Effects of replacement of fish meal by fermented soybean meal in the diet for Japanese eel (Anguill japonica) on growth performance and content of mineral elements in muscle and skin
-
摘要:
在日本鳗鲡(Anguill japonica)饲料中分别添加0、50 g·kg-1、100 g·kg-1、150 g·kg-1和200 g·kg-1的发酵豆粕,相应替代饲料中鱼粉使用量的0、5%、10%、15%和20%,饲养体质量为(37.62±0.16)g日本鳗鲡50 d,研究发酵豆粕对鳗鱼生长性能和体内矿物元素的影响。结果显示:1)随着发酵豆粕替代鱼粉的比例升高,鳗鱼增重率和特定生长率呈先上升后下降的趋势,其中15%替代组增重率和特定生长率高于其他组,但差异不显著(P>0.05), 5%替代组饲料系数显著低于其他组(P < 0.05)。从生长性能上看,15%是发酵豆粕替代鳗鱼饲料中鱼粉的最适比例;2)发酵豆粕替代鱼粉后鳗鱼饲料中的钾(K)、铁(Fe)、镁(Mg)等元素质量分数升高,而铝(Al)元素质量分数降低,按变化幅度大小排列Al>K>铜(Cu)>硼(B)>钙(Ca)>钠(Na)>磷(P)>Fe,但替代组与对照组鳗鱼肌肉中矿物元素K、Ca和P差异不显著(P>0.05),而无论是肌肉还是皮肤中矿物元素Cu质量分数均降低(P < 0.05),因此,发酵豆粕替代鱼粉后应对饲料中矿物元素添加量适当进行调整。
Abstract:We investigated the effects of replacement of fish meal (FM) by fermented soybean meal (FSBM) in the diet for Japanese eel (Anguill japonica) on growth performance and content of mineral elements in muscle and skin. 0, 50 g·kg-1, 100 g·kg-1, 150 g·kg-1 and 200 g·kg-1 FSBM were substituted for 0.5%, 10%, 15% and 20% FM in the basal diet respectively. Experiments were carried out in 15 net cages, each was stocked with 50 elvers [(37.62±0.16)g].The results show that curves of weight gain rate (WGR) and specific growth rate (SGR) present a parabola shape as the proportion of replacement increases, in which 15% replacement group is a turning point. The feed coefficient of fish fed with 15% FSBM is significantly lower than other groups (P < 0.05). 15% may be the best ratio of FSBM alternative to FM, that is 150 kg FSBM could be used for every ton of eel feed. In addition, the replacement changes mineral elements amount in diet such as Al, K, Cu, B, Ca, Na, P and Fe. Concretely, the level of constant elements such as K, Ca, and P in fish muscle have no significant difference between all groups, while trace element Cu in muscle and skin of fish fed with FM is significantly different with that fed with FSBM (P < 0.05). Therefore, when replacing FM with FSMB, we should adjust the amount of mineral elements in feed.
-
Keywords:
- Japanese eel (Anguill japonica) /
- fermented soybean meal /
- growth /
- mineral elements
-
鱼粉是鳗鲡饲料中重要组成部分,不断攀升的鱼粉价格推高了鳗鱼养殖成本。同时,传统鳗鲡饲料配方中的高比例鱼粉也给养殖环境带来了很大的污染压力。因此,在保证鳗鲡正常生长的前提下,以廉价的动植物蛋白源替代昂贵的鱼粉既可以降低养殖成本[1],也可以保护养殖资源环境。发酵豆粕作为新型植物蛋白源,具有促生长[2-3]和增强免疫功能[4],价格优势使得其在养殖生产上得到了广泛的应用。国内部分厂家已将发酵豆粕应用于鳗鲡饲料,一般每吨饲料中添加发酵豆粕50 kg,即替代30 kg左右鱼粉,但使用效果褒贬不一,甚至有养殖者反映使用发酵豆粕后鳗鱼的体色不佳,而铜(Cu)等矿物元素是细胞色素氧化酶、酪氨酸酶和抗坏血酸氧化酶的成分,能够影响体表色素形成[20]。为此,笔者研究探讨了发酵豆粕部分替代鱼粉后对鳗鱼生长性能的影响,并从体内矿物元素的角度阐述发酵豆粕的使用对鳗鲡体色的影响,旨在确定发酵豆粕在鳗鱼饲料中的适宜用量,为鳗鱼饲料生产中多矿的使用提供科学依据。
1. 材料与方法
1.1 试验设计与饲料
试验所使用饲料中实用鳗鱼饲料和发酵豆粕均由东莞市银华生物科技有限公司提供,发酵豆粕商品名为普罗宝酶解蛋白粉。1#饲料为该公司常规饲料,不含发酵豆粕;2#饲料按每千克饲料添加200 g发酵豆粕,替代1#饲料中鱼粉使用量的20%,具体配方组成见表 1。试验共设5个组别,分别投喂由1#饲料和2#饲料按不同比例配合而成的饲料,具体比例为Ⅰ(全1#饲料),Ⅱ(3 : 1),Ⅲ(1 : 1),Ⅳ(1 : 3),Ⅴ(全2#饲料)。
表 1 饲料配方组成Table 1. Composition of experimental dietsg·kg-1 成分
ingredients对照组
control group
Ⅰ试验组 test group Ⅱ Ⅲ Ⅳ Ⅴ 发酵豆粕 fermented soybean meal 0 50 100 150 200 鱼粉 fish meal 600 570 540 510 480 膨化豆粕 extruded soybean meal 50 37.5 25 12.5 0 α淀粉 α-starch 250 250 250 250 250 酵母粉 yeast powder 30 26.5 23 19.5 16 蛋氨酸 Methionine 1 1.375 1.750 2.125 2.5 赖氨酸 Lysine 0 0.625 1.350 1.875 2.5 面粉 flour 64 59 54 49 44 鳗用多矿 mineral premix 5 5 5 5 5 鳗用多维 vitamin premix 2 2 2 2 2 营养组成 proximate composition 干物质/% dry matter 92.09 92.06 92.04 92.01 91.98 灰分/% crude ash 9.81 9.64 9.48 9.31 9.14 粗蛋白/% crude protein 46.03 46.02 46.01 46.00 45.98 粗脂肪/% crude lipid 7.13 6.99 6.84 6.70 6.55 注:Ⅱ组、Ⅲ组、Ⅳ组饲料配方和营养组成均为计算值
Note:Ingredients and composition of experimental dietsⅡ,Ⅲ and Ⅳ are calculated value.1.2 饲养管理
试验在东莞市银华生物科技有限公司清新鳗鱼养殖基地内进行。挑选30~40 g健康日本鳗鲡750尾,集中于池塘网箱内驯养1周,驯养期间投喂1#饲料。驯养后的鳗鱼平均体质量为(37.62±0.16)g,分成5个处理组,每个处理组3个重复,每个重复50尾鳗鱼。生长试验仍在池塘网箱内进行,罗茨鼓风机24 h不间断充氧,饲料与水按质量1 : 1比例拌成面团状投喂鳗鱼,每天饱食投喂2次,日投饵量为体质量的3%~5%。试验时间为2008年8月31日至2008年10月19日,共50 d。
1.3 生长指标测定
生长指标测定使用公式:
成活率(%)=100×试验末鳗鱼尾数/试验初鳗鱼尾数
相对增长率(%)=100×(Wt-W0)/W0
特定生长率(%)=100×(lnWt-lnW0)/t
饲料系数=F/(Wt-W0)
其中W0为每组鳗鱼初始体质量;Wt为每组鳗鱼终末体质量;t为代表养殖天数;F为消耗的饲料量。
1.4 矿物元素测定
试验结束后每个重复取3尾鳗鱼作为一个混合样,分析肌肉和皮肤中矿物元素,参考王友慧等[5]的方法进行样品前处理,委托中山大学检测中心测定肌肉中的钙(Ca)、Cu、钾(K)、磷(P)及皮肤中Cu元素质量分数,样品前处理后按GB/T 5009-2003提供的方法检测鱼体肌肉和皮肤矿物元素。
饲料中矿物元素委托华南植物研究所测试中心测定,样品经处理后采用等离子发射光谱仪optima 2000检测饲料中Ca、Cu、K、P、锰(Mn)、硼(B)、钠(Na)、铝(Al)、铁(Fe)和镁(Mg)。
1.5 数据处理
应用SPSS 10.0软件进行单尾方差分析和多重比较鳗鲡生长数据、肌肉和皮肤中矿物元素。
2. 结果与分析
2.1 对生长性能的影响
经过50 d的饲养,鳗鱼生长情况和饲料系数见表 2。发酵豆粕替代鱼粉后试验组鳗鱼增重率和特定生长率均高于对照组,且随着发酵豆粕替代鱼粉的比例升高,鳗鱼增重率和特定生长率呈先上升后下降的趋势,Ⅳ组(15%替代)最高;饲料系数则呈相反趋势,其中Ⅳ组(15%替代)饲料系数最低。发酵豆粕替代鳗鱼饲料中15%鱼粉组饲料系数与其他组的差异显著(P < 0.05),但增长率、特定生长率与其他组的差异不显著(P>0.05)。
表 2 发酵豆粕不同比例替代鱼粉对鳗鱼生长的影响Table 2. Effects of replacement of FM by FSBM on growth performance生长指标 growth index 组别 group Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ 初始质量/g IBW 38.07±0.47 38.00±2.82 36.80±1.60 37.07±0.70 36.73±1.64 终末质量/g FBW 81.40±0.50b 82.13±2.82b 80.87±0.67b 86.60±0.61a 80.00±0.53b 增重率/% WG 113.87±3.37 117.36±14.24 120.57±16.68 133.76±6.10 118.53±14.63 特定生长率/% SGR 1.52±0.03 1.55±0.13 1.58±0.15 1.70±0.05 1.56±0.13 饲料系数 FCR 1.51±0.02b 1.48±0.02b 1.49±0.11b 1.32±0.02a 1.51±0.07b 成活率/% survival 100.00 100.00 100.00 100.00 100.00 注:同一行中具不同上标字母者表示差异显著(P < 0.05);后表同此
Note:Values with different superscripts in the same row are significantly different (P < 0.05);The same case in the following tables.2.2 矿物元素的变化
发酵豆粕替代鳗鱼饲料中鱼粉使用量的20%后,鳗鱼饲料中的矿物元素情况见表 3。替代后2#饲料中的K、Fe和Mg元素质量分数比1#饲料的高,K元素增加幅度最大(28.01%),Fe次之;而Ca、Cu、P、Mn、B、Na和Al质量分数降低,Al降低幅度最大(41.58%),Cu次之(23.53%)。
表 3 发酵豆粕替代鱼粉后饲料中矿物元素Table 3. The mineral elements in fish diets矿物元素
mineral element饲料 diets 变化幅度/%
variation range1# 2# w(钙)/g·kg-1 Ca 29.337 25.236 -13.98 w(磷)/g·kg-1 P 17.955 16.190 -9.83 w(钾)/g·kg-1 K 7.684 9.836 28.01 w(钠)/g·kg-1 Na 6.620 5.823 -12.04 w(镁)/g·kg-1 Mg 2.000 2.086 4.30 w(铝)/g·kg-1 Al 0.101 0.059 -41.58 w(铁)/g·kg-1 Fe 0.461 0.504 9.32 w(锰)/mg·kg-1 Mn 27.74 27.83 0.36 w(硼)/mg·kg-1 B 11.392 8.675 -18.18 w(铜)/mg·kg-1 Cu 6.530 5.286 -23.53 发酵豆粕替代鳗鱼饲料中鱼粉后,鳗鱼肌肉和皮肤内的矿物元素情况见表 4。试验组鳗鱼肌肉和皮肤内的Ca、Cu、K、P元素与对照组相比均有所下降(除Ⅳ组的K、P元素外),其中肌肉和皮肤中的Cu元素变化最明显,对照组显著高于试验组(P < 0.05)。
表 4 发酵豆粕替代鱼粉后对鳗鱼肌肉和皮肤内矿物元素的影响Table 4. Effects of replacement of FM by FSBM on mineral elements in fish muscle and skinμg·kg-1 组别
group肌肉 muscle 皮肤 skin w(钙)Ca w(钾)K w(磷)P w(铜)Cu w(铜) Cu Ⅰ 903.33±94.96a 7 490.00±213.78a 6 600.00±182.48a 1.16±0.34a 5.28±2.36a Ⅱ 669.33±145.22a 7 273.33±317.86a 6 600.00±177.86a 0.67±0.14bc 1.85±0.37b Ⅲ 867.33±341.38a 7 340.00±561.52a 6 493.33±312.14a 0.98±0.16ab 2.61±0.60b Ⅳ 900.33±99.16a 7 480.00±242.69a 6 446.67±174.73a 0.78±0.13bc 1.54±0.07b Ⅴ 689.00±106.61a 7 342.00±366.96a 6 326.67±369.10a 0.57±0.22c 2.21±0.07b 3. 讨论
3.1 发酵豆粕替代鱼粉的适宜用量
发酵豆粕是利用现代生物工程发酵技术,以优质豆粕为主要原料,将大豆蛋白降解为小分子蛋白、小肽、游离氨基酸和未知生长因子(UGF)等物质,同时有效地去除豆粕中多种抗营养因子,使豆粕中原来不能消化的多糖变得可消化、吸收和利用[6-7],发酵豆粕还具有增强水产动物非特异性免疫力[3]和提高消化酶活性的功能[8]。现有的研究表明,不同品种的水产动物饲料中发酵豆粕替代鱼粉的适宜比例不尽相同[9-13],生产中添加量一般为5%~15%。笔者试验以发酵豆粕替代鳗鱼饲料中0、5%、10%、15%和20%的鱼粉,从结果上看,尽管各组间增重率和特定生长率差异不显著,但随着发酵豆粕替代鱼粉比例的升高,增重率和特定生长率呈先升高后下降的趋势,15%组获得了最佳生长效果,且其饲料系数显著低于其他组别,表明发酵豆粕替代鳗鱼日粮中的鱼粉的合适比例应为15%左右(即适宜添加量为15%,150 kg·t-1)。但从生长效果比较来看,2#饲料的增重率、特定生长速度均大于1#饲料,而饲料系数相同,所以,从节约鱼粉使用量、保护养殖资源角度来看,在鳗鱼饲料配方中可以使用20%发酵豆粕,从而降低20%鱼粉的使用量。
3.2 发酵豆粕替代鱼粉对矿物元素的影响
矿物元素是鱼体的重要组成部分,与物质代谢、渗透调节等生理过程有着密切的关系[14]。饲料中缺乏矿物元素或量不足,鱼类会出现生长缓慢、贫血、皮肤及鳍发炎、糜烂,死亡率高等症状[15-16]。动物蛋白与植物蛋白在能量、必需氨基酸、矿物元素上都具有较大的营养差异。试验结果显示,发酵豆粕替代鳗鱼饲料中的鱼粉后,饲料中绝大部分矿物元素都发生了变化,按变化幅度大小排列顺序为Al>K>Cu>B>Ca>Na>P>Fe。尽管发酵豆粕替代鱼粉后饲料中的K、Cu、Ca和P元素都发生了变化,但各替代组(Ⅱ、Ⅲ、Ⅳ和Ⅴ组)鳗鱼肌肉、皮肤中K、Ca和P与对照组(Ⅰ组)的差异并不显著(P>0.05),而Cu的差异显著(P < 0.05)。
鳗鲡对矿物质的需要量比一般鱼类要高[17],对Cu的需求量为5 mg·kg-1,鳗鱼饲料中Cu推荐添加量为15 mg·kg-1[18]。从笔者试验结果看,发酵豆粕替代20%鱼粉后鳗鱼饲料中Cu的质量分数仍可满足鳗鱼生长需求,但替代组与对照组鳗鱼肌肉和皮肤中的Cu却出现了显著差异,其原因可能有2种:1)直接原因。发酵豆粕中Cu的质量分数低于鱼粉,从而使得鳗鱼肌肉和皮肤中Cu质量分数降低;2)间接原因。作为植物蛋白,发酵豆粕中仍然存在一部分植酸等抗营养因子,从而影响到Cu元素的吸收[19]。尽管试验结果并未显示矿物元素的差异影响到鳗鱼的生长,但矿物元素影响鱼体生长发育、机体免疫力及产品品质,如Cu元素是细胞色素氧化酶、酪氨酸酶和抗坏血酸氧化酶的成分,具有影响体表色素形成,骨骼发育和生殖系统的功能[20],这可能是部分养殖者反应发酵豆粕替代鱼粉后鳗鱼体色不好的主要原因。因此,发酵豆粕替代鱼粉后饲料配方中的矿物元素要做相应的调整,但如何调整还有待进一步研究。
-
表 1 饲料配方组成
Table 1 Composition of experimental diets
g·kg-1 成分
ingredients对照组
control group
Ⅰ试验组 test group Ⅱ Ⅲ Ⅳ Ⅴ 发酵豆粕 fermented soybean meal 0 50 100 150 200 鱼粉 fish meal 600 570 540 510 480 膨化豆粕 extruded soybean meal 50 37.5 25 12.5 0 α淀粉 α-starch 250 250 250 250 250 酵母粉 yeast powder 30 26.5 23 19.5 16 蛋氨酸 Methionine 1 1.375 1.750 2.125 2.5 赖氨酸 Lysine 0 0.625 1.350 1.875 2.5 面粉 flour 64 59 54 49 44 鳗用多矿 mineral premix 5 5 5 5 5 鳗用多维 vitamin premix 2 2 2 2 2 营养组成 proximate composition 干物质/% dry matter 92.09 92.06 92.04 92.01 91.98 灰分/% crude ash 9.81 9.64 9.48 9.31 9.14 粗蛋白/% crude protein 46.03 46.02 46.01 46.00 45.98 粗脂肪/% crude lipid 7.13 6.99 6.84 6.70 6.55 注:Ⅱ组、Ⅲ组、Ⅳ组饲料配方和营养组成均为计算值
Note:Ingredients and composition of experimental dietsⅡ,Ⅲ and Ⅳ are calculated value.表 2 发酵豆粕不同比例替代鱼粉对鳗鱼生长的影响
Table 2 Effects of replacement of FM by FSBM on growth performance
生长指标 growth index 组别 group Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ 初始质量/g IBW 38.07±0.47 38.00±2.82 36.80±1.60 37.07±0.70 36.73±1.64 终末质量/g FBW 81.40±0.50b 82.13±2.82b 80.87±0.67b 86.60±0.61a 80.00±0.53b 增重率/% WG 113.87±3.37 117.36±14.24 120.57±16.68 133.76±6.10 118.53±14.63 特定生长率/% SGR 1.52±0.03 1.55±0.13 1.58±0.15 1.70±0.05 1.56±0.13 饲料系数 FCR 1.51±0.02b 1.48±0.02b 1.49±0.11b 1.32±0.02a 1.51±0.07b 成活率/% survival 100.00 100.00 100.00 100.00 100.00 注:同一行中具不同上标字母者表示差异显著(P < 0.05);后表同此
Note:Values with different superscripts in the same row are significantly different (P < 0.05);The same case in the following tables.表 3 发酵豆粕替代鱼粉后饲料中矿物元素
Table 3 The mineral elements in fish diets
矿物元素
mineral element饲料 diets 变化幅度/%
variation range1# 2# w(钙)/g·kg-1 Ca 29.337 25.236 -13.98 w(磷)/g·kg-1 P 17.955 16.190 -9.83 w(钾)/g·kg-1 K 7.684 9.836 28.01 w(钠)/g·kg-1 Na 6.620 5.823 -12.04 w(镁)/g·kg-1 Mg 2.000 2.086 4.30 w(铝)/g·kg-1 Al 0.101 0.059 -41.58 w(铁)/g·kg-1 Fe 0.461 0.504 9.32 w(锰)/mg·kg-1 Mn 27.74 27.83 0.36 w(硼)/mg·kg-1 B 11.392 8.675 -18.18 w(铜)/mg·kg-1 Cu 6.530 5.286 -23.53 表 4 发酵豆粕替代鱼粉后对鳗鱼肌肉和皮肤内矿物元素的影响
Table 4 Effects of replacement of FM by FSBM on mineral elements in fish muscle and skin
μg·kg-1 组别
group肌肉 muscle 皮肤 skin w(钙)Ca w(钾)K w(磷)P w(铜)Cu w(铜) Cu Ⅰ 903.33±94.96a 7 490.00±213.78a 6 600.00±182.48a 1.16±0.34a 5.28±2.36a Ⅱ 669.33±145.22a 7 273.33±317.86a 6 600.00±177.86a 0.67±0.14bc 1.85±0.37b Ⅲ 867.33±341.38a 7 340.00±561.52a 6 493.33±312.14a 0.98±0.16ab 2.61±0.60b Ⅳ 900.33±99.16a 7 480.00±242.69a 6 446.67±174.73a 0.78±0.13bc 1.54±0.07b Ⅴ 689.00±106.61a 7 342.00±366.96a 6 326.67±369.10a 0.57±0.22c 2.21±0.07b -
[1] 周歧存, 麦康森, 刘永坚, 等. 动植物蛋白源替代鱼粉研究进展[J]. 水产学报, 2005, 29(3): 404-410. doi: 10.3321/j.issn:1000-0615.2005.03.021 [2] 胡梦红, 王有基, 熊邦喜, 等. 发酵豆粕在水产饲料中的应用研究[J]. 饲料工业, 2007, 28(12): 60-62. doi: 10.3969/j.issn.1001-991X.2007.12.023 [3] 侯鑫, 梁桂英, 阳会军, 等. 杂交罗非鱼饲料中豆粕、发酵豆粕和晶体氨基酸替代鱼粉的研究[J]. 南方水产, 2009, 5(2): 28-33. doi: 10.3969/j.issn.1673-2227.2009.02.005 [4] 陈萱, 梁运祥, 陈昌福. 发酵豆粕饲料对异育银鲫非特异性免疫功能的影响[J]. 淡水渔业, 2005, 35(2): 6-8. doi: 10.3969/j.issn.1000-6907.2005.02.002 [5] 王友慧, 叶元土, 林仕梅, 等. 嘉陵江8种鱼类不同组织微量元素含量分析[J]. 动物学杂志, 2005, 40(5): 99-103. doi: 10.3969/j.issn.0250-3263.2005.05.017 [6] REFSTIE S, SAHLSTRÖM S, BRÅTHEN E, et al. Lactic acid fermentation eliminates indigestible carbohydrates and antinutritional factors in soybean meal for Atlantic salmon (Salmo salar)[J]. Aquaculture, 2005, 246(1/2/3/4): 331-345. doi: 10.1016/j.aquaculture.2005.01.001
[7] FENG J, LIU X, XU Z R, et al. Effects of Aspergillus oryzae 3.042 fermented soybean meal on growth performance and plasma biochemical parameters in broilers[J]. Anim Feed Sci Technol, 2007, 134(3/4): 235-242. doi: 10.1016/j.anifeedsci.2006.08.018
[8] 黄峰, 李惠, 刘军, 等. 发酵豆粕替代鱼粉对斑点叉尾鮰消化酶活性的影响[J]. 水利渔业, 2008, 28(4): 38-40. doi: 10.3969/j.issn.1003-1278.2008.04.013 [9] 罗智, 刘永坚, 麦康森, 等. 石斑鱼配合饲料中发酵豆粕和豆粕替代鱼粉的研究[J]. 水产学报, 2004, 28(2): 175-181. doi: 10.3321/j.issn:1000-0615.2004.02.010 [10] 程成荣, 刘永坚. 杂交罗非鱼饲料中发酵豆粕替代鱼粉的研究[J]. 广东饲料, 2004, 13(2): 26-27. doi: 10.3969/j.issn.1005-8613.2004.02.014 [11] 李惠, 黄峰, 胡兵, 等. 发酵豆粕替代鱼粉对斑点叉尾鮰生长和饲料表观消化率的影响[J]. 淡水渔业, 2007, 37(5): 41-44. https://www.doc88.com/p-3965543434692.html [12] 郭冉, 牛津, 张朝正. 南美白对虾饲料中发酵豆粕替代鱼粉的研究[J]. 中大水生通讯, 2004(5): 12-14. [13] 冷向军, 王文龙, 李小勤. 发酵豆粕部分替代鱼粉对凡纳滨对虾的影响[J]. 粮食与饲料工业, 2007(3): 40-41. doi: 10.3969/j.issn.1003-6202.2007.03.017 [14] WATANABE T, KIRON T, SATOH S. Trace minerals in fish nutrition[J]. Aquaculture, 1997, 151(1/2/3/4): 185-207. doi: 10.1016/S0044-8486(96)01503-7
[15] 曹志华, 高贵琴. 鱼类对微量元素的需要研究现状[J]. 淡水渔业, 1999, 29(11): 9-11. https://www.cqvip.com/QK/93836X/199911/5151274.html [16] TRIFIO A T, SARROZA J C. Effect of a diet lacking in vitamin and mineral supplements on growth and survival of Penaeus monodon juveniles in a modified extensive culture system[J]. Aquaculture, 1995, 136(3/4): 323-330. doi: 10.1016/0044-8486(95)01063-7
[17] NOSE T, ARAI S. Optimum level of protein in purified diet for eel Anguilla japonica[J]. Bull Freshw Fish Res Lab, 1972, 22(2): 145-154.
[18] 吴锐全, 肖学铮, 黄樟翰, 等. 鳗鲡的营养需求与饲料配制[J]. 饲料研究, 1999(7): 1-3. https://www.docin.com/p-60766815.html [19] 邓君明, 张曦, 赵素梅. 抗营养因子的抗营养作用[J]. 粮油食品科技, 2003, 11(1): 34-37. doi: 10.3969/j.issn.1007-7561.2003.01.015 [20] 李爱杰. 水产动物营养与饲料学[M]. 北京: 中国农业出版社, 1996: 56. https://www.zhangqiaokeyan.com/book-cn/08150652821.html -
期刊类型引用(11)
1. 王裕玉,贾晶,李媛媛,张新明. 淡水鳗鲡营养需求和配合饲料研究进展. 动物营养学报. 2024(05): 2728-2742 . 百度学术
2. 张翔,王祖峰. 日本鳗鲡营养需求及饲料添加剂研究进展. 大连海洋大学学报. 2023(03): 543-552 . 百度学术
3. 罗悦,张蕉南,向倩,王帅杰,陶敏,贺妮莎,吴建军. 发酵植物蛋白替代鱼粉对水产动物的影响. 饲料工业. 2023(22): 72-79 . 百度学术
4. 马启伟,郭梁,刘波,刘宝锁,朱克诚,郭华阳,张楠,杨静文,张殿昌. 牛磺酸对卵形鲳鲹肠道微生物及免疫功能的影响. 南方水产科学. 2021(02): 87-96 . 本站查看
5. 赵云龙,李艳娇,郭志欣,尹春丽,尹智博,王嘉婧,张东鸣. 发酵饲料对花鳅生长性能、消化、免疫和抗氧化能力的影响. 饲料研究. 2021(23): 59-62 . 百度学术
6. 胡瑞萍,丁贤,李俊伟,段亚飞,李育仁,伍文超,徐宁. 多指标综合加权分析法优化固态发酵豆粕工艺. 农业工程学报. 2019(12): 304-312 . 百度学术
7. 刘洋,孟连仲,张建雄. 豆粕替代鱼粉对褐点石斑鱼生长、营养组成及血液指标影响. 中国饲料. 2018(04): 60-64 . 百度学术
8. 李百安,冷向军,李小勤,姚文祥,蔡国林,陆健. 罗非鱼饲料中花生粕和发酵花生粕替代鱼粉的效果研究. 大连海洋大学学报. 2016(01): 50-57 . 百度学术
9. 沈城,方华,郭子好,朱校适,孙中超,焦春燕. 发酵豆粕替代部分鱼粉对中华绒螯蟹幼蟹生长性能、体成分及相关消化酶活性的影响. 中国饲料. 2016(06): 29-33+36 . 百度学术
10. 沈城,方华,郭子好,朱校适,孙中超,焦春燕. 发酵豆粕替代部分鱼粉对中华鳖生长性能、体成分及肠道消化酶活性的影响. 粮食与饲料工业. 2015(07): 51-55 . 百度学术
11. 曹小华. 发酵豆粕及其在水产动物生产中的应用. 饲料博览. 2014(02): 23-25 . 百度学术
其他类型引用(14)
计量
- 文章访问数: 3723
- HTML全文浏览量: 182
- PDF下载量: 2149
- 被引次数: 25