Morphologal characteristics and mitochondrial genome of Gymnothorax poikilospilus, a new recorded Gymnothorax species from mainland China
-
摘要:
目前全球裸胸鳝属 (Gymnothorax) 鱼类的种质资源研究仍存在较大空白,其物种分类与资源信息亟待修订与更新。通过形态学与分子生物学方法,对广东省湛江海域采集的裸胸鳝属鱼类样本进行鉴定,以期为该属种质资源分析与物种名录更新提供科学依据。以采集的1尾裸胸鳝属鱼类样本为研究对象,结合外部形态特征分析和线粒体全基因组测序技术进行物种鉴定。形态学数据显示,该样本体色呈单一褐色,无斑纹或斑点,背鳍较高,起源于鳃孔之前,各鳍边缘呈淡灰色,下颌微弓,嘴巴不能完全闭合,齿单列,椎骨式为5-58-140,与文献记载的新种杂色裸胸鳝 (G. poikilospilus sp. nov.) 形态数据基本吻合。线粒体基因组全长16 572 bp,包含22个tRNA、2个rRNA、13个蛋白编码基因及1个非编码区,基因数量与排列特征与其他鱼类相似。系统发育分析表明,杂色裸胸鳝与奥迪萨裸胸鳝 (G. odishi)、匀斑裸胸鳝 (G. reevesii) 及淡网纹裸胸鳝 (G. pseudothyrsoideus) 亲缘关系较近,且基于COI基因的进化树中,该样本与杂色裸胸鳝聚为一支。遗传距离分析显示,两者遗传距离仅为0.004,显著低于物种鉴定阈值 (0.020),进一步支持其分类地位。综合形态学与分子生物学证据,首次确认该杂色裸胸鳝为中国大陆裸胸鳝属新记录种,可为完善该属种质资源数据库及后续分类研究提供重要参考。
Abstract:At present, there is still a lack of research on the germplasm resources of the moray eel genus Gymnothorax in the world, and its taxonomic classification and resource documentation require urgent revision and updating. In this study, we collected and identified a Gymnothorax specimen from Zhanjiang, Guangdong Province through morphological and molecular biological methods, so as to provide a scientific basis for the germplasm resource analysis and species catalog updating of this genus. The specimen was analyzed for external morphological characteristics and its complete mitochondrial genome wassequenced. The morphological results show that the specimen exhibited a uniform brown body coloration without patterns or spots, a high dorsal fin originating anterior to the gill opening, light grayish edges on all fins, a slightly arched lower jaw preventing complete mouth closure, uniserial teeth, and a vertebral formula of 5-58-140. These characteristics aligned closely with the newly described species G. poikilospilus sp. nov. The complete mitogenome was 16,572 bp in length, comprising 22 tRNA genes, 2 rRNA genes, 13 protein-coding genes, and 1 non-coding control region, with gene order and content conserved among teleosts. Phylogenetic analysis based on 12 protein-coding genes reveals that G. poikilospilus clustered closely with G. odishi, G. reevesii and G. pseudothyrsoideus. In the COI-based phylogeny, the studied specimen formed a monophyletic clade with G. poikilospilus. Genetic distance between the two species was only 0.004, far below the species delimitation threshold of 0.020, further confirming their conspecificity. This study represents the first record of G. poikilospilus in mainland China, integrating morphological and molecular evidence to expand the germplasm resource database and facilitate future taxonomic research on Gymnothorax.
-
-
表 1 杂色裸胸鳝鳝形态性状测量数据
Table 1 Morphometric measurement data of G. poikilospilus
测量性状
Measured trait编号 No.
ZKAT-
GP20230608模式标本[11]
Holotype
specimen全长 Total length/mm 692 768 占全长比例 Proportions in percent of total length/% 体长Body length 98.5 — 体高Body depth 8.1 8.3 头长Head length 13.5 14.5 躯干长Trunk length 35.8 34.8 尾长Tail length 50.6 50.3 背鳍前距
Distance from snout to dorsal fin9.1 — 臀鳍前距
Distance from snout to anal fin49.4 — 背鳍基长Base of the dorsal fin 90.9 — 臀鳍基长Base of the anal fin 49.3 — 肛前距Preanal length 49.4 49.7 占头长比例 Proportions in percent of head length/% 吻长Snout length 17.0 17.9 上颌长Upper jaw length 44.6 46.3 下颌长Lower jaw length 44.4 46.8 眼径Eye diameter 6.4 8.7 眼间距Interorbital width 10.5 11.1 椎骨Vertebrae/个 背前脊椎骨数
Predorsal vertebrae4 4 肛前脊椎骨数Preanal vertebrae 58 57 总脊椎骨数Total vertebrae 140 141 牙齿 Teeth/个 前颌齿数Premaxillary teeth 5 6 上颌齿数Maxillary teeth 18 18~19 下颌齿数Dentary teeth 28~29 27 中央齿数
Median premaxillary teeth3 3 犁骨齿数Vomerine teeth 4 5 注:“—”表示无数据。 Note: "—" represents no data. 表 2 杂色裸胸鳝线粒体基因组结构组成
Table 2 Main structures of mitogenome in G. poikilospilus
基因
Gene编码链
Coding strand位置
Location长度
Size/bp间隔碱基
Intergenic nucleotide起始密码子
Start codon终止密码子
Stop codontRNAPhe H 1—69 69 0 12S rRNA H 70— 1018 949 0 tRNAVal H 1019 —1089 71 13 16S rRNA H 1103 —2748 1646 0 tRNALeu(1) H 2749 —2824 76 0 ND1 H 2825 —3796 972 1 ATG TAA tRNAIle H 3798 —3868 71 −1 tRNAGln H 3868 —3938 71 −1 tRNAMet H 3938 —4006 69 0 ND2 H 4007 —5048 1042 0 ATG T-- tRNATrp L 5049 —5117 69 1 tRNAAla L 5119 —5187 69 1 tRNAAsn H 5189 —5261 73 22 tRNACys H 5284 —5350 67 0 tRNATyr L 5351 —5421 71 1 COI H 5423 —7030 1608 −5 GTG AGA tRNASer(1) H 7026 —7096 71 5 tRNAAsp H 7102 —7171 70 0 COII H 7172 —7862 691 0 ATG T-- tRNALys H 7863 —7935 73 1 ATPase8 H 7937 —8104 168 −10 ATG TAA ATPase6 H 8095 —8778 684 −1 ATG TAA COIII L 8778 —9562 785 0 ATG TA− tRNAGly H 9563 —9633 71 0 ND3 H 9634 —9982 349 0 ATG T-- tRNAArg H 9983 —10052 70 0 ND4L L 10053 —10349 297 −7 ATG TAA ND4 L 10343 —11720 1378 0 ATG T-- tRNAHis L 11721 —11789 69 0 tRNASer(2) L 11790 —11857 68 0 tRNALeu(2) H 11858 —11930 73 0 ND5 L 11931 —13772 1842 −4 ATG TAA ND6 H 13769 —14287 519 0 ATG TAA tRNAGlu H 14288 —14356 69 6 Cytb H 14363 —15502 1140 3 ATG TAA tRNAThr H 15506 —15577 72 1 tRNAPro H 15579 —15648 70 0 D-loop H 15649 —16572 924 0 注:H. 重链;L. 轻链。 Note: H. Heavy strand; L. Light strand. 表 3 杂色裸胸鳝与其他裸胸鳝的种间遗传距离
Table 3 Inter-specific genetic distance of COI sequences between G. poikilospilus and other Muraenidae species
物种
Species距离
Distance物种
Species距离
Distance杂色裸胸鳝 Gymnothorax poikilospilus (ON351489) 0.004 单色蛇鳝 Echidna unicolor 0.240 邵氏裸胸鳝 G. shaoi 0.112 细点裸胸鳝 G. pictus 0.241 淡网纹裸胸鳝 G. pseudothyrsoideus 0.123 澳洲裸胸鳝 G. australicola 0.242 匀斑裸胸鳝 G. reevesii 0.123 棕斑尾鯙 Uropterygius fuscoguttatus 0.242 裂吻勾吻鳝 Enchelycore schismatorhynchus 0.128 白点裸胸鳝 G. johnsoni 0.243 奥迪萨裸胸鳝 G. odishi 0.135 黄鳍尾鳝 Uropterygius xanthopterus 0.245 黄纹裸胸鳝 G. monochrous 0.141 白斑尾鳝 U. alboguttatus 0.247 蒂尔裸胸鳝 G. tile 0.158 法老裸胸鳝 G. pharaonis 0.248 窄尾裸胸鳝 G. angusticauda 0.159 单色尾鳝 U. concolor 0.248 长身裸胸鳝 G. prolatus 0.177 褐斑裸胸鳝 G. fuscomaculatus 0.249 鞍头裸胸鳝 G. sagmacephalus 0.181 网纹海鳝 Muraena retifera 0.250 肝色裸胸鳝 G. hepaticus 0.183 斑尾鳝U. macularius 0.252 爪哇裸胸鳝 G. javanicus 0.184 细尾裸胸鳝G. gracilicauda 0.252 异纹裸胸鳝 G. richardsonii 0.184 多腺裸胸鳝G. polygonius 0.255 白缘裸胸鳝 G. albimarginatus 0.185 蠕纹裸胸鳝G. kidako 0.256 兰氏裸胸鳝 G. randalli 0.185 棕斑蛇鳝 Echidna delicatula 0.263 长体裸胸鳝 G. longinquus 0.189 虎斑鞭尾鳝 Scuticaria tigrina 0.263 淡点裸胸鳝 G. phalarus 0.189 布氏拟蛇鳝 Pseudechidna brummeri 0.275 四孔弯牙海鳝 Strophidon tetraporus 0.189 小鳍尾鳝U. micropterus 0.280 波纹裸胸鳝 G. undulatus 0.190 斑唇尾鯙U. kamar 0.280 -
[1] SMITH D G. A checklist of the moray eels of the world (Teleostei: Anguilliformes: Muraenidae)[J]. Zootaxa, 2012, 3474(1): 1-64.
[2] SMITH D G, BOGORODSKY S V, MAL A O, et al. Review of the moray eels (Anguilliformes: Muraenidae) of the Red Sea, withdescription of a new species[J]. Zootaxa, 2019, 4704(1): 1-87.
[3] FROESE R, PAULY D. FishBase[EB/OL]. [2025-01-04]. http://www.fishbase.org.
[4] 成庆泰, 郑葆珊. 中国鱼类系统检索[M]. 北京: 科学出版社, 1987: 104-108. [5] 陈大刚, 张美昭. 中国海洋鱼类[M]. 青岛: 中国海洋大学出版社, 2016: 235-266. [6] 刘瑞玉. 中国海洋生物名录[M]. 北京: 科学出版社, 2008: 906-909. [7] 张春光. 中国动物志−硬骨鱼纲, 鳗鲡目, 背棘鱼目[M]. 北京: 科学出版社, 2010: 224-288. [8] 朱元鼎, 张春霖, 成庆泰. 南海鱼类志[M]. 北京: 科学出版社, 1962: 184-194. [9] BÖHLKE E B, RANDALL J E. A review of the moray eels (Angulliformes: Muraenidae) of the Hawaiian Islands, with descriptions of two new species[J]. Proc Acad Nat Sci Philadelphia, 2000, 150: 203-278.
[10] HUANG W C, CHEN H M, LIAO T Y. Revalidation of a moray eel, Gymnothorax mucifer Snyder, 1904 (Teleostei: Anguilliformes: Muraenidae), with a revised distribution[J]. Zootaxa, 2019, 4559(1): 151-165.
[11] TANG K L, FIELITZ C. Phylogeny of moray eels (Anguilliformes: Muraenidae), with a revised classification of true eels (Teleostei: Elopomorpha: Anguilliformes)[J]. Mitochondrial DNA, 2013, 24(1): 55-66. doi: 10.3109/19401736.2012.710226
[12] HUANG W C, THU P T, LIAO T Y. A new record of the long moray, Gymnothorax longinquus (Actinopterygii: Anguilliformes: Muraenidae), from southern Vietnam, supporting the uncertain record in the Gulf of Thailand[J]. Acta Ichthyol Piscat, 2020, 50(2): 201-207. doi: 10.3750/AIEP/02790
[13] NASHAD M, MOHAPATRA A, VARGHESE S P, et al. A new white-spotted moray eel, Gymnothorax aurocephalus sp. nov. (Muraenidae: Muraeninae) from Andaman Sea, India[J]. Zootaxa, 2020, 4877(2): 361-372.
[14] SUMOD K S, MOHAPATRA A, SANJEEVAN V N, et al. A new species of white-spotted moray eel, Gymnothorax smithi (Muraenidae: Muraeninae) from deep waters of Arabian Sea, India[J]. Zootaxa, 2019, 4652(2): 359-366.
[15] CHAKRABORTY P, SAREN S C, SENGUPTA A, et al. Notes on the record of Gymnothorax pseudotile Mohapatra et al. 2017 (Muraenidae: Muraeninae) from the Sundarbans, West Bengal, India[J]. Rec Zool Surv India, 2018, 118(3): 318-321.
[16] 梁日深, 何浩斌, 郜梓涵, 等. 我国裸胸鳝属鱼类新记录种: 奥迪萨裸胸鳝 (Gymnothorax odishi) 形态与线粒体基因组分析[J]. 海洋与湖沼, 2024, 55(1): 279-291. [17] 张国庆, 杨杰銮, 李培源, 等. 我国近海裸胸鳝属鱼类新记录种: 黏裸胸鳝 (Gymnothorax mucifer) 形态与分子系统学研究[J]. 海洋学报, 2022, 44(7): 112-121. doi: 10.12284/j.issn.0253-4193.2022.7.hyxb202207011 [18] HUANG W C, LOH K H, CHEN H M. Gymnothorax poikilospilus, a new moray eel (Teleostei: Anguilliformes: Muraenidae) from Penghu Islands, western Taiwan[J]. Zootaxa, 2022, 5189(1): 87-102. doi: 10.11646/zootaxa.5189.1.11
[19] MUKHIM D K B, SARMA K, CHOUDHURY H, et al. Schistura sonarengaensis, a new species of cave-dwelling loach (Teleostei: Nemacheilidae) from Meghalaya, northeast India[J]. J Fish Biol, 2024, 105(4): 1240-1255. doi: 10.1111/jfb.15856
[20] 李佳佳, 陈敬琛, 唐文乔. 八角鱼科一中国新记录种: 日本隆背八角鱼Percis japonica记述[J]. 动物学杂志, 2024, 59(5): 789-95. [21] MOORE W S. Inferring phylogenies from mtdna variation: mitochondrial-gene trees versus nuclear-gene trees[J]. Evolution, 1995, 49(4): 718-726.
[22] BOORE J L. Animal mitochondrial genomes[J]. Nucleic Acids Res, 1999, 27(8): 1767-1780. doi: 10.1093/nar/27.8.1767
[23] 王乙婷, 朱文斌, 张亚洲, 等. 浙江沿岸日本鳀幼鱼渔业兼捕鱼类的DNA条形码鉴定[J]. 水产学报, 2024, 48(10): 96-108. [24] 王晓谕, 彭祖焜, 朱久阳, 等. 线粒体12S rRNA在南极鱼亚目物种鉴定中的应用[J/OL]. 海洋渔业, 1-20 [2025-03-06]. https://doi.org/10.13233/j.cnki.mar.fish.20240828.001. [2025-03-06]. https://doi.org/10.13233/j.cnki.mar.fish.20240828.001.
[25] BANKEVICH A, NURK S, ANTIPOV D, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing[J]. J Comput Biol, 2012, 19(5): 455-477. doi: 10.1089/cmb.2012.0021
[26] BERNT M, DONATH A, JÜHLING F, et al. MITOS: improved de novo metazoan mitochondrial genome annotation[J]. Mol Phylogenet Evol, 2013, 69(2): 313-319. doi: 10.1016/j.ympev.2012.08.023
[27] STOTHARD P, GRANT J R, DOMSELAAR G V. Visualizing and comparing circular genomes using the CGView family of tools[J]. Brief Bioinform, 2019, 20(4): 1576-1582. doi: 10.1093/bib/bbx081
[28] LOWE T M, EDDY S R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence[J]. Nucleic Acids Res, 1997, 25(5): 955-964. doi: 10.1093/nar/25.5.955
[29] KUMAR S, STECHER G, LI M, et al. MEGA X: Molecular evolutionary genetics analysis across computing platforms[J]. Mol Biol Evol, 2018, 35(6): 1547-1549. doi: 10.1093/molbev/msy096
[30] NAKAMURA T, YAMADA K D, TOMII K, et al. Parallelization of MAFFT for large-scale multiple sequence alignments[J]. Bioinformatics, 2018, 34(14): 2490-2492. doi: 10.1093/bioinformatics/bty121
[31] CASTRESANA J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis[J]. Mol Biol Evol, 2000, 17(4): 540-552. doi: 10.1093/oxfordjournals.molbev.a026334
[32] LANFEAR R, FRANDSEN P B, WRIGHT A M, et al. Partitionfinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses[J]. Mol Biol Evol, 2017, 34(3): 772-773.
[33] STAMATAKIS A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies[J]. Bioinformatics, 2014, 30(9): 1312-1313. doi: 10.1093/bioinformatics/btu033
[34] TENG H Y, LIN Y S, TZENG C S. A new Anguilla species and a reanalysis of the phylogeny of freshwater eels[J]. Zool Stud, 2009, 48(6): 808-822.
[35] ZHONG L Q, WANG M H, LI D M, et al. Complete mitochondrial genome of freshwater goby Rhinogobius cliffordpopei (Perciformes, Gobiidae): genome characterization and phylogenetic analysis[J]. Genes Genom, 2018, 40(11): 1137-1148. doi: 10.1007/s13258-018-0669-1
[36] YANG M, YANG Z M, LIU C Y, et al. Characterization of the complete mitochondrial genome of the spotted catfish Arius maculatus (Thunberg, 1792) and its phylogenetic implications[J]. Genes (Basel), 2022, 13(11): 2128. doi: 10.3390/genes13112128
[37] 王开杰, 姜燕, 徐永江, 等. 黄带拟鲹线粒体基因组测序及鲹科鱼类系统发育分析[J]. 水产学报, 2022, 46(11): 2017-2027. [38] LYU Z M, ZHU K H, JIANG H, et al. Complete mitochondrial genome of Ophichthus brevicaudatus reveals novel gene order and phylogenetic relationships of Anguilliformes[J]. Int J Biol Macromol, 2019, 135: 609-618. doi: 10.1016/j.ijbiomac.2019.05.139
[39] ZHANG K, ZHU K H, LIU Y F, et al. Novel gene rearrangement in the mitochondrial genome of Muraenesox cinereus and the phylogenetic relationship of Anguilliformes[J]. Sci Rep, 2021, 11(1): 2411. doi: 10.1038/s41598-021-81622-9
[40] 申欣, 田美, 孟学平, 等. 鳗鲡目鱼类线粒体蛋白质编码基因易位及系统演化关系分析[J]. 海洋学报 (中文版), 2014, 36(4): 73-81. [41] 宁子君, 刘玉萍, 张书飞, 等. 艾氏蛇鳗线粒体基因组全序列结构分析和系统发育关系探讨[J]. 中国水产科学, 2022, 29(9): 1264-1276. doi: 10.12264/JFSC2021-0486 [42] OJALA D, MONTOYA J, ATTARDI G. tRNA punctuation model of RNA processing in human mitochondria[J]. Nature, 1981, 290(5806): 470-474. doi: 10.1038/290470a0
[43] DU C, HE S, SONG X, et al. The complete mitochondrial genome of Epicauta chinensis (Coleoptera: Meloidae) and phylogenetic analysis among coleopteran insects[J]. Gene, 2016, 578(2): 274-280. doi: 10.1016/j.gene.2015.12.036
[44] PENG Z, WANG J, HE S. The complete mitochondrial genome of the helmet catfish Cranoglanis bouderius (Siluriformes: Cranoglanididae) and the phylogeny of otophysan fishes[J]. Gene, 2006, 376(2): 290-297. doi: 10.1016/j.gene.2006.04.014
[45] 毛明光, 顾杰, 刘瑞婷, 等. 太平洋鳕线粒体全基因组测序及结构特征分析[J]. 水生生物学报, 2019, 43(1): 17-26. doi: 10.7541/2019.003 [46] 刘凯, 冯晓宇, 马恒甲, 等. 钱塘江三角鲂线粒体基因组测序及其结构特征分析[J]. 浙江农业学报, 2020, 32(9): 1591-1608. doi: 10.3969/j.issn.1004-1524.2020.09.08 [47] 钟东, 赵贵军, 张振书, 等. 基因组内碱基分布整体均衡与局部不均衡的研究进展[J]. 遗传, 2002(3): 351-355. doi: 10.3321/j.issn:0253-9772.2002.03.033 [48] 陈铭, 范蔓桦, 谢瑞琳, 等. 基于16S rRNA序列探讨我国海鳝科鱼类分子系统进化关系[J]. 水产学报, 2022, 46(2): 183-195. [49] REECE J S, BOWEN B W, SMITH D G, et al. Molecular phylogenetics of moray eels (Muraenidae) demonstrates multiple origins of a shell-crushing jaw (Gymnomuraena, Echidna) and multiple colonizations of the Atlantic Ocean[J]. Mol Biol Evol, 2010, 57(2): 829-835.
[50] HEBERT P D N, CYWINSKA A, BALL S L, et al. Biological identifications through DNA barcodes[J]. Proc R Soc B, 2003, 270 (1512): 313-321.