马拉瓜丽体鱼仔鱼饥饿试验及不可逆点的确定

黄海, 杨宁, 张希

黄海, 杨宁, 张希. 马拉瓜丽体鱼仔鱼饥饿试验及不可逆点的确定[J]. 南方水产科学, 2012, 8(2): 43-50. DOI: 10.3969/j.issn.2095-0780.2012.02.007
引用本文: 黄海, 杨宁, 张希. 马拉瓜丽体鱼仔鱼饥饿试验及不可逆点的确定[J]. 南方水产科学, 2012, 8(2): 43-50. DOI: 10.3969/j.issn.2095-0780.2012.02.007
HUANG Hai, YANG Ning, ZHANG Xi. Experimental starvation on Cichlasoma managuense larvae and determination of point of no return[J]. South China Fisheries Science, 2012, 8(2): 43-50. DOI: 10.3969/j.issn.2095-0780.2012.02.007
Citation: HUANG Hai, YANG Ning, ZHANG Xi. Experimental starvation on Cichlasoma managuense larvae and determination of point of no return[J]. South China Fisheries Science, 2012, 8(2): 43-50. DOI: 10.3969/j.issn.2095-0780.2012.02.007

马拉瓜丽体鱼仔鱼饥饿试验及不可逆点的确定

基金项目: 

海南省重点科技项目 ZDXM20110028

三亚市重点科技项目 2010YF09

详细信息
    作者简介:

    黄海(1974-),男,助理研究员,博士,从事鱼类人工繁殖与遗传育种。E-mail: Huanghai74@126.com

  • 中图分类号: S961.2

Experimental starvation on Cichlasoma managuense larvae and determination of point of no return

  • 摘要:

    在(28±1)℃条件下对马拉瓜丽体鱼(Cichlasoma managuense)仔鱼进行饥饿试验,确定仔鱼的不可逆点(PNR),并研究延迟投饵对仔鱼成活和生长的影响。结果显示,仔鱼在4日龄时开口摄食,进入混合营养期,持续3 d;7日龄时卵黄囊消失,进入外源营养期。初次摄食率开始时仅为15%,6日龄时的初次摄食率最高达100%,9日龄以后初次摄食率急剧下降,PNR出现在仔鱼孵出后第9至第10日龄。延迟投饵1~3 d对仔鱼的成活率影响不大,延迟投饵4 d以上仔鱼成活率明显下降。完全饥饿条件下仔鱼全长在0~8日龄为正增长,之后开始转为负增长。延迟投饵1~3 d的12日龄仔鱼全长无显著差异(P>0.05);延迟投饵超过4 d的仔鱼全长则有极显著差异(P < 0.01)。马拉瓜丽体鱼仔鱼的最佳投喂时间应在仔鱼开口后的3 d之内。

    Abstract:

    Under water temperature of (28±1) ℃, a starvation trial was conducted on Cichlasoma managuense larvae to determine the point of no return (PNR) and to study the effects of delayed initial feeding on the survival and growth of the fish. The results show that the larvae begin to feed on 4th day after hatching, and the mixed nutrition stage lasts for 3 d. The larvae come into endogenous nutrition stage at 7th day, in which the yolk-sac is absorbed completely. The initial larval feeding rate reaches only 15% at the beginning and 100% at 6th day, but decreases rapidly since 9th day. The PNR occurres at 9th~10th day after hatching. The survival is not obviously affected by delaying initial feeding for 1~3 d but drops significantly when the delay is more than 4 d. Under absolutely hungry condition, the total length of the larvae has positive growth in 0~8 d but then changes to negative growth. The difference is not significant in the total length of the larvae (12-day old) delayed initial feeding for 1~3 d (P>0.05), but is very significant when the delay is more than 4 d (P < 0.01). The optimum initial feeding time for the larvae is within 3 d after their mouths open.

  • 20世纪80年代开始,澳大利亚、美国、英国、丹麦等国对食品微生物生长、失活、残存和风险评估模型进行了广泛研究[1-3],目的是使用微生物预测模型描述不同物理和化学条件下微生物变化情况,客观评价食品在加工、流通、销售、贮藏过程中各种影响因子对食品安全和品质的影响,运用数学模型对微生物的动态变化进行快速有效预测和评价。近年来,美国、英国、丹麦等国致力于构建微生物特征数据库,开发了Food Micromodel, Pathogen Modeling Program, Seafood Safety and Spoilage Predictor等专家系统,用于食品品质预测和安全评估,实现关键控制点分析,协作管理者进行管理。

    食品微生物生长模型通常有Monod, Gompertz, Baranyi, Logistic等模型,其中修正的Logistic和Gompertz模型被广泛采用。Baranyi和Robert[4]综合Logistic模型和Michaeli-Menton模型开发了Baranyi模型,该模型相对来说比较复杂。本研究中养殖大黄鱼(Pseudosciaena crocea)取自福建闽东三都湾养殖区(26°35′~26°55′N),2005年3月海水温度变化幅度为10.5~11.1℃。依据以前对0、5℃恒温冷藏过程中采用感官、挥发性盐基氮(TVBN)、菌落总数(TVC)进行品质变化研究的基础上,本文采用修正的Logistic和Gompertz模型拟合细菌生长曲线,经非线性回归分析,求出预测模型的动力学参数,建立了细菌生长预测模型,并对2种模型的适用性进行了分析。

    大黄鱼在福建省闽东三都湾养殖场捕获(2005年3月),立即放入冰水中冷休克。选用大小基本一致的个体(300~400 g·尾-1)。

    到达实验室后,将鱼腹部朝上装入下有篦子能沥水的塑料盆中,盖上有漏气孔的盖,分别放入高精度低温培养箱(Sanyo MIR 153, 日本)中,控制贮藏温度在0、5±0.1℃。每隔适当时间取出试样鱼进行感官鲜度评价、TVBN、TVC测定,综合确定产品货架期,本次研究未给出和分析感官、TVBN实验数据。

    随机抽取2尾试样鱼,先进行生鱼感官评价,然后去鳞去内脏去腮洗净,用干净吸纸擦干。沿脊骨剖切,取半条鱼肉(带鱼皮),用组织捣碎机打碎,用于TVBN和TVC测定;其余半条鱼蒸熟后用于感官评价。

    由6名经过训练的评价员组成感官评价小组,评价生鱼的气味和蒸熟后鱼的气味和味道。采用3分法进行评分,0为最好品质,1为鲜鱼的鲜香味消失,0~1为高品质期,2为明显出现臭味和异味即可接受界限[5]。当半数或以上评价员评价2或以上时,即为货架期终点(感官拒绝点)。

    蒸熟时将带头的半条鱼分别用铝箔包好,待锅中水沸腾后,放入锅内的金属篦子上,盖上锅盖蒸20 min,打开锅盖后立即进行感官评价。

    称取鱼肉浆10.0 g,加入90 mL 0.1%蛋白胨无菌生理盐水,高速振荡后,以10倍稀释将鱼肉浆稀释,取3个浓度合适的稀释液0.1 mL,涂布于标准琼胶培养基(中国科学院上海昆虫科技开发公司康乐培养基有限公司)平板表面。每个稀释液涂布2个平皿,25℃培养48 h。

    0、5℃大黄鱼贮藏实验得到的细菌增殖动态数据,采用修正的Gompertz方程和Logistic方程[6]描述其生长动态。修正Gompertz方程如下:

    $$ \lg N(t)=A+C \times \exp \{-\exp [-B \times(t-M)]\} $$ (1)

    式中t为时间(h),N(t)t时的菌数(lgCFU·g-1),A为初始菌数N0(lgCFU·g-1),C为最大菌数NmaxN0之差(lgCFU·g-1),M为1/2Nmax时的时间(h),BM时比生长速率(h-1),最大比生长速率μmaxBC/e。

    修正Logistic方程如下:

    $$ \lg N(t)=A+C / \exp \{1+[-B \times(t-M)]\} $$ (2)

    式中t为时间(h),N(t)t时的菌数(lgCFU·g-1),A为最小菌数N0(lgCFU·g-1),C为最大菌数NmaxN0之差(lgCFU·g-1),B为最大比生长速率μmax (h-1),M为1/2Nmax时的时间(h)。

    实验数据用Statistica (Release 5.5)统计软件采用最小平方差法进行非线性回归。

    细菌生长动力学模型求得的预测值,与大黄鱼贮藏实验所得的细菌生长的实测值比较,依据均方根[7]评价建立的生长动力学预测模型的可靠性。均方根用下式表示:

    $$ \text { RMS }=\left[\frac{\sum_i\left(\lg N_{i, \text { predicted }}-\lg N_{i, \text { obsered }}\right)^2}{n}\right]^{0.5} $$ (3)

    式中lgNi, predicted为冷藏实验中菌落总数预测值(lgCFU·g-1),lgNi, observed为菌落总数实测值(lgCFU·g-1),n为测试次数。

    0℃冷藏期间菌落总数实测值和预测值见表 1。开始贮藏4~5 d,细菌生长缓慢,菌落总数小于6.0 lgCFU·g-1,这是由于暖带海域水温高于温带海域,中温菌数量多, 冷藏过程不耐低温,生长受到抑制,甚至死亡。同时一些嗜冷菌逐渐适应低温环境,随着贮藏期的延长,细菌生长加快,进入指数生长期,好冷菌增殖速度逐渐达到高峰,细菌数呈几何级数增加,腐败终点依据感官评分、TVBN、TVC(7.31 lgCFU·g-1)确定产品货架期为409 h。

    表  1  0℃冷藏大黄鱼菌落总数
    Table  1  Total viable counts of P.crocea stored aerobically at 0℃  lgCFU·g-1
    时间/h
    time
    实测值
    observed values
    Gompertz预测模型predictive model Logistic预测模型predictive model
    预测值
    predicted values
    残存值
    residual values
    预测值
    predicted values
    残存值
    residual values
    0 5.20 5.20 0.00 5.21 -0.01
    49 5.10 5.20 -0.10 5.24 -0.14
    76 5.25 5.21 0.04 5.29 -0.04
    123.5 5.34 5.42 -0.08 5.48 -0.14
    167 6.05 5.95 0.10 5.89 0.16
    214 6.50 6.55 -0.05 6.52 -0.02
    262 6.89 6.96 -0.07 6.99 -0.10
    286 7.10 7.08 0.02 7.12 -0.02
    334 7.34 7.22 0.12 7.23 0.11
    383 7.22 7.29 -0.07 7.27 -0.05
    409 7.31 7.31 0.00 7.28 0.03
    下载: 导出CSV 
    | 显示表格

    图 1、方程4和方程5是采用修正Gompertz方程和Logistic方程回归,得到的0℃冷藏大黄鱼中菌落总数变化曲线和方程,生长动力学参数见表 2

    图  1  0℃冷藏大黄鱼细菌增殖曲线
    Fig. 1  Growth curves of P.crocea stored aerobically at 0℃
    表  2  0℃冷藏大黄鱼细菌生长动力学参数
    Table  2  Kinetic parameters of bacteria growth on P.crocea stored aerobically at 0℃
    参数
    parameters
    N0
    (lgCFU·g-1)
    Nmax
    (lgCFU·g-1)
    μmax(h-1) M(h) Ns
    (lgCFU·g-1)
    货架期/h
    shelf life
    Gompertz模型model 5.20 7.33 0.013 170.88 7.31 409
    Logistic模型model 5.20 7.26 0.024 195.56
    注:Ns为感官终点细菌数
    Note: Ns denotes population at the time of organoleptic rejection.
    下载: 导出CSV 
    | 显示表格
    $$ \begin{aligned} & \quad\quad \lg N(t)=5.20+2.13 \times \exp \{-\exp [-0.015 \times \\ & (t-170.85)]\} \end{aligned} $$ (4)
    $$ \begin{aligned} & \quad\quad \lg N(t)=5.20+2.06 /\{1+\exp [-0.024 \times(t- \\ & 195.56)]\} \end{aligned} $$ (5)

    5℃冷藏期间菌落总数实测值和预测值见表 3。贮藏初期,细菌生长缓慢,进入指数生长期,细菌增殖速度快于0℃冷藏大黄鱼中细菌增殖速度(μmax表 2表 4),货架期终点菌落总数为7.34 lgCFU·g-1,产品货架期为291 h。

    表  3  5℃冷藏大黄鱼菌落总数
    Table  3  Total viable counts of P.crocea stored aerobically at 5℃ lgCFU·g-1
    时间/h
    time
    实测值
    observed values
    Gompertz预测模型predictive model Logistic预测模型predictive model
    预测值
    predicted values
    残存值
    residual values
    预测值
    predicted values
    残存值
    residual values
    0 5.20 5.20 -0.00 5.22 -0.02
    49 5.41 5.21 0.20 5.29 0.12
    76 5.24 5.29 -0.05 5.39 -0.15
    123.5 5.79 5.82 -0.04 5.81 -0.02
    167 6.60 6.50 0.10 6.48 0.18
    216 6.90 7.03 -0.14 7.08 -0.18
    264 7.40 7.30 0.10 7.30 0.10
    291 7.34 7.37 -0.03 7.34 -0.00
    下载: 导出CSV 
    | 显示表格
    表  4  5℃冷藏大黄鱼细菌生长动力学参数
    Table  4  Kinetics parameters of bacteria growth on P.crocea stored aerobically at 5℃
    参数
    parameters
    N0
    (lgCFU·g-1)
    Nmax
    (lgCFU·g-1)
    μmax(h-1) M(h) Ns
    (lgCFU·g-1)
    货架期/h shelf life
    Gompertz模型model 5.20 7.29 0.016 137.17 7.34 291
    Logistic模型model 5.20 7.38 0.030 154.99
    下载: 导出CSV 
    | 显示表格

    图 2、方程6和方程7是采用修正Gompertz方程和Logistic方程回归,得到的5℃冷藏大黄鱼中菌落总数变化曲线和方程,生长动力学参数见表 4

    $$ \begin{aligned} & \quad\quad \lg N(t)=5.20+2.29 \times \exp \{-\exp [-0.019 \times \\ &(t-137.15)]\} \end{aligned} $$ (6)
    $$ \begin{aligned} & \quad\quad \lg N(t)=5.20+2.06 /\{1+\exp [-0.024 \times(t- \\ & 195.56)]\} \end{aligned} $$ (7)
    图  2  5℃冷藏大黄鱼细菌增殖曲线
    Fig. 2  Growth curves of P.crocea stored aerobically at 5℃

    修正Gompertz﹑Logistic模型含有4个参数,参数值和RMS值见表 2表 4表 5。从表 5看出,2种模型的相关系数均大于0.99, 表示2种模型均能很好拟合实验数据。0℃贮藏Gompertz﹑Logistic模型的RMS分别为0.077和0.138, 5℃贮藏Gompertz﹑Logistic模型的RMS分别为0.100和0.114, 2种预测模型相比,Gompertz的RMS均较小,其预测结果更为理想。

    表  5  非线性回归方程分析
    Table  5  Analysis of nonlinear estimation equation
    参数
    parameters
    均方根(RMS)
    root mean square
    相关系数(R)
    correlation coefficient
    0℃ 5℃ 0℃ 5℃
    Gompertz模型model 0.077 0.100 0.994 0.993
    Logistic模型model 0.138 0.114 0.992 0.995
    下载: 导出CSV 
    | 显示表格

    (1) Whiting和Buchanan[7]依据预测模型的发展阶段分为菌数增殖变化模型、环境要素模型和专家系统模型。细菌生长曲线通常呈不对称S形,使用Logistic模型定量描述细菌生长时,不能有效表示细菌生长的延滞期,Gibson等[8, 9]修正了Logistic模型和Gompertz模型,能更好的描述细菌生长情况,然而受食品成分构成、外界环境因子影响,数学模型的适用性显现出较大差异。许多研究者[9, 10]对不同数学模型的性能和适用性进行分析与比较,结果显示相同的数学模型针对不同的研究对象预测结果存在差异。即使如此,大家普遍认为Logistic模型和Gompertz模型的预测效果较好,并得以广泛应用,例如修正的Gompertz模型被应用于预测微生物软件程序Food Micromodel和Pathogen Modeling Program等[9],Dalgaard等[11, 12]把修正的Logistic模型用于新鲜和气调包装鱼的微生物品质分析, 建立了3参数和4参数预测模型。

    (2) 建立在恒温条件下的微生物生长模型,很难有效预测在实际生产、流通、贮藏、消费过程食品微生物的生长变化情况。在实际过程中温度是随机波动的,无法直接用数学式来描述时间-温度的变化规律,现在多根据实际过程把时间-温度的变化设定为多个短的假设为恒温的时间间隔,然后使用分段的数学模型来描述微生物的生长[13]。本研究建立的数学模型可以快速有效预测大黄鱼0、5℃恒温冷藏过程细菌生长变化情况,有待进一步研究建立符合实际流通过程的波动温度预测模型。

  • 图  1   马拉瓜丽体鱼仔鱼初次摄食率的变化

    Figure  1.   Change in initial feeding rate of C.managuense larvae

    表  1   马拉瓜丽体鱼仔鱼的全长变化与卵黄囊的吸收

    Table  1   Total length of larvae and size of yolk-sac of C.managuense during 1~7 d after hatching

    日龄/d
    day old
    全长/mm
    total length
    卵黄囊长径/mm
    long diameter of yolk-sac
    卵黄囊短径/mm
    short diameter of yolk-sac
    卵黄囊体积/mm3
    volume of yolk-sac
    0 5.58±0.39 2.21±0.08 1.51±0.10 2.64±0.13
    1 6.62±0.24 2.01±0.05 1.43±0.05 2.15±0.11
    2 6.96±0.23 1.78±0.11 1.28±0.03 1.53±0.08
    3 7.08±0.20 1.41±0.12 1.03±0.05 0.78±0.06
    4 7.18±0.16 1.36±0.16 0.99±0.07 0.69±0.07
    5 7.66±0.40 1.16±0.11 0.82±0.05 0.41±0.07
    6 7.94±0.51 1.00±0.14 0.44±0.10 0.10±0.03
    7 8.26±0.18 - - -
    下载: 导出CSV

    表  2   不同延迟投饵时间的马拉瓜丽体鱼仔鱼成活率

    Table  2   Survival of C.managuense larvae at different delayed initial feedings

    延迟投饵天数/d
    delayed initial feeding day
    各日龄仔鱼的成活率/% survival of larvae at different day old
    4 d 5 d 6 d 7 d 8 d 9 d 10 d 11 d 12 d
    0 100.00 99.33 97.00 96.33 94.67 93.00 90.33 88.00 87.67
    1 99.67 98.33 97.00 95.67 94.00 94.00 92.67 90.67 89.67
    2 99.33 98.00 96.33 95.00 92.33 90.00 88.00 87.67 85.67
    3 100.00 98.33 98.00 97.33 96.00 94.33 92.33 91.00 89.00
    4 98.33 97.00 96.00 93.67 92.00 88.67 87.33 82.33 75.33
    5 99.00 98.67 97.67 96.67 96.67 59.00 40.33 25.00 15.33
    6 100.00 98.33 96.33 95.33 94.00 58.00 38.67 27.67 17.67
    7 99.67 97.67 95.67 94.33 91.67 57.33 36.33 23.00 11.67
    8 99.33 99.00 97.33 96.00 94.67 46.00 23.67 20.67 0
    下载: 导出CSV

    表  3   完全饥饿组与完全投饵组马拉瓜丽体鱼仔鱼的全长比较

    Table  3   Comparison of total length of C.managuense larvae between feeding group and starving group

    日龄/d)
    day old
    投饵方式)
    feeding method
    仔鱼全长/mm)
    total length
    全长幅值/mm)
    range
    4 完全饥饿 starving 7.15±0.20 6.89~7.28
    完全投饵 feeding 7.18±0.17 6.91~7.30
    5 完全饥饿 starving 7.54±0.48 7.21~8.11
    完全投饵 feeding 7.66±0.40 7.31~8.01
    6 完全饥饿 starving 7.78±0.57 7.20~8.52
    完全投饵 feeding 7.94±0.51 7.21~8.50
    7 完全饥饿 starving 7.91±0.48 7.78~8.29*
    完全投饵 feeding 8.30±0.21 8.00~8.53
    8 完全饥饿 starving 8.07±0.46 7.81~8.35*
    完全投饵 feeding 8.66±0.27 8.41~9.05
    9 完全饥饿 starving 8.05±0.53 7.86~8.30**
    完全投饵 feeding 8.86±0.21 8.51~9.00
    10 完全饥饿 starving 7.93±0.47 7.75~8.26**
    完全投饵 feeding 9.22±0.23 8.50~9.31
    11 完全饥饿 starving 7.90±0.46 7.60~8.28**
    完全投饵 feeding 9.84±0.42 9.32~10.21
    12 完全饥饿 starving 7.91±0.47 7.54~8.29**
    完全投饵 feeding 10.56±0.56 9.65~11.21
    注:*. 差异显著(P < 0.05);* *. 差异非常显著(P < 0.01)
    Note:*. significant difference (P < 0.05);* *. very significant difference (P < 0.01)
    下载: 导出CSV

    表  4   不同延迟投饵时间对马拉瓜丽体鱼12日龄仔鱼生长的影响

    Table  4   Effect of different delayed initial feedings on growth of 12-day old C.managuense larvae

    延迟投饵天数/d
    delayed initial feeding day
    仔鱼全长/mm
    total length
    全长幅值/mm
    range
    0 10.57±0.54a 9.60~11.20
    1 10.66±0.61a 9.31~11.48
    2 10.62±0.67a 9.21~11.29
    3 10.24±0.51a 8.53~9.42
    4 9.16±0.61b 8.49~9.51
    5 8.93±0.66b 8.42~8.52
    6 8.15±0.46c 7.52~8.57
    7 8.05±0.53c 7.53~8.41
    8 7.91±0.47c 7.54~8.29
    注:同一列中字母不同者表示差异显著(P < 0.01)
    Note:Different letters in the same row indicate very significant difference (P < 0.01).
    下载: 导出CSV

    表  5   部分淡水鱼类仔鱼的开口日龄和不可逆点

    Table  5   Days of initial feeding and PNR of some larvae of freshwater fish species

    种类
    species
    水温/℃
    water temperature
    开口日龄/d
    days of initial feeding
    不可逆点/d
    PNR
    初次摄食至PNR时间/d
    time from initial feeding to PNR
    马拉瓜丽体鱼 Cichlasoma managuense 27.0~29.0 4.0 9.0~10.0 5.0~6.0
    Squalidus argentatus 24.6~25.5 2.0~3.0 11.0~12.0 8.0~10.0
    稀有Gobiocypris rarus 24.0~26.0 1.5~2.0 8.0~10.0 6.0~8.5
    瓦氏黄颡鱼 Pelteobagrus vachelli 24.5~25.5 3.0 15.0 12.0
    黄颡鱼 P.fulvidraco 24.0~28.0 3.0 7.0~8.0 4.0~5.0
    唐鱼 Tanichthys albonub 24.0~28.5 2.5~3.0 8.5 5.5~6.0
    Silurus asotus 22.0~24.0 3.0 7~8 4.0~5.0
    中华鲟 Acipenser sinensis 18.0~21.0 12.0 24.0 12.0
    史氏鲟 A.schrenckii 23.0~27.0 6.0 16.0~17.0 10.0~11.0
    白斑狗鱼 Esox lucius 6.0~8.2 8.0 11.0 3.0
    Siniperca chuatsi 25.0~28.0 3.0~4.0 7.0~8.0 4.0~5.0
    杂交鳜 S.chuatsi×S.scherzeri 23.0~25.0 4.0 7.0~8.0 3.0~4.0
    倒刺鲃 Spinibarbus denticulatus 26.0~28.0 5.0 17.0 12.0
    中华倒刺鲃 S.sinensis 24.5~25.5 5.0 18.0 13.0
    奥尼罗非鱼 Oreochromis niloticus×O.aureus 27.5~28.5 3.0 7.0 4.0
    沙塘鳢 Odontobutis obscura 27.5~28.5 0 14.0 14.0
    下载: 导出CSV
  • [1] 王春, 林小涛. 亲鱼密度、透明度和基质对马那瓜丽体鱼繁殖的影响[J]. 生态学杂志, 2006, 25(2): 175-179. https://kns.cnki.net/kcms2/article/abstract?v=MdENDFpkZq4Dpz3KeKyc4zuiEkYCZAR0adB7jiR-ekIbuZgQF0uvxhiCOzZYg89hid04cZtR8TDDcBIfsQcu7Cdx8-_s_BzEEVAzVoPCcWw16kkm-E0LulNeIr2iI0mHrfE2BscLmQdMBOTmD_KFV1hGXsLj_HPKOFq2vb0GhAC5YSzxR4OrTPVfhCGXkyaK&uniplatform=NZKPT&language=CHS

    WANG Chun, LIN Xiaotao. Effects of brood fish reproductive pairs, water transparency and ground substances on reproduction of jaguar cichlid (Cichlasoma managuense)[J]. Chin J Ecol, 2006, 25(2): 175-179. (in Chinese) https://kns.cnki.net/kcms2/article/abstract?v=MdENDFpkZq4Dpz3KeKyc4zuiEkYCZAR0adB7jiR-ekIbuZgQF0uvxhiCOzZYg89hid04cZtR8TDDcBIfsQcu7Cdx8-_s_BzEEVAzVoPCcWw16kkm-E0LulNeIr2iI0mHrfE2BscLmQdMBOTmD_KFV1hGXsLj_HPKOFq2vb0GhAC5YSzxR4OrTPVfhCGXkyaK&uniplatform=NZKPT&language=CHS

    [2] 张倩, 谢军, 顾志华. 淡水石斑鱼人工繁殖及苗种培育试验[J]. 水产养殖, 2002(3): 23-24. doi: 10.3969/j.issn.1004-2091.2002.03.009

    ZHANG Qian, XIE Jun, GU Zhihua. Artificial propagation and fingerling culture of Cichlasoma managuense[J]. J Aquac, 2002(3): 23-24. (in Chinese) doi: 10.3969/j.issn.1004-2091.2002.03.009

    [3] 黄富钦. 淡水石斑鱼的生物特牲及其养殖技术[J]. 内陆水产, 2008(12): 30-32. doi: 10.3969/j.issn.1674-9049.2008.12.008

    HUANG Fuqin. Biology characteristics and breeding technology of Cichlasoma managuense[J]. Inland Fish, 2008(12): 30-32. (in Chinese) doi: 10.3969/j.issn.1674-9049.2008.12.008

    [4] 王清忠, 杜崇贵, 顾汉东. 淡水石斑鱼的养殖技术[J]. 河北渔业, 2006(5): 24. doi: 10.3969/j.issn.1004-6755.2006.05.011

    WANG Qingzhong, DU Chonggui, GU Handong. Breeding technology of Cichlasoma managuense[J]. Hebei Fish, 2006(5): 24. (in Chinese) doi: 10.3969/j.issn.1004-6755.2006.05.011

    [5] 吕梅良, 顾志华, 赵伟政, 等. 淡水石斑鱼池塘高产养殖试验[J]. 科学养鱼, 2004(8): 22. https://kns.cnki.net/kcms2/article/abstract?v=MdENDFpkZq4FIDH_nzam9NirUf4c0CeC3KiANkJaEclw8ajkhNc8-htGpev7pE27r4ucHRiaXj4iHF-c7S1SKn7f5wGlHIyDJBxIt7YYD3JCgBuTrNdInEsh7dySgKOVJYEu5lYsYnnoxpPKA-80xRyg7J2LPLGNl0FI73e2VogcLXi4Ol1W2bZGWKs9-GoP&uniplatform=NZKPT&language=CHS

    LU Meiliang, GU Zhihua, ZHAO Weizhen, et al. Pond culture of Cichlasoma managuense[J]. Sci Fish Farm, 2004(8): 22. (in Chinese) https://kns.cnki.net/kcms2/article/abstract?v=MdENDFpkZq4FIDH_nzam9NirUf4c0CeC3KiANkJaEclw8ajkhNc8-htGpev7pE27r4ucHRiaXj4iHF-c7S1SKn7f5wGlHIyDJBxIt7YYD3JCgBuTrNdInEsh7dySgKOVJYEu5lYsYnnoxpPKA-80xRyg7J2LPLGNl0FI73e2VogcLXi4Ol1W2bZGWKs9-GoP&uniplatform=NZKPT&language=CHS

    [6] 陈迪虎. 淡水石斑鱼的温室养殖试验[J]. 水产科技情报, 2006, 33(1): 15-16. doi: 10.3969/j.issn.1001-1994.2006.01.010

    CHEN Dihu. Experiment on culture of Cichlasoma managuense in simple indoor[J]. Fish Sci Technol Info, 2006, 33(1): 15-16. (in Chinese) doi: 10.3969/j.issn.1001-1994.2006.01.010

    [7]

    BLAXEX J H S, HEMPEL G. The influence of egg size on herring larvae[J]. J Cons Int Explor Mer, 1963, 28(2): 211-240. doi: 10.1093/icesjms/28.2.211

    [8] 殷名称. 鱼类早期生活史研究与进展[J]. 水产学报, 1991, 15(4): 348-358. https://www.china-fishery.com/scxuebao/article/abstract/19910412?st=advanced_search

    YIN Mingcheng. Advances and studies on early life history of fish[J]. J Fish China, 1991, 15(4): 348-358. (in Chinese) https://www.china-fishery.com/scxuebao/article/abstract/19910412?st=advanced_search

    [9] 陈国柱, 方展强. 饥饿对唐鱼仔鱼摄食和生长的影响[J]. 动物学杂志, 2007, 42(5): 49-61. doi: 10.3969/j.issn.0250-3263.2007.05.008

    CHEN Guozhu, FANG Zhanqiang. Effects of starvation on feeding and growth of the larvae of Tanichthys albonubes[J]. Chin J Zool, 2007, 42(5): 49-61. (in Chinese) doi: 10.3969/j.issn.0250-3263.2007.05.008

    [10] 许晓娟, 区又君, 李加儿. 延迟投饵对卵形鲳鲹早期仔鱼阶段摄食、成活及生长的影响[J]. 南方水产, 2010, 6(1): 37-41. doi: 10.3969/j.issn.1673-2227.2010.01.007

    XU Xiaojuan, OU Youjun, LI Jia'er. Effects of delayed feeding on foraging, survival and growth of ovate pompano (Trachinotus ovatus) larvae during early developmental stage[J]. South China Fish Sci, 2010, 6(1): 37-41. (in Chinese) doi: 10.3969/j.issn.1673-2227.2010.01.007

    [11] 鲍宝龙, 苏锦祥, 殷名称, 等. 延迟投饵对真鲷、牙鲆仔鱼早期阶段摄食、存活及生长的影响[J]. 水产学报, 1998, 22(1): 33-38. https://www.china-fishery.com/scxuebao/article/abstract/19980106?st=advanced_search

    BAO Baolong, SU Jinxiang, YIN Mingcheng, et al. Effect of delayed feeding on feeding ability, survival and growth of red sea bream and olive flounder larvae during early development[J]. J Fish China, 1998, 22(1): 33-38. (in Chinese) https://www.china-fishery.com/scxuebao/article/abstract/19980106?st=advanced_search

    [12] 邱丽华, 姜志强, 秦克静. 大泷六线鱼仔鱼摄食及生长的研究[J]. 中国水产科学, 1999, 6(3): 1-4. http://www.fishscichina.com/zgsckx/article/abstract/3342?st=search

    QIU Lihua, JIANG Zhiqiang, QIN Kejing. Studies on feeding and growth of fat greenling during early development[J]. J Fish Sci, 1999, 6(3): 1-4. (in Chinese) http://www.fishscichina.com/zgsckx/article/abstract/3342?st=search

    [13] 强俊, 李瑞伟, 王辉. 延迟投饵对奥尼罗非鱼仔鱼摄食、生长和存活的影响[J]. 淡水渔业, 2008, 38(5): 60-64. doi: 10.3969/j.issn.1000-6907.2008.05.014

    QIANG Jun, LI Ruiwei, WANG Hui. Effects of delayed initial feeding on foraging, growth and survival of hybrid tilapia larvae[J]. Freshwater Fish, 2008, 38(5): 60-64. (in Chinese) doi: 10.3969/j.issn.1000-6907.2008.05.014

    [14]

    FARRIS D A. A change in the early growth rate of four larval marine fishes[J]. Limnol Oceanogr, 1959, 4(1): 29-36. doi: 10.4319/lo.1959.4.1.0029

    [15] 彭志兰, 柳敏海, 傅荣兵, 等. 早繁鱼仔鱼饥饿试验及不可逆点的确定[J]. 海洋渔业, 2007, 29(4): 325-330. doi: 10.3969/j.issn.1004-2490.2007.04.007

    PENG Zhilan, LIU Minhai, FU Rongbing, et al. Experiment on the starvation and determination of the point of no return for the ahead of schedule breeding larvae of Miichthys miiuy Basilewsky[J]. Mar Fish, 2007, 29(4): 325-330. (in Chinese) doi: 10.3969/j.issn.1004-2490.2007.04.007

    [16] 顾志敏, 朱俊杰, 黄鲜明, 等. 延迟投饵对沙塘鳢仔鱼存活和生长的影响[J]. 宁波大学学报: 理工版, 2007, 20(4): 459-461. doi: 10.3969/j.issn.1001-5132.2007.04.010

    GU Zhimin, ZHU Junjie, HUANG Xianming, et al. Effect of delayed initial feeding on growth and survival of Odontobutis obscura larvae[J]. J Ningbo Univ: Natural Science and Engineering Edition, 2007, 20(4): 459-461. (in Chinese) doi: 10.3969/j.issn.1001-5132.2007.04.010

    [17] 王剑伟, 乔哗, 陶玉岭. 稀有鲫仔鱼的摄食和耐饥饿能力[J]. 水生生物学报, 1999, 23(6): 648-654. http://ssswxb.ihb.ac.cn/article/id/ecee5e5e-fab9-4181-bfae-ecf7f84fad18

    WANG Jianwei, QIAO Hua, TAO Yuling. Feeding and starvation tolerance of the yolk-sac larvae of Gobiocypris rarus[J]. Acta Hydrobiologica Sinica, 1999, 23(6): 648-654. (in Chinese) http://ssswxb.ihb.ac.cn/article/id/ecee5e5e-fab9-4181-bfae-ecf7f84fad18

    [18] 庄平, 章龙珍, 张涛, 等. 中华鲟仔鱼初次摄食时间与存活及生长的关系[J]. 水生生物学报, 1999, 23(6): 560-565. http://ssswxb.ihb.ac.cn/article/id/8377c8d3-0d6c-4d3e-9707-4e168f0e7325

    ZHUANG Ping, ZHANG Longzhen, ZHANG Tao, et al. Effects of delaying first feeding time on the survival and growth of larval Chinese sturgeon, Acipenser sinensis[J]. Acta Hydrobiologica Sinica, 1999, 23(6): 560-565. (in Chinese) http://ssswxb.ihb.ac.cn/article/id/8377c8d3-0d6c-4d3e-9707-4e168f0e7325

    [19] 黄晓荣, 庄平, 章龙珍, 等. 延迟投饵对史氏鲟仔鱼摄食、存活及生长的影响[J]. 生态学杂志, 2007, 26(1): 73-77. https://kns.cnki.net/kcms2/article/abstract?v=MdENDFpkZq51u1jeCWL8-RADgChU4A7aYDbfYPwCD74GsK6tXfye5B0P2ZvehDalK1aLzCwM4jnBjqFppuKbLdPqmV3TM0xDC1b7WwA81w9Z9Yk9tNlVC2p3yyW9GxAiKhMbkX0dCm6LaiqFfh4hdYDp5tP04eBx_N-FrTnDDCxWgq-sjCidSj0QcvnC1HLQ&uniplatform=NZKPT&language=CHS

    HUANG Xiaorong, ZHUANG Ping, ZHANG Longzhen, et al. Effects of delayed feeding on foraging, growth and survival of Acipenser schrenckii larvae[J]. Chin J Ecol, 2007, 26(1): 73-77. (in Chinese) https://kns.cnki.net/kcms2/article/abstract?v=MdENDFpkZq51u1jeCWL8-RADgChU4A7aYDbfYPwCD74GsK6tXfye5B0P2ZvehDalK1aLzCwM4jnBjqFppuKbLdPqmV3TM0xDC1b7WwA81w9Z9Yk9tNlVC2p3yyW9GxAiKhMbkX0dCm6LaiqFfh4hdYDp5tP04eBx_N-FrTnDDCxWgq-sjCidSj0QcvnC1HLQ&uniplatform=NZKPT&language=CHS

    [20] 海萨, 杜劲, 刘昆仑, 等. 白斑狗鱼仔、稚鱼的摄食与生长[J]. 水利渔业, 2006, 26(6): 40-43. https://kns.cnki.net/kcms2/article/abstract?v=MdENDFpkZq6WXdpjjPrOo8oguBUuhyR7jkvfX7xOw098gyDcVsuA8CnpOGH2I38eTKji11lPtvQ7UPhll0DrCIvVLVkiSXC_c-IIjc-cynMyIDUZaLqGuu1XdDy2U_u_C-LUzcaplLo_euMUubyiwIwKN0PtaXtUFF3GtBQinDL0qWyK8_cz_0948jfu3xt5&uniplatform=NZKPT&language=CHS

    HAI Sha, DU Jing, LIU Hunlun, et al. Studies on the feeding and growth of larval Esox lucius[J]. Reservoir Fish, 2006, 26(6): 40-43. (in Chinese) https://kns.cnki.net/kcms2/article/abstract?v=MdENDFpkZq6WXdpjjPrOo8oguBUuhyR7jkvfX7xOw098gyDcVsuA8CnpOGH2I38eTKji11lPtvQ7UPhll0DrCIvVLVkiSXC_c-IIjc-cynMyIDUZaLqGuu1XdDy2U_u_C-LUzcaplLo_euMUubyiwIwKN0PtaXtUFF3GtBQinDL0qWyK8_cz_0948jfu3xt5&uniplatform=NZKPT&language=CHS

    [21] 李秀玉, 林小涛, 廖志洪, 等. 温度对黄顙鱼仔鱼摄食强度及饥饿耐受力的影响[J]. 生态科学, 2005, 24(3): 243-245. doi: 10.3969/j.issn.1008-8873.2005.03.012

    LI Xiuyu, LIN Xiaotao, LIAO Zhihong, et al. Effect of temperature on feeding of Pelteobogrus fulvidraco larvae[J]. Ecol Sci, 2005, 24(3): 243-245. (in Chinese) doi: 10.3969/j.issn.1008-8873.2005.03.012

    [22] 乔志刚, 常国亮, 张建平, 等. 延迟投饵对鲇仔鱼摄食、存活和生长的影响[J]. 上海水产大学学报, 2007, 16(2): 130-134. doi: 10.3969/j.issn.1004-7271.2007.02.007

    QIAO Zhigang, CHANG Guoliang, ZHANG Jianping, et al. Effect of delayed feeding on feeding ability, survival and growth of Silurus asotus larvae[J]. J Shanghai Fish Univ, 2007, 16(2): 130-134. (in Chinese) doi: 10.3969/j.issn.1004-7271.2007.02.007

    [23] 张晓华, 苏锦祥, 殷名称. 不同温度条件对鳜仔鱼摄食和生长发育的影响[J]. 水产学报, 1999, 23(1): 91-94. https://www.china-fishery.com/scxuebao/article/abstract/19990114?st=advanced_search

    ZHANG Xiaohua, SU Jinxiang, YIN Mingcheng. The influences of temperature on the feeding, growth and development of larval Siniperca chuatsi[J]. J Fish China, 1999, 23(1): 91-94. (in Chinese) https://www.china-fishery.com/scxuebao/article/abstract/19990114?st=advanced_search

    [24] 王芊芊, 吴金明, 张富铁, 等. 赤水河银的早期发育与仔鱼的耐饥饿能力[J]. 动物学杂志, 2010, 45(3): 11-20. doi: 10.13859/j.cjz.2010.03.027

    WANG Qianqian, WU Jinming, ZHANG Futie, et al. Early development and starvation tolerance of the larva of Squalidus argentatus in Chishui River[J]. Chin J Zool, 2010, 45(3): 11-20. (in Chinese) doi: 10.13859/j.cjz.2010.03.027

    [25] 马旭洲, 王武, 甘炼, 等. 延迟投饵对瓦氏黄顙鱼仔鱼存活、摄食和生长的影响[J]. 水产学报, 2006, 30(3): 323-328. https://www.china-fishery.com/scxuebao/article/abstract/819553?st=advanced_search

    MA Xuzhou, WANG Wu, GAN Lian, et al. Effects of delayed feeding on survival, feeding and growth of Squalidus argentatus larvae[J]. J Fish China, 2006, 30(3): 323-328. https://www.china-fishery.com/scxuebao/article/abstract/819553?st=advanced_search

    [26] 黄洪贵. 倒刺鲃仔鱼饥饿耐力的研究[J]. 大连水产学院学报, 2010, 25(2): 137-142. doi: 10.3969/j.issn.1000-9957.2010.02.008

    HUANG Honggui. The starvation endurance of Spinibarbus denticulatus larvae[J]. J Dailan Fish Univ, 2010, 25(2): 137-142. (in Chinese) doi: 10.3969/j.issn.1000-9957.2010.02.008

    [27] 黄洪贵, 胡振禧, 黄种持, 等. 饥饿对中华倒刺鲃仔鱼摄食、存活与生长发育的影响[J]. 江西农业大学学报, 2010, 32(2): 231-235. doi: 10.3969/j.issn.1000-2286.2010.02.008

    HUANG Honggui, HU Zhenxi, HUANG Zhongchi, et al. The effects of starvation on feeding, survival, growth and development of Spinibarbus sinensis larvae[J]. Acta Agriculturae Universitatis Jiangxiensis, 2010, 32(2): 231-235. (in Chinese) doi: 10.3969/j.issn.1000-2286.2010.02.008

    [28] 练青平, 宓国强, 王雨辰, 等. 杂交鳜仔鱼饥饿试验及不可逆点的确定[J]. 水产养殖, 2011, 32(4): 36-39. (in Chinese) doi: 10.3969/j.issn.1004-2091.2011.04.010

    LIAN Qingping, MI Guoqiang, WANG Yuchen, et al. Experimental starvation on the hybrid by Siniperca chuatsi (♀)×Siniperca scherzeri (♂) larvae and definition of the point of no return[J]. J Aquac, 2011, 32(4): 36-39. (in Chinese) doi: 10.3969/j.issn.1004-2091.2011.04.010

    [29] 殷名称. 鱼类仔鱼期的摄食和生长[J]. 水产学报, 1995, 19(4): 336-341. https://www.china-fishery.com/scxuebao/article/abstract/19950408?st=advanced_search

    YIN Mingcheng. Feeding and growth of the larva stage of fish[J]. J Fish China, 1995, 19(4): 336-341. (in Chinese) https://www.china-fishery.com/scxuebao/article/abstract/19950408?st=advanced_search

    [30] 张海发, 刘晓春, 刘付永忠, 等. 饥饿对斜带石斑鱼卵黄囊期仔鱼摄食、存活及生长的影响[J]. 中山大学学报: 自然科学版, 2009, 48(1): 51-55. doi: 10.3321/j.issn:0529-6579.2009.01.011

    ZHANG Haifa, LIU Xiaochun, LIUFU Yongzhong, et al. Effects of starvation on feeding, surviving and growth of yolk-sac larval Epinepheius coioides[J]. Acta Scientiarum Naturalum Universitatis Sunyatsen, 2009, 48(1): 51-55. (in Chinese) doi: 10.3321/j.issn:0529-6579.2009.01.011

推荐阅读
Comparative study on growth, hepatopancreas and gill histological structure, and enzyme activities oflitopenaeus vannameiunder so42−/cl−stress in low saline water
HE Zheng et al., SOUTH CHINA FISHERIES SCIENCE, 2025
Intestinal tissue structure, digestive enzymes, antioxidant enzymes and intestinal flora diversity between second filial generation and wild population ofbrachymystax tsinlingensisli, 1966
SONG Rongqun et al., SOUTH CHINA FISHERIES SCIENCE, 2025
Early pigmented cell development and body color change ofplatax teira
YU Chuxia et al., SOUTH CHINA FISHERIES SCIENCE, 2025
Effects of lh crude oil and no.0 diesel oil emulsion on hepatopancreatic antioxidant enzyme activity and related functional gene expression inlitopenaeus vannamei
SHEN Chuyan et al., SOUTH CHINA FISHERIES SCIENCE, 2025
Titanium dioxide and zinc oxide nanoparticles in sunscreen: potential impact on cytokine expression in human skin pre- and post-uvb exposure
Shaina Ailawadi et al., ARCHIVES OF MICROBIOLOGY & IMMUNOLOGY, 2023
Acute ammonia nitrogen stress on antioxidant capacity and non-specific immune of rainbow trout (oncorhynchusmykiss) in an alkaline environment
FU Xu-Juan et al., ACTA HYDROBIOLOGICA SINICA, 2025
The impact of uv light on synthetic photochemistry and photocatalysis
Goti, Giulio et al., NATURE CHEMISTRY, 2024
Effect of thickness on structural, optical, and optoelectrical properties of sprayed cuinsns4 thin films as a new absorber layer for solar cells
El Radaf, I. M., PHYSICA B-CONDENSED MATTER, 2023
Chemical characterization of extracts of leaves of kadsua coccinea (lem.) a. c. sm. by uhplc-q-exactive orbitrap mass spectrometry and assessment of their antioxidant and anti-inflammatory activities
BIOMEDICINE & PHARMACOTHERAPY
Nocturnin promotes nadh and atp production for juvenile hormone biosynthesis in adult insects
PEST MANAGEMENT SCIENCE
Powered by
图(1)  /  表(5)
计量
  • 文章访问数:  4590
  • HTML全文浏览量:  264
  • PDF下载量:  2382
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-25
  • 修回日期:  2011-12-15
  • 刊出日期:  2012-04-04

目录

/

返回文章
返回