshu.baidu.com/usercenter/paper/show?paperid=2ecf4ddeeaa147fe5b8746aee49c1506
    [11]

    CHAREONTAWEE K, POOMPUANG S, NA-NAKORN U, et al. Isolation and characterization of microsatellites in giant freshwater prawn Macrobrachium rosenbergii[J]. Mol Ecol Notes, 2006, 6(3): 823-825. doi: 10.1111/j.1471-8286.2006.01358.x

    [12]

    DIVU D, KARUNASAGAR I, KARUNASAGAR I. Microsatellite DNA markers in the giant freshwater prawn, Macrobrachium rosenbergii: a tool for genetic analysis[J]. Mol Ecol Resour, 2008, 8(5): 1040-1042. doi: 10.1111/j.1755-0998.2008.02148.x

    [13]

    MOHANTY P, SAHOO L, PARIDA K, et al. Development of polymorphic EST-SSR markers in Macrobrachium rosenbergii by data mining[J]. Cons Genet Resour, 2013, 5(1): 133-136. doi: 10.1007/s12686-012-9751-1

    [14]

    TAMURA K, PETERSON D, PETERSON N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Mol Biol Evol, 2011, 28(10): 2731-2739. doi: 10.1093/molbev/msr121

    [15]

    KALINOWSKI S T, TAPER M L, MARSHALL T C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment[J]. Mol Ecol, 2007, 16(5): 1099-1106. doi: 10.1111/j.1365-294X.2007.03089.x

    [16]

    EXCOFFIER L, LISCHER H L. Arlequin suite ver 3.5 : a new series of programs to perform population genetics analyses under Linux and Windows[J]. Mol Ecol Resour, 2010, 10(3): 564-567. doi: 10.1111/j.1755-0998.2010.02847.x

    [17]

    EVANNO G, REGNAUT S, GOUDET J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study[J]. Mol Ecol, 2005, 14(8): 2611-2620. doi: 10.1111/j.1365-294X.2005.02553.x

    [18]

    CHAUHAN T, RAJIV K. Molecular markers and their applications in fisheries and aquaculture[J]. Adv Biosci Biotechnol, 2010, 1(4): 281-291. doi: 10.4236/abb.2010.14037

    [19]

    LIU Z J, CORDES, J F. DNA marker technologies and their applications in aquaculture genetics[J]. Aquaculture, 2004, 242(1): 1-37. doi: 10.1016/j.aquaculture.2004.05.027

    [20]

    ZANE L, BARGELLONI L, PATARNELLO T. Strategies for microsatellite isolation: a review[J]. Mol Ecol, 2002, 11(1): 1-16. doi: 10.1046/j.0962-1083.2001.01418.x

    [21]

    BORNMAN D M, HESTER M E, SCHUETTER J M, et al. Short-read, high-throughput sequencing technology for STR genotyping[J]. Biotechniques, 2012, 4(1): 1-6. https://pubmed.ncbi.nlm.nih.gov/25621315/

    [22]

    SHETE S, TIWARI H, ELSTON R C. On estimating the eterozygosity and polymorphism information content value[J]. Theor Popul Biol, 2000, 57(3): 265-271. doi: 10.1006/tpbi.2000.1452

    [23]

    BOTSTEIN D, WHITE R L, SKOLNICK M. Construction of genetic linkage map in man using restriction fragment length polymorphisms[J]. Am J Hum Genet, 1980, 32(3): 314-331. https://pubmed.ncbi.nlm.nih.gov/6247908/

    [24] 包文斌, 束婧婷, 许盛海, 等. 样本量和性比对微卫星分析中群体遗传多样性指标的影响[J]. 中国畜牧杂志, 2007, 43(1): 6-9. doi: 10.3969/j.issn.0258-7033.2007.01.002
    [25]

    QIN Y, SHI G, SUN Y. Evaluation of genetic diversity in Pampus argenteus using SSR markers[J]. Genet Mol Res, 2013, 12(4): 5833-5841. doi: 10.4238/2013.November.22.10

    [26] 傅建军, 李家乐, 沈玉帮, 等. 草鱼野生群体遗传变异的微卫星分析[J]. 遗传, 2013, 35(2): 192-201. doi: 10.3724/SP.J.1005.2013.00192
    [27] 崔蕾, 谢从新, 李艳和, 等. 斑点叉尾4个群体遗传多样性的微卫星分析[J]. 华中农业大学学报, 2012, 31(6): 744-751. doi: 10.3969/j.issn.1000-2421.2012.06.015
    [28] 孙立元, 郭华阳, 朱彩艳, 等. 卵形鲳鲹育种群体遗传多样性分析[J]. 南方水产科学, 2014, 10(2): 67-71. doi: 10.3969/j.issn.2095-0780.2014.02.010
  • 期刊类型引用(29)

    1. 罗金萍,刘培敏,高权新. 罗氏沼虾良种选育研究进展. 生物资源. 2023(01): 16-27 . 百度学术
    2. 庄振俊,唐美君,张冬冬,陈文彬,罗明,成永旭,吴旭干,陈晓武. 中华绒螯蟹“长荡湖1号”连续3个世代的遗传多样性分析. 水生生物学报. 2023(09): 1523-1533 . 百度学术
    3. 邹利,王金龙,李传武,王冬武,曾春芳,刘明求,刘丽,谢敏,曾鸣. 稻田适养品种呆鲤的遗传多样性分析. 水产科学. 2023(05): 795-804 . 百度学术
    4. 李喜莲,顾志敏,慎佩晶,徐洋,张宇飞,高强,程海华,陈雪峰. 基于RNA-seq技术的罗氏沼虾(Macrobrachium rosenbergii)不同组织转录组比较分析. 海洋与湖沼. 2021(01): 231-241 . 百度学术
    5. 林明辉,朱华平,苏换换,樊佳佳,池金泉,马冬梅. 3个尖塘鳢引进群体繁育后代的遗传多样性分析. 南方农业学报. 2021(01): 213-220 . 百度学术
    6. 许珊华,章嘉淇,卢婷,符圆,唐潇,唐琼英,夏正龙,蔡缪荧,高权新,李景芬,杨国梁. 基于微卫星标记的不同种质资源罗氏沼虾遗传多样性研究. 江苏农业科学. 2021(06): 45-51 . 百度学术
    7. 唐芳,温贝妮,刘红. 不同凡纳滨对虾养殖群体的微卫星遗传多样性分析. 南方农业学报. 2021(04): 1108-1115 . 百度学术
    8. 苏钰玲,李敏,杨永春,刘佳豪,李振海,阮惠婷,戴嘉格,刘丽,邹柯姝. 南方拟微卫星标记筛选及遗传多样性分析. 水产科学. 2020(02): 224-233 . 百度学术
    9. 周晓敏,戴习林. 罗氏沼虾SNP标记筛选及不同群体的遗传多样性. 水产学报. 2020(08): 1249-1263 . 百度学术
    10. 唐琼英,谢巨洪,夏正龙,蔡缪荧,吴云明,白鹿淮,杜厚宽,李景芬,杨国梁. 罗氏沼虾不同育种群体遗传多样性研究. 水生生物学报. 2020(05): 1097-1104 . 百度学术
    11. 李景芬,夏正龙,栾生,蔡缪荧,罗坤,唐琼英,高权新,孔杰,杨国梁. 五个罗氏沼虾群体遗传多样性的微卫星分析. 水生生物学报. 2020(06): 1208-1214 . 百度学术
    12. 申淑慧,戴习林. 基于生长和抗逆功能基因SNP分子标记的凡纳滨对虾野生及选育群体遗传多样性分析. 南方农业学报. 2020(11): 2836-2845 . 百度学术
    13. 王林龙,张秀梅,王展,宋娜,高天翔. 青岛近岸金乌贼繁殖群体形态特征及遗传分化. 中国水产科学. 2019(02): 342-352 . 百度学术
    14. 孙成飞,谢汶峰,胡婕,董浚键,田园园,吴灶和,叶星. 大口黑鲈3个养殖群体的遗传多样性分析. 南方水产科学. 2019(02): 64-71 . 本站查看
    15. 吕敏,黄光华,李旻,杨琼,卢小花,甘晖,阮志德,黄立斌,杨彦豪,卢天和,马华威. 异型雄性罗氏沼虾遗传多样性的微卫星分析. 水产科学. 2019(03): 355-360 . 百度学术
    16. 段永楠,刘奕,胡隐昌,刘超,宋红梅,汪学杰,孙金辉,牟希东. 美丽硬仆骨舌鱼全基因组微卫星分布规律特征. 中国农学通报. 2019(23): 152-158 . 百度学术
    17. 赵彦花,区又君,温久福,李加儿,周慧. 基于微卫星标记的黄唇鱼遗传多样性研究. 南方水产科学. 2019(04): 127-132 . 本站查看
    18. 樊佳佳,白俊杰,李胜杰,马冬梅,姜鹏. 驯食配合饲料的大口黑鲈3个选育世代的遗传多样性分析. 渔业科学进展. 2019(04): 57-64 . 百度学术
    19. 赵彦花,区又君,温久福,李加儿,周慧. 基于转录组测序技术的黄唇鱼SSR分子标记筛选. 南方农业学报. 2019(09): 2078-2087 . 百度学术
    20. 宋丹丹,王龙,魏红静,史文竞,朱传坤. 克氏原螯虾微卫星文库构建及多态性分析. 水产科学. 2019(06): 819-826 . 百度学术
    21. 陈静,宋光同,何吉祥,黄龙,吴本丽,汪翔,武松. 安徽省10个日本沼虾群体遗传多样性微卫星分析. 淡水渔业. 2018(03): 7-12 . 百度学术
    22. 王传聪,唐修阳,项杰,欧江涛. 罗氏沼虾转录组SSR标记信息分析. 江苏农业科学. 2018(22): 56-59 . 百度学术
    23. Zhu Bing,Fan Jiajia,Bai Junjie,Jiang Peng. Comparative Analysis of Microsatellite DNA Polymorphism in Gold Grass Carp and Four Grass Carp Populations from China. Animal Husbandry and Feed Science. 2017(06): 379-383+397 . 必应学术
    24. 袁锐,张朝晖,陈辉,方苹,陈静,刘训猛,吴亚锋,王晶晶. 罗氏沼虾“铁壳”现象及其防控研究进展. 水产科学. 2017(03): 383-390 . 百度学术
    25. 陈静,何吉祥,黄龙,吴本丽,孙和权,宋光同,陈贵生,王晓健. 3个中华鳖群体遗传多样性的微卫星标记分析. 广东农业科学. 2017(07): 141-146 . 百度学术
    26. 武小斌,穆淑梅,赵玲玉,康现江,薛建民. 日本沼虾(Macrobrachium nipponense)4个野生群体遗传多样性微卫星分析. 河北大学学报(自然科学版). 2017(02): 161-168 . 百度学术
    27. 朱冰,樊佳佳,白俊杰,姜鹏. 金草鱼与中国4个草鱼群体的微卫星多态性比较分析. 南方水产科学. 2017(02): 51-58 . 本站查看
    28. 刘磊,彭士明,高权新,张晨捷,施兆鸿. 基于银鲳RNA-seq数据中SSR标记的信息分析. 安徽农业科学. 2016(28): 102-105 . 百度学术
    29. 钟丹丹,林勇,宾石玉,余艳玲,陈忠,曾兰,杜雪松,张永德. 两个罗氏沼虾种群的遗传多样性研究. 广东农业科学. 2015(24): 140-145 . 百度学术

    其他类型引用(17)

图(2)  /  表(6)
计量
  • 文章访问数:  3504
  • HTML全文浏览量:  175
  • PDF下载量:  2059
  • 被引次数: 46
出版历程
  • 收稿日期:  2014-08-05
  • 修回日期:  2014-08-31
  • 刊出日期:  2015-04-04

目录

/

返回文章
返回