QSAR analysis of toxicity of chloro-benzene and alkylphenolic compounds to zebrafish
-
摘要:
文章以ISO推荐使用的标准化鱼类毒性实验动物斑马鱼(Brachydanio rerio)为试验材料,选取10种典型氯代苯和烷基酚类化合物为研究对象进行了毒性试验。将斑马鱼毒性数据(-lg LC50)与受试物参数(2XV、lg P)在SPSS 13.0中进行回归分析,建立回归模型,可认为氯代苯毒性与2XV、烷基酚毒性与lg P之间均存在显著的线性关系,简要分析了其存在的不同致毒机理。
Abstract:In this paper, adult zebrafish (Brachydanio rerio) which was recommended by the ISO standardization for testing fish toxicity was exposed to 10 kinds of chloro-benzene and alkylphenolic compounds. Their toxic effects were assessed in the toxicity test. Through multi-stepwise regression in SPSS 13.0 with the toxicity data (-lg LC50) and the molecular parameters (2XV, lg P), two regression equations were obtained.The results showed that there was significant linear relation between chloro-benzene toxicity and 2XV as well as alkylphenol toxicity and lg P. Furthermore, their toxicity mechanisms were discussed briefly.
-
Keywords:
- chloro-benzene /
- alkylphenol /
- zebrafish(Brachydanio rerio) /
- QSAR
-
在饲料中添加增强鱼体免疫力和抵抗力的添加剂,逐渐成为控制鱼病和健康养殖的重要措施。壳聚糖是甲壳素脱乙酰基的产物,饲料中添加壳聚糖可通过提高动物的免疫功能和抗病力促进动物的生长,并且具有良好的生理活性和生物相容性,能被生物降解,且降解产物不会对环境造成污染。目前的壳聚糖生产大多以虾、蟹壳为材料,但用这些原料来生产壳聚糖存在着一定的局限性,如含量低(通常约占干重6%~20%),虾、蟹壳中含有大量的石灰质,迫使在甲壳素生产过程中大量地使用盐酸而造成甲壳素酸降解,降低产品质量,并污染环境等。昆虫体壳甲壳素的含量最高,体壁灰分含量少,较虾、蟹壳易于提取甲壳素及减少甲壳素分子链酸降解,相对容易生产[1]。笔者以往的研究表明,昆虫源壳聚糖对蛋鸡、肉鸡的生产性能有促进作用,其生物活性明显优于虾、蟹壳源壳聚糖[2-3]。昆虫源壳聚糖在鱼类方面的研究还鲜见报道。此试验旨在鲫鱼(Carassius auratus)基础饲料中添加不同水平的昆虫源壳聚糖,探讨其在饲料中的适宜添加水平,为昆虫源壳聚糖的开发应用提供依据。
1. 材料与方法
1.1 试验设计和试验鱼
采用单因子随机区组设计。试验用鱼高背鲫购于市场,共计225尾,体重25.2±1.7 g。试验鱼在水族箱内驯养一周后随机分为5个处理组,每处理组3个重复,每组15尾。各个处理组的鲫鱼饲喂的饲料中分别添加0%、0.25%、0.50%、0.75%和1.00%的昆虫源壳聚糖,试验期为8周。
1.2 试验饲料
试验基础饲料的组成和主要营养指标见表 1。
表 1 基础饲料的组成及主要营养指标Table 1. Composition and nutrient levels of basal feed% 原料名称
feed stuff在饲料中的比例
percent in feed主要营养指标
nutrient parameters营养水平
nutrient level鱼粉 fish meal 12 粗蛋白 crude protein 30.25 豆粕 soybean meal 30 粗脂肪 crude fat 4.85 棉籽粕 cotton seed meal 11 粗灰分 crude ash 12.30 面粉 flour 15 赖氨酸 Lys 1.63 米糠 rice bran 20 蛋氨酸 Met 0.49 玉米粉 corn 10 磷酸氢钙 calcium phosphate dibasic 1 矿物质及维生素预混料 mineral and vitamin premix 1 试验饲料为基础饲料中添加0%、0.25%、0.50%、0.75%和1.00%的昆虫源壳聚糖,混合均匀后压制成2~3 mm颗粒饲料烘干备用。昆虫源壳聚糖以油葫芦(Cryllus testaceus)为原料,按照王敦等[4]的方法制备。
1.3 饲养管理
试验在水族箱中进行,其规格为120 cm×50 cm×60 cm,配有加热棒和充氧机,保持水温24~27℃,pH 7.2,溶氧5~8 mg · L-1,驯化饲养1周后饲喂试验饲料。试验鱼每天喂4次(8: 30,11: 30,14: 00,17: 00),日投饵率2%~4%,根据鱼的摄食情况适当增减。每天记录摄食量和水温,并清除水箱内粪便和污物,定期换水。
1.4 测定指标及方法
在试验正式开始及结束前鱼饥饿24 h,给每组鱼称重。按下列公式计算相对增重率和饵料系数。
相对增重率(%) = (试验结束鱼体重-试验开始鱼体重) /试验开始鱼体重×100%;
饵料系数=TF/ (WF-WI);
式中WF为试验终末每个处理组鱼总重;WI为初始每个处理组鱼总重;TF为每个重复摄食量。
1.5 统计分析
所有数据采用Excel软件进数据整理,用SPSS 11.5软件的One-Way ANOVA模块进行方差分析,用Turkey法进行多重比较,显著水平为P<0.05。
2. 结果与讨论
在鲫鱼饲料中添加不同水平的昆虫源壳聚糖后生长性能的变化情况见表 2。
表 2 昆虫源壳聚糖添加水平对鲫鱼生长性能的影响Table 2. Effect of chitosan from insect resource on growth performance of crucian carp壳聚糖添加水平/%
chitosan level饲料投喂量/g
feed consumption per fish相对增重率/%
relative growth rate饵料系数
feed coefficient0 24.92±1.02a 49.40±3.52a 2.01±0.10a 0.25 23.66±1.15a 55.78±2.44ab 1.69±0.13b 0.50 24.32±1.58a 63.49±3.75b 1.52±0.07b 0.75 23.70±1.32a 59.52±3.05b 1.58±0.12b 1.00 25.70±1.22a 57.71±3.25b 1.76±0.15b 注:同列数据标有相同字母者表示差异不显著(P>0.05);标有不同字母者表示差异显著(P < 0.05)
Note:Means within row with same superscripts were not significant (P>0.05);means within row with different superscripts were significant (P < 0.05)可以看出,添加昆虫源壳聚糖后各处理组的相对增重率均高于未添加组,其中0.50%、0.75%和1.00%处理组与对照组存在显著的差异(P < 0.05),0.25%添加组与未添加组无显著差异(P>0.05),0.50%处理组最高;添加昆虫源壳聚糖后的饵料系数均显著的降低(P < 0.05),以0.50%的添加水平组最佳。其他学者在罗非鱼(Tilapia)[5]、草鱼(Ctenopharyngodon idellus)[6]、异育银鲫(Carassius auratus gibelio)[7]等鱼类饲料添加普通壳聚糖后对生长性能的影响也有相同的报道。
试验中,昆虫源壳聚糖的促生长作用并不随着壳聚糖添加量的增加而不断增强。于东祥等[8]对真鲷(Pagrosomus major)的研究有类似报道,饲料中添加0.5%和1.0%的甲壳胺制剂可以提高真鲷的相对增重率,并且0.5%的添加效果要比1.0%的效果更好。SHIAU和YU[9]的研究中也发现,罗非鱼的增重率随壳聚糖添加量(2%、5%、10%)的增加而降低,10%的壳聚糖会抑制罗非鱼的生长和饲料转化率。可见,过量添加壳聚糖对鱼的生长会有抑制作用。
通过对昆虫源壳聚糖的添加水平与相对增重率和饵料系数间的关系进行统计分析,发现存在着显著的二次曲线关系(P < 0.01)(图 1、图 2)。通过求导计算最佳相对增重率和饵料系数时的添加水平为0.63%和0.57%,平均为0.60%。这与其他学者在不同鱼类中添加虾蟹壳壳聚糖的研究结果接近,大多数学者认为虾蟹壳壳聚糖在罗非鱼[5]、真鲷幼鱼[8]、草鱼[6, 10]、花鲈(Lateolabrax japonicus)[11]、异育银鲫[12]、三角鲂(Megalobrama terminalis)[13]饲料中的适宜添加水平为0.5%,也有认为罗非鱼为0.75%[7],甚至1.0%[14]。这可能是不同研究中的试验鱼种类、基础饲料组成、试验中壳聚糖添加梯度大小及数量等方面的差异导致的。文章通过分析壳聚糖添加水平与相对增重率和饵料系数间的关系得到的最佳添加水平,而其他学者一般是比较了不同处理组间的差异情况得出的结论,未研究壳聚糖水平与生长性能指标间的关系后通过计算确定最佳水平,这可能是与他人报道存在一定差异的主要原因。此外,昆虫源壳聚糖和虾蟹壳壳聚糖对鱼类的促生长作用是否存在差异以及机理还有待于进一步研究。
3. 小结
从文中的试验结果来看,饲料中添加0.50%昆虫源壳聚糖组的生长性能最好,结合昆虫源壳聚糖水平与相对增重率和饵料系数的回归关系计算出最佳添加水平为0.60%的结果,再考虑其他学者在不同鱼类饲料中添加虾蟹壳壳聚糖的适宜水平为0.50%的情况,笔者认为,为了取得较好的养殖效果,在鲫鱼饲料中添加0.50%~0.60%昆虫源壳聚糖较为适宜。
-
表 1 氯代苯和烷基酚类化合物斑马鱼急性毒性LC50值
Table 1 LC50 of chloro-benzene and alkylphenolic compounds to adult zebrafish in acute toxicity test
t/h 化合物
compoundLC50
/mg·L-195%置信区间/mg·L-1
confidence interval of 95%t/h 化合物
compoundLC50
/mg·L-195%置信区间/mg·L-1
confidence interval of 95%24 氯苯 70.223 [65.751, 75.007] 24 苯酚 56.961 [51.251, 63.314] 48 60.854 [56.027, 66.100] 48 43.041 [40.663, 45.562] 72 59.894 [55.322, 64.849] 72 42.669 [40.309, 45.165] 96 59.894 [55.322, 64.849] 96 42.669 [40.309, 45.165] 24 二氯苯 30.766 [27.302, 34.674] 24 邻甲酚 49.204 [38.194, 63.387] 48 30.454 [27.177, 34.119] 48 27.102 [23.142, 31.739] 72 26.825 [23.983, 29.999] 72 26.607 [23.227, 30.479] 96 23.763 [21.247, 26.577] 96 26.607 [23.227, 30.479] 24 间二氯苯 29.184 [26.589, 32.026] 24 对甲酚 34.041 [31.368, 40.227] 48 22.888 [21.228, 24.677] 48 26.915 [24.592, 29.458] 72 21.608 [20.109, 23.217] 72 26.300 [24.266, 28.510] 96 20.527 [18.906, 22.284] 96 26.300 [24.266, 28.510] 24 2,5-二氯
硝基苯9.564 [9.108, 10.042] 24 间甲酚 34.995 [30.702, 39.888] 48 9.036 [8.712, 9.373] 48 30.130 [27.654, 32.828] 72 6.718 [6.163, 7.321] 72 29.854 [27.669, 32.211] 96 5.166 [4.872, 5.479] 96 29.854 [27.669, 32.211] 24 1,2,4- 三氯苯 11.186 [9.592, 13.047] 24 2,4-二叔丁基酚 1.866 [1.601, 0.696] 48 8.928 [7.842, 10.167] 48 1.832 [1.572, 2.136] 72 7.544 [6.613, 8.606] 72 1.800 [1.542, 2.104] 96 7.008 [6.269, 7.834] 96 1.800 [1.542, 2.104] 表 2 氯代苯和烷基酚毒性方程残差分析表
Table 2 Residual analysis of toxic equation for chloro-benzenes and alkylphenols
方程(1)/(2) -lg LC50
equation(1)/(2) -lg LC50实测值
measured计算值
calculated残差
residuallg P 2XV 氯苯Chlorobenzene -1.785 -1.821 0.036 2.76 1.731 邻二氯苯Benzene dichloride -1.484 -1.419 -0.065 3.55 2.227 间二氯苯m-Dichloride -1.360 -1.352 -0.008 3.38 2.310 1,2,4-三氯苯1,2,4-Trichloride -0.951 -0.949 -0.002 1.46 2.806 2,5-二氯硝基苯2,5-Dichloro-Nitrobenzene -0.956 -0.992 0.036 3.78 2.753 苯酚Phenol -1.634 -1.646 0.012 1.46 2.335 邻甲酚o-cresol -1.433 -1.434 0.001 2.06 1.787 间甲酚m-cresol -1.497 -1.462 -0.017 1.98 1.838 对甲酚p-cresol -1.430 -1.434 0.004 2.06 1.835 2,4-二叔丁基酚2,4-di-ter-butylphenol -0.263 -0.265 0.002 5.37 6.232 -
[1] 王连生. 有机污染化学[M]. 北京: 科学出版社, 2004: 1-915. https://xueshu.baidu.com/usercenter/paper/show?paperid=313b3a71890048f27ab8ec0bb74aad9b&site=xueshu_se&hitarticle=1 [2] Van der KRAAK G. Observations of endocrine effects in wildlife with evidence of their causation[J]. J Pure Appl Chem, 1998, 70(9): 1785-1794. doi: 10.1351/pac199870091785
[3] 刘征涛. 生态毒理学研究中分子构效相关的应用[J]. 环境化学研究, 2001, 14(1): 53-56. doi: 10.3321/j.issn:1001-6929.2001.01.015 [4] KISHINO T, KOBAYSHI K. Studies on the mechanism of toxicity of chlorophenols found in fish through quantitative structure-activity relationships[J]. Water Res, 1996, 30(2): 393-399. doi: 10.1016/0043-1354(95)00152-2
[5] KALSCH W, NAGEL R, URICH K. Uptake, elimination, and bioconcentration of ten anilines in zebrafish (Brachydanio rerio)[J]. Chemosphere, 1991, 22(3/4): 351-363. doi: 10.1016/0045-6535(91)90323-6
[6] Van LEEUWEN C J, ADEMA D M M, HERMENS J. Quantitative structure-activity relationships for fish early life stage toxicity[J]. Aquat Toxicol, 1990, 16(4): 321-334. doi: 10.1016/0166-445X(90)90044-P
[7] ZHAO Y H, HE Y B, WANG L S. Predicting toxicities of substituted aromatic hydrocarbons to fish by toxicities to Aphnia magna[J]. Toxicol Environ Chem, 1995, 51(1): 191-195. doi: 10.1080/02772249509358237
[8] 李伟民, 尹大强, 李时银, 等. 氯代苯胺对斑马鱼的急性毒性及3D-QSAR分析[J]. 环境科学研究, 2002, 15(2): 6-11. doi: 10.3321/j.issn:1001-6929.2002.02.002 [9] 刘征涛, 王连生, 曹洪法, 等. QSAR法研究芳烃类化合物的生物毒性[J]. 科学通报, 1996, 41(15): 1395-1398. doi: 10.3321/j.issn:0023-074X.1996.15.012 [10] 柳丽. 半数致死量的快速计算方法[J]. 中国医科大学学报, 1989, 22(5): 414-415. https://d.wanfangdata.com.cn/periodical/Ch9QZXJpb2RpY2FsQ0hJTmV3UzIwMjQxMTA1MTcxMzA0Eg5RSzAwMDAwMzg4Mjk1MBoIOGViajVqbmg%3D [11] 于瑞莲, 胡恭任. 环境化学中有机化合物毒性的QSAR研究方法[J]. 环境科学与技术, 2003, 26(1): 57-59. doi: 10.3969/j.issn.1003-6504.2003.01.024 [12] LYMAN W J, REEHL W F. Handbook of chemical property estimation methods[M]. New York: McGraw-Hill Press, 1982.
[13] 张锡辉. 高等环境化学与微生物学原理及应用[M]. 北京: 化学工业出版社, 2001: 105-109. https://xueshu.baidu.com/usercenter/paper/show?paperid=8f71d140e9f5b377b89bb21cc57e40ab&site=xueshu_se&hitarticle=1 [14] 于红霞, 高松亭. 运用QSARs方法比较和预测取代苯类化合物的毒性[J]. 环境化学, 1998, 17(5): 444-449. doi: 10.1017/S0266078400010713 [15] 李玉梅. 卤代苯类化合物对江水细菌的毒性及其QSAR研究[D]. 南京: 河海大学, 2005: 46-47. 10.7666/d.y693633 -
期刊类型引用(8)
1. 张喆,巩秀玉,兰丽丽,王学锋,马胜伟,陈海刚,张林宝. 紫红笛鲷Cyp1a基因克隆、表达及其对一溴联苯醚和十溴联苯醚胁迫的响应. 南方水产科学. 2022(04): 54-64 . 本站查看
2. 徐澎,Muhammad Junaid,刘燕,陈裕鹏,毕春晴,许楠. 微塑料和全氟辛烷磺酸类物质共暴露对翡翠贻贝滤食率和抗氧化系统的影响. 北京大学学报(自然科学版). 2021(05): 894-902 . 百度学术
3. 许彩娜,曾姣,袁骐,隋延鸣,迟海,王翠华. 邻苯二甲酸二丁酯对厚壳贻贝抗氧化防疫系统的影响. 中国水产科学. 2020(08): 934-942 . 百度学术
4. 赵亭亭,陈超,邵彦翔,张清雯,刘玲. 条纹锯幼鱼维生素C需要量. 动物营养学报. 2018(12): 5062-5074 . 百度学术
5. 魏海峰,刘长发,刘远,刘杨. 苯并[a]芘对刺参SOD和CAT酶活性影响研究. 环境科学与技术. 2016(04): 31-34+46 . 百度学术
6. 戴文娟,曾明玉,胡宝庆,文春根. 氯苯和乙腈混合液对褶纹冠蚌抗氧化因子活性的影响. 南昌大学学报(理科版). 2014(02): 166-170+176 . 百度学术
7. 彭士明,施兆鸿,高权新,尹飞,孙鹏,王建钢. 增加饲料中V_C质量分数对银鲳血清溶菌酶活性及组织抗氧化能力的影响. 南方水产科学. 2013(04): 16-21 . 本站查看
8. 李红艳,张喆,陈海刚,马胜伟,陈炜婷,王涛,蔡文贵. 三唑磷短期暴露对翡翠贻贝的毒性效应. 南方水产科学. 2013(05): 71-79 . 本站查看
其他类型引用(6)
计量
- 文章访问数: 4325
- HTML全文浏览量: 185
- PDF下载量: 2470
- 被引次数: 14