Determination and optimization of N-nitrosamines in salted fish by gas chromatography-mass spectrometry
-
摘要:
利用气相色谱-质谱联用(GC-MS)检测咸鱼中的N-亚硝胺,优化了样品前处理条件,比较了固相微萃取(SPME)和二氯甲烷超声萃取对N-亚硝胺的响应强度的影响,探讨了有机溶剂用量、萃取时间、萃取次数对测定的影响。采用选择离子法定性定量检测咸鱼中N-二甲基亚硝胺(NDMA)、N-二乙基亚硝胺(NDEA)、N-亚硝基吡咯烷(NPYR)和N-二丙基亚硝胺(NDPA)4种N-亚硝胺。结果显示,优化后的线性相关系数分别达到0.999 2、0.999 1、0.999 1和0.999 2;线性范围为0~10 μg·mL-1;该方法重现性好,其相对标准偏差(RSD)均≤2.1%;空白加标回收率可达70%~80%;灵敏度高,检测限分别为0.038 6 μg·kg-1、0.022 7 μg·kg-1、0.031 6 μg·kg-1和0.047 8 μg·kg-1。
Abstract:We determined N-nitrosamines in salted fish by gas chromatography-mass spectrometry (GC-MS), optimized the sample preparation conditions, compared the response intensity of N-nitrosamines by SPME and dichloromethane ultrasonic extraction as well as explored the impact of organic solvent, extraction time and times on the determination. By ion selective electrode method, we determined the contents of N-dimethylnitrosamine, N-diethylnitrosamine, N-nitroso-pyrrolidine and N-nitrosamines. Results show that the linear correlation coefficient is 0.999 2, 0.999 1, 0.999 1 and 0.999 2, respectively, with a linear range of 0~10 μg·mL-1. The method has good reproducibility (RSD≤2.1%, blank spiked recovery is 70%~80%) and high sensitivity (detection limit is 0.038 6 μg·kg-1, 0.022 7 μg·kg-1, 0.031 6 μg·kg-1 and 0.047 8 μg·kg-1, respectively).
-
Keywords:
- salted fish /
- N-nitrosamines /
- GC-MS /
- optimization
-
温度和盐度是贝类养殖过程中2个重要的水环境因子,对贝类机体抗氧化还原水平具显著影响[1]。因海水温度和盐度易受季节及降雨等方面影响,导致海水贝类抗氧化酶活性改变,造成贝类大面积死亡,给贝类养殖带来严重的经济损失。近年来温度和盐度对水生动物抗氧化酶活性影响已成为研究热点。已有研究发现,温度和盐度变化对贻贝(Mytilus galloprovincialis)[2]、栉孔扇贝(Chlamys farreri)[3]和缢蛏(Sinonovacula constricta)[4]等贝类中过氧化氢酶(CAT)、超氧化物歧化酶(SOD)活性具有显著影响。对其他水生动物研究发现,温度降低能够降低大黄鱼(Pseudosciaema crocea)肌肉中谷胱甘肽过氧化物酶(GSH-PX)活性[5];银鲳(Pampus argenteus)肝脏中抗氧化酶活性易受盐度影响发生改变[6]。
华贵栉孔扇贝(Chlamys nobilis)隶属软体动物门、瓣鳃纲、珍珠目、扇贝科,广泛分布于中国南海、日本、越南以及印度尼西亚等沿海地区[7]。华贵栉孔扇贝养殖周期较短、易养成、肉质甜美,是一种重要水产经济贝类[8-9]。目前,国内外对华贵栉孔扇贝的研究主要集中在群体遗传多态性[10]、壳色和闭壳肌颜色[11]、呼吸和排泄[12]以及毒性金属对免疫影响[13]等方面。温度和盐度对华贵栉孔扇贝抗氧化酶协同影响的研究尚未见报道。中心复合设计是近年来国内外应用较多的一种试验优化方法,其优点在于减少试验次数、具有较好的预测性、易获得较优条件等[14]。响应曲面能够直观地反映出因素间对响应值的互作影响。文章采用中心复合设计和响应曲面分析方法,考察温度和盐度对华贵栉孔扇贝血淋巴中SOD、CAT和GSH-PX 3种抗氧化酶活性的协同效应,建立影响因子与响应值之间关系的曲面模型,并对各因素的二次效应和交互作用进行分析,旨在阐明温度和盐度变化对华贵栉孔扇贝抗氧化酶活性的影响,为华贵栉孔扇贝耐高温、高盐品系培育以及健康养殖提供理论依据。
1. 材料与方法
1.1 试验材料
华贵栉孔扇贝于2013年3月20取自海南三亚某养殖场,平均壳长为(63.12±2.454)mm。华贵栉孔扇贝取回后用软毛刷刷去表面附着物,放入水族箱中,在广东海洋大学无脊椎动物实验室暂养7 d,暂养期间海水温度为25 ℃,盐度为22,24 h连续充气,每天投喂亚心型扁藻(Tetraselmis Chui),每天50%换水1次。
1.2 试验设计
正式试验前采用单因素试验方法,确定华贵栉孔扇贝可以正常摄食,生长的温度和盐度分别为19~31 ℃和22~38。试验采用中心复合设计和响应曲面法,优化了温度和盐度2个因子对华贵栉孔扇贝中SOD、CAT、GSH-PX活性的影响(表 1),温度(T)和盐度(S)在上述范围内各取3个水平。各水平的编码值分别为-1、0、1,共设计11个组合,中心点重复3次,整个试验重复2次。为减小系统误差,所有组合均随机安排。
表 1 试验设计及结果Table 1. Experiment design and result试验组group 编码值coded value 实际值actual value 超氧化物歧化酶/U·mg-1
SOD过氧化氢酶/ U·mg-1
CAT谷胱甘肽过氧化物酶/ U·mg-1
GSH-PXT S T S 1 0 -1 25 22 31.43±1.43 38.32±1.03 14.27±1.32 2 1 1 31 38 7.21±1.46 11.09±1.39 11.28±0.58 3 -1 -1 19 22 6.14±0.22 17.94±2.10 6.34±1.64 4 0 0 25 30 30.51±0.64 35.25±0.56 27.43±1.02 5 0 0 25 30 28.65±0.13 32.95±0.42 31.34±0.75 6 -1 0 19 30 16.23±1.24 20.42±1.43 16.76±0.53 7 0 0 25 30 37.56±0.73 33.95±0.48 29.56±0.85 8 0 1 25 38 17.34±1.43 21.42±1.71 11.44±1.45 9 -1 1 19 38 9.95±1.28 16.32±1.91 5.96±1.35 10 1 -1 31 22 29.78±0.45 31.32±2.42 13.74±1.84 11 1 0 31 30 22.67±0.94 25.48±2.33 24.34±0.93 注:T. 温度;S. 盐度
Note:T. temperature;S. salnity1.3 试验方法
试验在760 mm×550 mm×475 mm塑料箱中进行,每个试验组放入30只华贵栉孔扇贝,用充气泵供给充足的氧气,并调节箱体中海水的温度、盐度至表中相应的组合(表 1)。温度每天上升或下降1~2 ℃;盐度则采用曝气后的海水加入海水晶或加入淡水进行控制,每天上调或下调幅度为2。当温度和盐度达到各组合后再饲养7 d,然后随机抽取健康的10只华贵栉孔扇贝,用灭菌的1 mL注射器在闭壳肌中抽取血淋巴,置于1.5 mL含有抗凝剂的离心管中,放入4 ℃冰箱中用于酶活性测定。
1.4 酶活性测定
试验中SOD、CAT和GSH-PX活性的测定采用南京建成生物工程研究所生产的试剂盒。SOD活性采用黄嘌呤氧化酶法,其活性单位定义为1 mg组织蛋白在1 mL反应液中SOD抑制率达50%时所对应的SOD量为1个SOD活性单位(U);CAT活性通过分光光计测定H2O2减少的量进行测定,CAT活性单位定义为每毫克组织蛋白每秒钟分解1 μmoL的H2O2的量为1个CAT活性单位(U);GSH-PX活性通过测定催化底物氧化产生的黄色化合物离子浓度来测定,GSH-PX活性单位定义为每毫克组织蛋白每分钟扣除非酶促反应的作用,使反应体系中GSH浓度降低1 μmoL · L-1为1个GSH-PX活性单位(U)。
1.5 数据处理
采用Design Expert 8.0软件进行试验设计与数据处理,以温度和盐度为自变量,SOD、CAT、GSH-PX为因变量,进行二次多项回归拟合,建立酶活性的二次回归模型为:Y=b0+b1T+b2S+b3T×S+b4T2+b5S2。式中Y为相应变量(SOD、CAT和GSH-PX活性),b0为回归常数,b1和b2分别为温度和盐度的一次效应,b3为温度和盐度的互作效应,b4和b5为温度和盐度的二次效应。
通过ANOVA分析确定回归方程模型的显著性,P < 0.05为差异显著,P < 0.01为差异极显著,得出决定系数以考察模型的拟合优度,模型中各项效应采用最小二乘法进行估计并采用F统计量进行显著性试验。并对华贵栉孔扇贝中SOD、CAT和GSH-PX活性最小时的温度和盐度进行优化,优化出的结果可靠性以满意度函数来表示。
2. 结果与分析
2.1 温度、盐度对SOD活性的影响
一次效应是指响应值与影响因子间呈线性关系,二次效应则是指响应值与影响因子间呈非线性关系,当二次效应显著则表明影响因子在最优值。温度、盐度对华贵栉孔扇贝血淋巴中SOD活性所建立的回归模型极显著(P < 0.01)(表 2)。失拟项显著性检验结果为不显著(P>0.05),表明拟合的模型有效。温度、盐度的一次效应、二次效应以及温、盐互作效应对SOD活性影响均显著(P < 0.05)(表 3)。对试验数据进行二次多元回归拟合,根据所测得的数据得出SOD活性对温度、盐度的二次回归方程为YSOD=-374.421 5+21.420 8T+9.288 1S-0.137 4T×S-0.330 8T2-0.109 0S2。该回归方程的决定系数为0.950 1,校正系数为0.900 3,预测系数为0.805 8,表明该模型能解释95.01%响应值变化,仅有总变异的5.99%不能用此模型解释,因此模型选择恰当。
表 2 温度和盐度对超氧化物歧化酶活性影响回归模型方差分析Table 2. Variance analysis of synergistic effect of temperature and salinity on SOD activity来源
source平方和
SS自由度
df均方
MSF P 模型 model 1 118.58 5 223.72 19.05 0.002 9 残差 residual 58.71 5 11.74 失拟 lack of fit 14.53 3 4.84 0.22 0.876 9 纯误差 pure error 44.18 2 22.09 cor total 1 177.29 10 注:决定系数R2=0.950 1;校正系数Adj R2=0.900 3;预测系数Pred R2=0.805 8
Note:R2=0.950 1;Adj R2=0.900 3;Pred R2=0.805 8表 3 回归方程系数显著性检验Table 3. Significance test for regression coefficients因子
factor系数估计
coefficient estimate标准误
standard errorP 95%置信下限
CI low95%置信上限
CI highintercept 31.89 1.76 27.37 36.41 T 4.56 1.40 0.022 5 0.96 8.15 S -5.48 1.40 0.011 3 -9.07 -1.88 T×S -6.60 1.71 0.012 0 -11.00 -2.19 T2 -11.91 2.15 0.002 6 -17.44 -6.37 S2 -6.97 2.15 0.023 0 -12.51 -1.44 注:系数估计值为编码形式
Note:The coefficient estimates were given in terms of coded factors.温盐的交互作用显著(P < 0.05)(图 1-a),当温度为25 ℃、盐度为22~30时,SOD活性呈现上升趋势,盐度高于30,SOD活性逐渐降低,且酶活性低于30 U · mg-1;当盐度为30,温度19~25 ℃时,SOD活性呈现升高趋势,当温度大于25 ℃,SOD活性逐渐下降(图 1-b)。温度和盐度分别为27.07 ℃和25.6时,SOD活性最大(34.20 U · mg-1)。
2.2 温度、盐度对CAT活性的影响
表 4为温度、盐度对华贵栉孔扇贝CAT活性所建立的回归模型的方差分析。结果表明,回归模型为极显著(P < 0.01),失拟项显著性检验结果为不显著(P>0.05)。从表 5可知,温度的一次效应和盐度的二次效应对CAT活性影响均显著(P < 0.05),盐度的一次效应、温度的二次效应以及温盐互作效应对CAT活性影响均极显著(P < 0.01)。对试验数据进行拟合,得出CAT活性对温度、盐度的二次回归方程为YCAT=-268.599 3+18.400 9T+5.338 5S-0.096 9T×S-0.302 5T2-0.062 0S2。该回归方程的决定系数为0.981 5,校正系数为0.963 0,预测系数为0.833 1,表明该模型能解释98.15%响应值变化,因此模型选择恰当。
表 4 温度、盐度对过氧化氢酶活性影响的回归模型方差分析Table 4. Variance analysis of synergistic effect of temperature and salinity on CAT activity来源
source平方和
SS自由度
df均方
MSF P 模型 model 795.31 5 159.06 53.08 0.000 2 残差 residual 14.98 5 3.00 失拟 lack of fit 12.32 3 4.11 3.09 0.254 1 纯误差 pure error 2.66 2 1.33 cor total 810.29 10 注:决定系数R2=0.981 5;校正系数Adj R2=0.963 0;预测系数Pred R2=0.833 1
Note:R2=0.981 5;Adj R2=0.963 0;Pred R2=0.833 1表 5 回归方程系数显著性检验Table 5. Test of significance for regression coefficient因子
factor系数估计
coefficient estimate标准误
standard errorP 95%置信下限
CI low95%置信上限
CI highintercept 33.97 0.89 31.68 36.25 T 2.20 0.71 0.026 4 0.38 4.02 S -6.46 0.71 0.000 3 -8.28 -4.64 T×S -4.65 0.87 0.003 0 -6.88 -2.43 T2 -10.89 1.09 0.000 2 -13.69 -8.09 S2 -3.97 1.09 0.014 7 -6.77 -1.17 温度和盐度的互作效应对华贵栉孔扇贝CAT活性影响显著(P < 0.05)(图 2-a),当温度为26 ℃、盐度为22~38时,CAT活性呈现上升后下降的趋势;当盐度为22、温度为19~26 ℃时,CAT活性呈现上升趋势;温度高于26 ℃时,CAT活性呈现下降趋势;当温度和盐度分别为26.89 ℃和22时,CAT活性达到最大值(37.53 U · mg-1)(图 2-b)。
2.3 温度、盐度对GSH-PX活性的影响
表 6为温度、盐度对华贵栉孔扇贝GSH-PX活性所建立的回归模型的方差分析。结果表明,方程模型为极显著(P < 0.01),失拟项显著性检验结果为不显著(P>0.05)。从表 7可知,影响因子温度的一次效应对GSH-PX活性影响显著(P < 0.05),温度、盐度的二次效应对GSH-PX活性影响极显著(P < 0.01),盐度的一次效应、温盐互作效应对GSH-PX活性影响均不显著(P>0.05)。对数据进行处理得出的温度和盐度对GSH-PX活性影响的回归方程为YGSH-PX=-289.251 4+9.316 5T+13.055 4S-0.010 8T×S-0.168 6T2-0.215 1S2。回归方程的决定系数为0.096 79,校正系数为0.935 7,预测系数为0.823 1,表明该模型能解释96.79%响应值的变化,仅有总变异的3.21%不能用此模型解释,因此模型选择恰当。
表 6 温度、盐度对谷胱甘肽过氧化物酶活性影响的回归模型方差分析Table 6. Variance analysis of synergistic effect of temperature and salinity on GSH-PX activity来源
source平方和
SS自由度
df均方
MSF P 模型 model 813.60 5 162.72 30.11 0.001 0 残差 residual 27.02 5 5.40 失拟 lack of fit 19.36 3 6.45 1.68 0.393 6 纯误差 pure error 7.66 2 3.83 cor total 840.63 10 注:决定系数R2=0.967 9;校正系数Adj R2=0.935 7;预测系数Pred R2=0.823 1
Note:R2=0.967 9;Adj R2=0.935 7;Pred R2=0.823 1表 7 回归方程系数显著性检验Table 7. Test of significance for regression coefficient因子
factor系数估计
coefficient estimate标准误
standard errorP 95%置信下限
CI low95%置信上限
CI high截距 intercept 28.31 1.19 25.25 31.38 T 3.38 0.95 0.016 1 0.94 5.82 S -0.94 0.95 0.365 1 -3.38 1.49 T×S -0.52 1.16 0.673 3 -3.51 2.47 T2 -6.07 1.46 0.008 9 -9.82 -2.31 S2 -13.76 1.46 0.000 2 -17.52 -10.01 温盐的互作效应对GSH-PX活性影响不显著(P>0.05),且当温度接近26 ℃、盐度接近29时,GSH-PX活性接近最大值(图 3-a)。当盐度为29、温度为9~31 ℃时,随着温度的升高,GSH-PX活性呈先上升后下降的趋势;当温度为26 ℃、盐度为22~38时,GSH-PX活性随着盐度的升高呈现出先上升后下降的趋势;当温度为26.68 ℃、盐度为29.7时,GSH-PX活性最大(28.81 U · mg-1)(图 3-b)。
2.4 温度、盐度对抗氧化酶活性影响的优化
以华贵栉孔扇贝中抗氧化酶活性为目标,通过中心组合设计试验考察了温度、盐度2个因子对SOD、CAT、GSH-PX活性的影响,采用响应曲线法对结果进行优化,对3种酶活性进行整体评估。结果显示,当温度为26.41 ℃、盐度27.69时,SOD、CAT和GSH-PX活性处于相对最大值(分别为33.02 U · mg-1、35.73 U · mg-1和27.94 U · mg-1),满意度达98.9%。即在此组合下,抗氧化酶活性最高。为了进一步验证响应曲面优化条件的可靠性,按所得最优条件进行验证试验,设置温度为26.4 ℃、盐度为27.7时,所测得SOD、CAT和GSH-PX活性分别为34.12 U · mg-1、35.69 U · mg-1和27.88 U · mg-1,与理论预测的条件下所得到的最大酶活性基本相符,说明模型优化条件合理有效。
3. 讨论
3.1 温度和盐度对华贵栉孔扇贝SOD、CAT、GSH-PX活性影响分析
温度是水生动物生存所需的重要非生物环境因素之一,主要对生物机体中生化反应过程、代谢能力以及生物体中某些生物大分子的活力产生影响。温度改变常会造成水体中溶氧含量降低,发生呼吸爆发,产生大量氧自由基,造成贝类氧化损伤。试验发现,温度的一次效应和二次效应对华贵栉孔扇贝SOD、CAT和GSH-PX活性的影响显著(P < 0.05)。一次效应显著表明SOD、CAT和GSH-PX 3种酶活性易受到温度影响,二次效应显著则说明当盐度一定时,随温度升高SOD、CAT、GSH-PX活性呈现峰值变化,即存在最大值。这一变化规律与李晓英等[15]对青蛤(Cyclina sinensis)肝胰脏中SOD活性研究结果相同,主要原因是当温度升高时,试验华贵栉孔扇贝受到外界温度胁迫,短时间内体内的代谢速度加快,产生过多的活性氧自由基,诱导SOD、CAT、GSH-PX活性升高,但温度超过最适范围时,机体的新陈代谢能力及自身活力降低,相关抗氧化酶活性受体内环境的改变而降低,最终导致机体因体内残有大量氧自由基而死亡[16-17]。该研究发现,当华贵栉孔扇贝体内SOD、CAT和GSH-PX活性最大时所对应的温度条件下,华贵栉孔扇贝无论在摄食还是自身活力均优于其他条件组,表明在最适环境条件下,华贵栉孔扇贝抗氧化酶活性较高,利于机体内氧自由基清除,减少个体因呼吸爆发造成的死亡现象。对鸡帘蛤(Chamelea gallina)[18]、海蛤(Macoma balthica)[19]、盘鲍(Haliotis discus)[20]、中华鲟(Acipenser sinensis Gray)[21]等的研究同样发现,当温度处于最适温度时,机体内抗氧化酶活性最高。华贵栉孔扇贝属于暖水性贝类,因此,在室内人工养殖过程中海水温度应控制在约26.4 ℃,以保证华贵栉孔扇贝抗氧化能力最强,个体成活率最高。当池中贝类突然发生死亡,可首先检测水温的变化,若温度高于或低于正常温度,则会造成贝类呼吸爆发死亡;若温度并未发生改变,则可判断是由于病害或者投喂饵料问题造成贝类死亡。
盐度是水环境中重要的非生物因子,水体盐度的改变能够对机体的渗透压产生影响,从而影响生物体内离子水平、能量代谢以及电解质平衡,最终改变生物体内某些酶的活性[22-23]。该试验显示,盐度的一次效应对华贵栉孔扇贝SOD和CAT活性影响显著(P < 0.05),而对GSH-PX活性影响不显著(P>0.05),表明SOD和CAT活性易受盐度影响;盐度的二次效应对SOD、CAT和GSH-PX活性影响显著(P < 0.05),表明当温度一定时3种抗氧化酶活性随着盐度的升高呈现出先升高后下降的峰值变化。这可能是由于在等渗点附近,华贵栉孔扇贝的代谢率和耗氧率较高,而盐度高于或低于等渗点时,其耗氧率呈现下降趋势[24],因此机体的新陈代谢会减慢,氧化还原反应产生的氧自由基较少,导致抗氧化酶活性下降。这与强俊等[25]对吉富罗非鱼(Oreochromis niloticus)幼鱼抗氧化酶活性研究结果相同,即当盐度过高时,肝脏中CAT活性呈现下降趋势。时少坤等[26]在对近江牡蛎(Crassostrea rivularis)中SOD活性的研究中发现,SOD活性在高盐度组中显著低于其他盐度组;PAITAL等[27]研究发现,锯缘青蟹(Scylla serrata)腹肌中盐度对GSH-PX活性影响不显著,但在一定盐度范围内GSH-PX活性会随着盐度的升高呈现出先升高后降低的变化趋势。以上研究均与此试验结果一致,表明高盐度或低盐度能够抑制抗氧化酶活性,只有在适宜的盐度范围内,抗氧化酶活性才能达到最大。因此在人工养殖华贵栉孔扇贝过程中,不可忽略海水盐度对贝类造成的影响,若盐度超过26~28,会造成华贵栉孔扇贝代谢降低,体内氧自由基增多,最终导致贝类死亡,降低经济效益。
3.2 温度和盐度对华贵栉孔扇贝SOD、CAT、GSH-PX活性联合效应分析
该研究采用响应曲面法分析温度和盐度对华贵栉孔扇贝SOD、CAT、GSH-PX活性联合效应的影响。响应曲面分析方法最大优点是可以通过对响应曲面的分析得到拟合度较高的模型方程,同时还能对试验结果进行优化,找到最优因子组合。然而,国内外关于环境因子对贝类抗氧化酶活性影响的研究基本集中在某一环境因素下几个孤立水平点进行分析,并未建立可靠的模型。该研究基于响应曲面图发现,SOD、CAT和GSH-PX活性的响应曲面图呈上凸曲线,表明3种酶存在最大值。对所建立模型进行优化,得到SOD、CAT和GSH-PX活性最高的理论条件为温度26.4 ℃、盐度27.7。说明在此条件下,华贵栉孔扇贝的生存环境较适宜,未受到外界恶劣环境的胁迫。结果显示温度和盐度的交互作用对SOD、CAT活性影响显著(P < 0.05),表明温度和盐度2个因子可以相互影响;温度和盐度的交互作用对GSH-PX活性影响不显著(P>0.05),表明对于GSH-PX而言,温度和盐度是2个独立因子,两者之间不存在效应叠加或干扰。对其他水生动物研究表明,温度和盐度对吉富罗非鱼[25]、军曹鱼幼鱼[28]的SOD和CAT活性具有显著的协同效应,与该研究所得结果相同,但温度和盐度联合效应对GSH-PX活性影响研究较少。
该研究表明温度和盐度联合效应对华贵栉孔扇贝适应生存环境的程度具有显著影响,因此在华贵栉孔扇贝耐高温品种选育或人工养殖时不仅需考虑温度和盐度单因素的影响,还应考虑温度与盐度两因素互作作用。该试验只考察了温度盐度2个因子对血淋巴中抗氧化酶活性的影响,海水中其他因素对抗氧化酶活性的影响有待进一步研究。
-
表 1 4种挥发性N-亚硝胺的标准曲线及线性范围
Table 1 Standard curve and linear range of 4 volatile nitrosamines
N-亚硝胺
N-nitrosamine定量离子
m/z线性方程
linear regression equation相关系数(R)
correlation coefficient线性范围/μg·mL-1
linear rangeN-二甲基亚硝胺NDMA 74 y=3×10-5x+0.423 6 0.999 3 0~10 N-二乙基亚硝胺NDEA 102 y=4×10-5x+0.436 3 0.999 2 0~10 N-亚硝基吡咯烷NPYR 100 y=3×10-5x+0.460 2 0.999 1 0~10 N-二丙基亚硝胺NDPA 70 y=6×10-5x+0.368 5 0.999 2 0~10 表 2 各样品中N-亚硝胺质量分数(X +SD)
Table 2 Content of 4 N-nitrosamines
μg·kg-1 咸鱼样品名称
salted fishw(N-二甲基亚硝胺)
NDMAw(N-二乙基亚硝胺)
NDEAw(N-亚硝基吡咯烷)
NPYRw(N-二丙基亚硝胺)
NDPA总量
total大黄鱼(Pseudosciaena crocea) 2.11±0.40 0.130±0.14 未检出 4.17±0.51 6.42±0.15 三牙鱼(Otolithes ruber) 1.81±0.32 0.008±0 2.31±0.50 未检出 4.13±0.32 金仓鱼(Pomfret) 2.57±0.52 0.520±0.31 0.03±0.01 1.69±0.24 4.82±0.20 多春鱼(Capelin) 3.75±0.74 未检出 0.29±0.11 0.85±0.17 4.89±0.44 表 3 回收率试验(n=6)
Table 3 Recovery experiment
N-亚硝胺
N-nitrosamine加标量/μg·mL-1
adding standard回收率/%
recovery相对标准偏差/%
RSDN-二甲基亚硝胺NDMA 2.5 71.20 0.65 5.0 70.14 1.32 10.0 73.88 3.96 N-二乙基亚硝胺NDEA 2.5 73.11 1.12 5.0 75.65 2.74 10.0 80.10 1.04 N-亚硝基吡咯烷NPYR 2.5 75.22 2.15 5.0 78.72 1.26 10.0 76.41 0.98 N-二丙基亚硝胺NDPA 2.5 70.27 1.04 5.0 71.72 2.63 10.0 75.23 3.45 表 4 仪器和方法检出限
Table 4 Determination limit of instrument and method
N-亚硝胺
N-nitrosamine仪器检测限/ng·mL-1
detection limit of instrument方法检出限/μg·kg-1
detection limit of methodN-二甲基亚硝胺NDMA 0.772 0.038 6 N-二乙基亚硝胺NDEA 0.454 0.022 7 N-亚硝基吡咯烷NPYR 0.632 0.031 6 N-二丙基亚硝胺NDPA 0.956 0.047 8 -
[1] 何计国, 甄润英. 食品卫生学[M]. 北京: 中国农业大学出版社, 2003: 89-100. HE Jiguo, ZHEN Runying. Food hygiene[M]. Beijing: China Agricultural University Press, 2003: 89-100. (in Chinese)
[2] 胡丽芳, 尹德凤, 周瑶敏, 等. 气质联用法测定咸鱼中N-二甲基亚硝胺含量[J]. 江西农业学报, 2009, 21(9): 135-136. doi: 10.3969/j.issn.1001-8581.2009.09.044 HU Lifang, YIN Defeng, ZHOU Yaomin, et al. Determination of N-dimethylnitrosamine in salt fish by gas chromatography-mass spectrometry[J]. Acta Agriculturae Jiangxi, 2009, 21(9): 135-136. (in Chinese) doi: 10.3969/j.issn.1001-8581.2009.09.044
[3] 丁红梅, 陈彬, 杨兴龙, 等. 气质联用法测定生食水产品中挥发性N-亚硝胺[J]. 食品与机械, 2010, 26(6): 54-69. doi: 10.3969/j.issn.1003-5788.2010.06.016 DING Hongmei, CHEN Bin, YANG Xinglong, et al. Determination of volatile raw aquatic products of N-nitrosaminesby gas chromatography-mass pectrometry[J]. Food Machinery, 2010, 26(6): 54-69. (in Chinese) doi: 10.3969/j.issn.1003-5788.2010.06.016
[4] 马俪珍, 南庆贤, 方长法. N-亚硝胺类化合物与食品安全性[J]. 农产品加工学刊, 2005(12): 8-12. doi: 10.3969/j.issn.1671-9646-B.2005.12.002 MA Lizhen, NAN Qingxian, FANG Changfa. N-nitrosmine compounds and food safety[J]. Farm Prod Process, 2005(12): 8-12. (in Chinese) doi: 10.3969/j.issn.1671-9646-B.2005.12.002
[5] MITACEK E J, BRUNNEMANN K D, SUTTAJIT M, et al. Exposureto N-nitroso compounds in a population of high liver cancer regions in Thailand: volatilenitrosa-mine (VNA) levels in Thaifood[J]. Food Chem Toxicol, 1999, 37(4): 297-305. doi: 10.1016/S0278-6915(99)00017-4
[6] 蔡一新, 林升清, 林生金. 福建省部分食品中N-亚硝胺含量调查结果分析[J]. 中国卫生检验杂志, 1997, 7(6): 356-358. https://kns.cnki.net/kcms2/article/abstract?v=MdENDFpkZq4mw_wziPZc4tmbuCvY97oWlxoY9Y0_nKBSq8g3DSW6GKZ--hrKnJbklzW1OeaBBXuGfnxiBBOvaUtWrY_HFcVQ62E1ZOLuSnJgBcd1mKdxzM5UGk93fZbpPKufFwp4YZv2KqDIAdmTXwvC4J4q9Er7YUCSKQw1du6c8gkZlbNbg1gCs4l42Uie&uniplatform=NZKPT&language=CHS CAI Yixin, LIN Shengqing, LIN Shengjin. N-nitrosamine content analysis of the survey in part of the food from Fujian province[J]. Chin J Health Lab Technol, 1997, 7(6): 356-358. (in Chinese) https://kns.cnki.net/kcms2/article/abstract?v=MdENDFpkZq4mw_wziPZc4tmbuCvY97oWlxoY9Y0_nKBSq8g3DSW6GKZ--hrKnJbklzW1OeaBBXuGfnxiBBOvaUtWrY_HFcVQ62E1ZOLuSnJgBcd1mKdxzM5UGk93fZbpPKufFwp4YZv2KqDIAdmTXwvC4J4q9Er7YUCSKQw1du6c8gkZlbNbg1gCs4l42Uie&uniplatform=NZKPT&language=CHS
[7] 樊丽琴. 咸鱼腌制过程中N-亚硝胺及其前体物质的变化规律研究[D]. 湛江: 广东海洋大学, 2009: 16-17. 10.7666/d.y1552051 FAN Liqin. Study on the changing regularity of N-nitrosamine and its precursor substance in pickling salted fish[D]. Zhanjiang: Guangdong Ocean University, 2009: 16-17. (in Chinese) 10.7666/d.y1552051
[8] 刘法佳, 吴燕燕, 李来好, 等. 降低腌制食品中亚硝酸盐含量的研究进展[J]. 广东农业科学, 2011, 38(1): 165-167. doi: 10.3969/j.issn.1004-874X.2011.01.061 LIU Fajia, WU Yanyan, LI Laihao, et al. Development of reducing of nitrite in salted food[J]. Guangdong Agric Sci, 2011, 38 (1): 165-167. (in Chinese) doi: 10.3969/j.issn.1004-874X.2011.01.061
[9] 吴燕燕, 刘法佳, 李来好, 等. 改良离子色谱法测定咸鱼中亚硝酸盐的研究[J]. 南方水产科学, 2011, 7(6): 1-6. doi: 10.3969/j.issn.2095-0780.2011.06.001 WU Yanyan, LIU Fajia, LI Laihao, et al. Determination of nitrite in salted fishes by the improved ion chromatography[J]. South China Fish Sci, 2011, 7(6): 1-6. (in Chinese) doi: 10.3969/j.issn.2095-0780.2011.06.001
[10] 孙效晖, 韩一鸣, 林弟雄, 等. GB 10138-2005盐渍鱼卫生标准[S]. 北京: 中国标准出版社, 2005. SUN Xiaohui, HAN Yiming, LIN Dixiong, et al. GB 10138-2005. Hygienic standard for salted fish[S]. Beijing: Standards Press of China, 2005. (in Chinese)
[11] 魏法山, 徐幸莲, 周光宏. 挥发性N-亚硝基化合物的分析方法[J]. 食品科学, 2008, 29(7): 479-483. doi: 10.3321/j.issn:1002-6630.2008.07.109 WEI Fashan, XU Xinglian, ZHOU Guanghong. Determination method of volatile N-nioso compounds[J]. Food Sci, 2008, 29(7): 479-483. (in Chinese) doi: 10.3321/j.issn:1002-6630.2008.07.109
[12] 王瑞, 马俪珍, 方长发. 毛细管气相色谱法对冷却猪肉中挥发性N-亚硝胺类化合物含量的测定分析[J]. 天津农学院学报, 2006, 13(1): 10-13. doi: 10.3969/j.issn.1008-5394.2006.01.003 WANG Rui, MA Lizhen, FANG Changfa. Application of gas chromatography by capillary tube to determine volatilizable N-nitrosamine compound in cooled pork[J]. J Tianjin Agric Univ, 2006, 13(1): 10-13. (in Chinese) doi: 10.3969/j.issn.1008-5394.2006.01.003
[13] 张秋菊, 郭祖鹏, 李明珠, 等. 顶空固相微萃取-气相色谱-质谱法测定7种亚硝胺类化合物[J]. 中国卫生检验杂志, 2009, 19(6): 1234-1236. https://kns.cnki.net/kcms2/article/abstract?v=MdENDFpkZq4nArXXU3X4WZc8ylJDUb7tavi5rIpoDQQadAKBvKGcvCNgCMlT5mMG03FD4NyoQyFfCZ9w76HiyMZJg6cwsS5-VtJg1Rs1xG80md1B8DrUGrSp8YeIBpxbrmK_8wpQPWjkMQdJQPpUX4FAOyq5Nt1Y1MbrEjd8j68CG15mtG8yWmnMrz3shNSf&uniplatform=NZKPT&language=CHS ZHANG Qiuju, GUO Zupeng, LI Ming zhu, et al. Determination of seven N-nitrosamine compounds by HS-SPME-GC-MS[J]. Chin J Health Lab Technol, 2009, 19(6): 1234-1236. (in Chinese) https://kns.cnki.net/kcms2/article/abstract?v=MdENDFpkZq4nArXXU3X4WZc8ylJDUb7tavi5rIpoDQQadAKBvKGcvCNgCMlT5mMG03FD4NyoQyFfCZ9w76HiyMZJg6cwsS5-VtJg1Rs1xG80md1B8DrUGrSp8YeIBpxbrmK_8wpQPWjkMQdJQPpUX4FAOyq5Nt1Y1MbrEjd8j68CG15mtG8yWmnMrz3shNSf&uniplatform=NZKPT&language=CHS
[14] 方长发, 马俪珍, 刘会平, 等. 固相微萃取技术及其在N-亚硝胺分析中的应用[J]. 肉类研究, 2008(4): 49-50. doi: 10.3969/j.issn.1001-8123.2008.04.014 FANG Changfa, MA Lizhen, LIU Huiping, et al. Solid phase microextraction (SPME) and its application in nitrosamine analysis[J]. Meat Res, 2008(4): 49-50. (in Chinese) doi: 10.3969/j.issn.1001-8123.2008.04.014
[15] 陶燕飞, 黄红林, 张桃芝. 啤酒中N-亚硝胺的SPME-GC-MS分析[J]. 分析测试学报, 2003, 22(5): 82-84. doi: 10.3969/j.issn.1004-4957.2003.05.024 TAO Yanfei, HUANG Honglin, ZHANG Taozhi. Determination of volatile N-nitrosocompounds in beer by SPME-GC-MS[J]. J Instrumental Anal, 2003, 22(5): 82-84. (in Chinese) doi: 10.3969/j.issn.1004-4957.2003.05.024
-
期刊类型引用(20)
1. 陈苏南,孔雪,宋满宗,蔡月凤,智颖,申欣. 低温暴露对菲律宾蛤仔免疫指标和基因表达的影响. 大连海洋大学学报. 2025(01): 12-24 . 百度学术
2. 杨栋,韩雨婷,高葛琪,王杰,牛东红. 不同低盐驯化方式对缢蛏行为及生理的影响. 上海海洋大学学报. 2024(05): 1120-1131 . 百度学术
3. 张文馨,潘霞,沈锡权,徐永健. 盐度胁迫对幼体大海马基因转录表达的影响. 水生生物学报. 2021(05): 995-1004 . 百度学术
4. 张玉晗,谢晶. 包装充氧量对无水活运花鲈鳃组织结构及相关酶活性的影响. 食品科学. 2020(15): 269-274 . 百度学术
5. 李笑,曲艺,张倩倩,张天宇,曹瑞文,赵建民. 海水酸化和热应激对日本鼓虾氧化应激和能量代谢的影响. 海洋与湖沼. 2020(06): 1412-1421 . 百度学术
6. 王尧,曹善茂. 盐度对岩扇贝Na~+/K~+-ATP酶活性的影响. 科技风. 2019(07): 241-243+245 . 百度学术
7. 胡琼,李胜忠,曹景成,初洪伟. 葡萄糖、丙三醇和盐对厚唇裂腹鱼精子活力的调控研究. 南方水产科学. 2019(02): 38-46 . 本站查看
8. 陈丽梅,刘利华,胡宏辉,秦艺铭,周文礼,孙敬锋,郭永军. 温度突变对毛蚶不同组织抗氧化酶活性的影响. 水产科学. 2019(04): 435-442 . 百度学术
9. 朱克诚,刘宝锁,曹明,郭华阳,张楠,张殿昌. 华贵栉孔扇贝MEF2Cs基因克隆及表达特征分析. 淡水渔业. 2018(02): 32-38 . 百度学术
10. 林岗,饶小珍,吴静,岑万. 低盐胁迫对华贵栉孔扇贝抗氧化酶、Na~+/K~+-ATPase活力的影响. 福建师范大学学报(自然科学版). 2018(01): 71-78 . 百度学术
11. 李亚男,张海滨. 海洋无脊椎动物抗氧化酶研究进展. 海洋通报. 2018(03): 241-253 . 百度学术
12. 吕旭宁,王晓芹,吴亚林,姜娓娓,房景辉,方建光,王军威,张义涛,蒋增杰. 温度对凸壳肌蛤能量收支的影响. 渔业科学进展. 2018(04): 119-125 . 百度学术
13. 王芸,李正,段亚飞,王珺,黄忠,林黑着. 红景天提取物对凡纳滨对虾抗氧化系统及抗低盐度胁迫的影响. 南方水产科学. 2018(01): 9-19 . 本站查看
14. 杜俊鹏,王昭萍,于瑞海,马培振,张哲,李玲蔚,李鹏飞. 盐度对香港巨牡蛎♀×葡萄牙牡蛎♂杂交子代早期杂种优势的影响. 中国海洋大学学报(自然科学版). 2018(01): 31-39 . 百度学术
15. 李晓雨,田燚,王伟,李延涛,刘钢,郭然,丛佳. 低盐胁迫对白条双锯鱼相关生理指标的影响. 大连海洋大学学报. 2018(05): 614-619 . 百度学术
16. 罗伟,许艳,刘晓娟,王春芳. 水温对草鱼血清活性氧含量及抗氧化防御系统的影响. 淡水渔业. 2017(04): 3-7 . 百度学术
17. 刘甜雨,王清,陈慕雁. 热刺激对栉孔扇贝免疫功能和热休克蛋白表达的影响. 中国海洋大学学报(自然科学版). 2017(08): 31-43 . 百度学术
18. 方春华,乔琨,刘智禹,陈丽娇. 海洋生物中抗氧化酶的研究进展. 渔业研究. 2016(04): 331-342 . 百度学术
19. 吕小康,刘峰,楼宝,刘阳阳,徐冬冬,陈睿毅,詹炜,王立改,毛国民,马涛. 水温和饥饿对鮸鱼肝脏抗氧化酶的影响. 浙江海洋学院学报(自然科学版). 2016(05): 384-389 . 百度学术
20. 谭杰,陈振江,刘付少梅,唐啸尘,刘志刚. 温度和盐度对大珠母贝稚贝存活和生长的互作效应. 广东海洋大学学报. 2016(06): 44-51 . 百度学术
其他类型引用(13)