HDPE圆形重力式网箱受力变形特性的数值模拟

Numerical simulation of the forces and deformation of HDPE circular gravity cages

  • 摘要: 该研究旨在综合探讨不同网箱周长、浮管管径、网衣高度及网目大小对整体网箱受力变形的影响,为网箱的科学合理选型提供数据参考。设定的网箱周长40~80 m,浮管管径250~630 mm,网衣高度6~20 m,网目大小45~115 mm。通过数值模拟方法对4种规格高密度聚乙烯圆形网箱在不同组合条件下网箱锚绳受力、波流力以及容积损失率进行了数值计算。结果表明,大规格网箱的锚绳受力、波流力更大,容积损失率更小,锚绳数量的增加可以大大降低锚绳受力。相比浮管管径,网衣高度和网目大小对网箱受力变形的影响更显著。整体网箱的受力变形随着网衣高度的增加而增大,随网目的增大而减小。

     

    Abstract: The aim of this study is to comprehensively discuss the effects of cage perimeter, pipe diameter, net height as well as net mesh size on the forces and deformation of deep-water net cages in waves and current, thus provide references to select net-cages scientifically. We simulated HDPE cages with perimeter 40~80 m, pipe diameter 250~630 mm, net height 6~20 m and net mesh size 45~115 mm. With a numerical model previously validated by physical model tests, the mooring line forces, the wave-current forces and the volume reduction rate of the four kinds of HDPE cages are calculated. The simulated results indicate that the mooring line force and wave-current force are greater while the volume reduction rate is smaller for bigger cage. Moreover, the mooring line force of cage could be greatly reduced by adding mooring lines. Compared to pipe diameter, net height and net mesh size have more significant impact on the cage′s force and deformation, which increase with net height increasing, while decrease with net mesh size increasing.

     

/

返回文章
返回