盐度对斑点叉尾鮰肠道菌群的影响

蔡小雨, 徐静雯, 张世勇, 刘洪岩, 陈校辉, 钟立强

蔡小雨, 徐静雯, 张世勇, 刘洪岩, 陈校辉, 钟立强. 盐度对斑点叉尾鮰肠道菌群的影响[J]. 南方水产科学, 2025, 21(3): 158-168. DOI: 10.12131/20250003
引用本文: 蔡小雨, 徐静雯, 张世勇, 刘洪岩, 陈校辉, 钟立强. 盐度对斑点叉尾鮰肠道菌群的影响[J]. 南方水产科学, 2025, 21(3): 158-168. DOI: 10.12131/20250003
CAI Xiaoyu, XU Jingwen, ZHANG Shiyong, LIU Hongyan, CHEN Xiaohui, ZHONG Liqiang. Effect of salinity on intestinal flora of channel catfish (Ictalurus punctatus)[J]. South China Fisheries Science, 2025, 21(3): 158-168. DOI: 10.12131/20250003
Citation: CAI Xiaoyu, XU Jingwen, ZHANG Shiyong, LIU Hongyan, CHEN Xiaohui, ZHONG Liqiang. Effect of salinity on intestinal flora of channel catfish (Ictalurus punctatus)[J]. South China Fisheries Science, 2025, 21(3): 158-168. DOI: 10.12131/20250003

盐度对斑点叉尾鮰肠道菌群的影响

基金项目: 

国家特色淡水鱼产业技术体系 (CARS-46);国家自然科学基金青年科学基金项目 (32002378)

详细信息
    作者简介:

    蔡小雨 (2000—),女,硕士研究生,研究方向为鱼类健康养殖。E-mail: 18136877121@163.com

    通讯作者:

    钟立强 (1985—),男,副研究员,博士,研究方向为鱼类绿色养殖。E-mail: stevezhong1985@163.com

  • 中图分类号: S 965

Effect of salinity on intestinal flora of channel catfish (Ictalurus punctatus)

  • 摘要:

    斑点叉尾鮰 (Ictalurus punctatus) 是我国盐碱池塘养殖的重要品种,盐度作为关键环境因子,其对斑点叉尾鮰肠道菌群的影响机制尚不明确。为探究盐度对斑点叉尾鮰肠道菌群的影响,实验设置4个盐度梯度:对照组 (S0, 0)、低盐组 (S3, 3‰)、中盐组 (S6, 6‰) 和高盐组 (S9, 9‰),进行为期8周的养殖实验。养殖期间,每2周采集1次肠道内容物,通过16S rRNA测序技术分析肠道菌群组成和功能。结果显示,随着盐度的增加,肠道菌群丰富度上升,但多样性显著下降。在门水平上,优势菌群为变形菌门、厚壁菌门、梭杆菌门、拟杆菌门、蓝藻门 和放线菌门。对照组及中、低盐度组中,肠道菌群呈现出明显的节律性变化,以2周为周期在变形菌门与厚壁菌门、梭杆菌门、拟杆菌门间规律性波动,而高盐度组则破坏了这种变化节律,表现为变形菌门持续占优势的稳定状态。同时,高盐度条件下,肠道菌群功能也发生了显著变化,脂肪酸代谢与降解、维生素和氨基酸降解以及能量代谢等功能丰度显著升高,核苷酸错配、切除和修复等遗传修复功能显著降低。研究表明,高盐度导致斑点叉尾鮰产生了强烈应激反应,增加了能量消耗,最终引起肠道菌群结构和功能的适应性改变。建议在盐碱地开展斑点叉尾鮰养殖时应加强养殖管理,适当提高饲料能量水平,并补充益生菌群以维持肠道菌群平衡。

    Abstract:

    Channel catfish (Ictalurus punctatus) is an important species cultured in saline-alkali water in China. Salinity is a key environmental factor, but the mechanism of its influence on the intestinal flora of I. punctatus is not clear. To investigate theeffect of salinity on the intestinal flora of I. punctatus, we designed an eight-week experiment and divided the fish into four groups: control group (S0, salinity 0), low-salt group (S3, salinity 3‰), medium-salt group (S6, salinity 6‰), and high-salt group (S9, salinity 9‰). The intestinal contents of fish were collected every two weeks, and the composition and function of the intestinal flora were analyzed by 16S rRNA sequencing. The results show that with the increase of salinity, the richness of theintestinal flora increased, but the diversity decreased significantly. On phylum level, Proteobacteria, Firmicutes, Fusobacteriota, Bacteroidetes, Cyanobacteria and Actinobacteria were the dominant bacterial phyla. In the control, low-salt and medium-salt groups, the intestinal flora showed rhythmic changes in the 2-week cycle, regularly repeating between Proteobacteria and Firmicutes, Fusobacteriota, Bacteroidetes. In contrast, the high salinity group disrupted the rhythm of changes, showing a maintenance of the predominance of Proteobacteria. Meanwhile, the functions of the intestinal flora also changed significantly in high-salinity condition, with significantly higher functional abundance in fatty acid metabolism and degradation, vitamin and amino acids degradation, and energy metabolism, and a significant decrease in the genetic repair functions such as mismatchrepair, nucleotide excision repair. High salinity caused strong stress in I. punctatus, increased energy expenditure, and ultimately altered the composition and function of the intestinal flora. Therefore, it is recommended to culture I. punctatus in saline ponds, which requires higher energy and probiotic supplementation in feed.

  • 图  1   物种数目饱和度稀释曲线图

    注:图中样本S01—S94由盐度+采样次数表示。

    Figure  1.   Species saturation rarefaction curves

    Note: The samples are represented by salinity+sampling times.

    图  2   不同盐度下的斑点叉尾鮰肠道微生物OTUs

    Figure  2.   Intestinal microorganisms OTUs of channel catfish at different salinity

    图  3   不同盐度斑点叉尾鮰肠道菌群NMDS分析图

    注:图中样本S011—S934由盐度+3平行+采样次数表示。

    Figure  3.   NMDS analysis of intestinal bacterial communities of I. punctatus at different salinity

    Note: The samples are represented by salinity+3 parallel samples+sampling times.

    图  4   不同盐度下斑点叉尾鮰肠道微生物在门水平的菌群组成

    注:图中样本为同盐度每次采样数据的均值,由盐度+采样次数表示 (S01—S94)。

    Figure  4.   Intestinal bacterial communities of I. punctatus at different salinity on phylum level

    Note: The samples are the average values of the data collected each time at the same salinity, which are represented by salinity + sampling times (S01–S94).

    图  5   不同盐度下斑点叉尾鮰肠道微生物在属水平的菌群组成

    注:图中样本为同盐度每次采样数据的均值,由盐度+采样次数表示 (S01—S94)。

    Figure  5.   Intestinal bacterial communities of I. punctatus at different salinity on genus level

    Note: The samples are the average values of the data collected each time at the same salinity, which are represented by salinity+sampling times (S01–S94).

    图  6   不同盐度下斑点叉尾鮰肠道微生物在门和属水平组间的显著性差异

    注:*. p<0.05;**. p<0.01;***. p<0.001。

    Figure  6.   Significance of intestinal bacterial communities on phylum and genus levels

    Note: *. p<0.05; **. p<0.01; ***. p<0.001.

    图  7   不同盐度下养殖8周斑点叉尾鮰肠道菌群主要功能丰度比对

    注:*. p<0.05;**. p<0.01。图中样本由盐度+采样次数表示。

    Figure  7.   KEGG functions in intestinal bacterial communities of I. punctatus after 8-week culture at different salinity

    Note: *. p<0.05; **. p<0.01. The samples are represented by salinity+sampling times.

    表  1   斑点叉尾鮰肠道菌群多样性指数及双因素方差分析

    Table  1   Diversity index and two-way ANOVA of intestinal flora of I. punctatus

    多样性指数
    Diversity index
    盐度
    Salinity
    盐度
    Salinity
    采样时间
    Sampling time
    S0 (0‰) S3 (3‰) S6 (6‰) S9 (9‰) F p F p
    Ace 174.922±43.497 188.927±76.149 194.244±190.195 203.559±300.436 0.057 8 0.981 5 2.873 3 0.047 8
    Chao 171.524±41.909 184.472±73.977 186.829±178.379 203.047±299.770 0.070 7 0.975 3 2.960 7 0.043 3
    Shannon 2.129±0.524A 1.922±0.712AB 1.718±0.873AB 1.486±1.345B 1.301 2 0.287 0 3.863 1 0.016 0
    Simpson 0.251±0.167B 0.338±0.241AB 0.389±0.282AB 0.530±0.293A 2.916 2 0.045 5 2.689 5 0.058 8
    注:同行数据不同上标字母表示差异显著 (p<0.05)。 Note: Values with different letters within the same line are significantly different (p<0.05).
    下载: 导出CSV
  • [1]

    ROBINSON E H, LI M H. Channel catfish, Ictalurus punctatus, nutrition in the United States: a historical perspective[J]. J World Aquac Soc, 2020, 50(1): 93-118.

    [2] 农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2024年中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2024: 25.
    [3]

    ZHONG L Q, SONG C, CHEN X H, et al. Channel catfish in China: historical aspects, current status, and problems[J]. Aquaculture, 2016, 465: 367-373. doi: 10.1016/j.aquaculture.2016.09.032

    [4] 钟立强, 王明华, 陈校辉, 等. 江苏斑点叉尾鮰产业现状及发展战略思考[J]. 中国农学通报, 2021, 37(17): 137-143. doi: 10.11924/j.issn.1000-6850.casb2020-0426
    [5] 段永强, 张世勇, 王明华, 等. 斑点叉尾鮰苗对盐度的急性耐受力及行为反应研究[J]. 水产科学, 2023, 42(6): 1047-1053.
    [6]

    ZHOU L Y, WANG M H, ZHANG S Y, et al. Spatial distribution of bacterial communities driven by multiple environmental factors in sediment of brackish channel catfish ponds in Eastern China[J]. Aquaculture, 2024, 578: 740105. doi: 10.1016/j.aquaculture.2023.740105

    [7]

    IMSLAND A K, GSTAVSSON A, GUNNARSSON S, et al. Effects of reduced salinities on growth, feed conversion efficiency and blood physiology of juvenile Atlantic halibut Hippoglossus hippoglossus[J]. Aquaculture, 2008, 274: 254-259. doi: 10.1016/j.aquaculture.2007.11.021

    [8] 强俊, 任洪涛, 徐跑, 等. 温度与盐度对吉富品系尼罗罗非鱼幼鱼生长和肝脏抗氧化酶活力的协同影响[J]. 应用生态学报, 2012, 23(1): 255-263.
    [9]

    MO Y Y, PENG F, GAO X F, et al. Low shifts in salinity determined assembly processes and network stability of microeukaryotic plankton communities in a subtropical urban reservoir[J]. Microbiome, 2021, 9: 128. doi: 10.1186/s40168-021-01079-w

    [10]

    LIU C Q, WU F, JIANG X Y, et al. Salinity is a key determinant for the microeukaryotic community in lake ecosystems of the Inner Mongolia Plateau, China[J]. Front Microbiol, 2022, 13: 841686. doi: 10.3389/fmicb.2022.841686

    [11]

    SOMMER F, BÄCKHED F. The gut microbiota-masters of host development and physiology[J]. Nat Rev Microbiol, 2013, 11: 227-238. doi: 10.1038/nrmicro2974

    [12]

    MAYER E A, NACE K, CHEN S. The gut-brain axis[J]. Annu Rev Med, 2022, 73: 439-453. doi: 10.1146/annurev-med-042320-014032

    [13] 赵子丰, 金文杰, 赵静, 等. 青海湖裸鲤肠道菌群对不同盐度胁迫的响应[J]. 大连海洋大学学报, 2024, 39(2): 225-233.
    [14] 黄健旋, 刘悦, 黎学友, 等. 盐度对弓背青鳉行为及肠道菌群的影响[J]. 农业与技术, 2024, 44(13): 114-120.
    [15]

    OLAFSEN J A, HANSEN G H. Intact antigen uptake in intestinal epithelial cells of marine fish larvae[J]. J of Fish Bio, 1992, 40(2): 141-156. doi: 10.1111/j.1095-8649.1992.tb02562.x

    [16] 季英杰. 发酵有机肥对草鱼池塘水环境及草鱼肠道菌群的影响评价[D]. 武汉: 华中农业大学, 2017: 45-46.
    [17] 徐静雯, 钟立强, 张世勇, 等. 施肥对斑点叉尾鮰肠道菌群的影响[J]. 南方水产科学, 2024, 20(4): 116-123. doi: 10.12131/20230240
    [18]

    ABASS N Y, ALSAQUFI A S, MAKUBU N. Genotype-environment interactions for growth and survival of channelcatfish (Ictalurus punctatus), blue catfish (Ictalurus furcatus), and channel catfish, I. punctatus, ♀×blue catfish, I. furcatus, ♂ hybrid fry at varying levels of sodium chloridee[J]. Aquaculture, 2017, 471: 28-36. doi: 10.1016/j.aquaculture.2016.12.029

    [19] 张世勇, 邵俊杰, 陈校辉, 等. 盐度对斑点叉尾幼鱼生长性能、肌肉持水力和营养组成的影响[J]. 生物学杂志, 2018, 35(3): 57-61. doi: 10.3969/j.issn.2095-1736.2018.03.057
    [20] 钟立强, 周丽颖, 张世勇, 等. 养殖池塘水体异味物质土臭素与环境因子关系解析[J]. 中国农学通报, 2024, 40(27): 159-164. doi: 10.11924/j.issn.1000-6850.casb2024-0114
    [21]

    ZHANG S Y, DUAN Y Q, ZHONG L Q, et al. Using comparative transcriptome analysis to identify molecular response mechanisms to salinity stress in channel catfish (Ictalurus punctatus)[J]. Environ Pollut, 2023, 333: 121911. doi: 10.1016/j.envpol.2023.121911

    [22]

    TANG L Y, DUAN Y Q, XIE B J, et al. Effects of salinity stress on the growth performance, histological characteristics, and expression of genes related to apoptosis and immunity in channel catfish (Ictalurus punctatus)[J]. J Fish Biol, 2024, https://doi.org/10.1111/jfb.16029

    [23]

    SUN F L, WANG C Z, CHEN X L. Bacterial community in Sinonovacula constricta intestine and its relationship with culture environment[J]. Appl Microbiol Biotechnol, 2022, 106: 5211-5220. doi: 10.1007/s00253-022-12048-0

    [24] 张紫娟, 戴文芳, 薛清刚, 等. 急性盐度胁迫对缢蛏肠道菌群结构及功能的影响[J]. 海洋学报, 2023, 45(11): 131-141.
    [25] 符振强, 董扬帆, 汤上上, 等. 低盐胁迫下饲料中添加α-硫辛酸对凡纳滨对虾生长、抗氧化能力及肠道健康的影响[J]. 动物营养学报, 2021, 33(9): 5203-5218. doi: 10.3969/j.issn.1006-267x.2021.09.040
    [26] 王海亮, 温海深, 张晓燕. 盐度胁迫对花鲈幼鱼肠道抗氧化和非特异性免疫能力的影响[J]. 现代农业科技, 2016(4): 261-269. doi: 10.3969/j.issn.1007-5739.2016.04.162
    [27] 温久福, 蓝军南, 周慧, 等. 盐度对花鲈幼鱼消化没和抗氧化系统的影响[J]. 动物学杂志, 2019, 54(5): 719-726.
    [28]

    LIU D R, ZHANG Z W, SONG Y K, et al. Effects of salinity on growth, physiology, biochemistry and gut microbiota of juvenile grass carp (Ctenopharyngodon idella)[J]. Aquat Toxicol, 2023, 258: 106482. doi: 10.1016/j.aquatox.2023.106482

    [29] 熊向英, 赵艳飞, 王志成. 斑点叉尾鮰肠道及其养殖环境菌群结构分析[J]. 水产科学, 2022, 41(4): 589-596.
    [30]

    LARSEN A M, MOHAMMED H H, ARIAS C R. Characterization of the gut microbiota of three commercially valuable warmwater fish species[J]. J Appl Microbiol, 2014, 116(6): 1396-1404. doi: 10.1111/jam.12475

    [31] 田璐. 盐度对黄姑鱼生存生长、非特异性免疫及肠道菌群的影响[D]. 舟山: 浙江海洋大学, 2019: 39.
    [32] 黎烽. 盐度对草鱼肉质和肠道菌群的影响研究[D]. 广州: 仲恺农业工程学院, 2022: 35.
    [33]

    BUIJS Y, BECH P K, VAZQUE-ALBACETE D, et al. Marine Proteobacteria as a source of natural products: advances in molecular tools and strategies[J]. Nat Prod Rep, 2019, 36(9): 1333-1350. doi: 10.1039/C9NP00020H

    [34] 孙云霞, 周演根, 周思岐, 等. 饲料精氨酸含量对海水驯化虹鳟的渗透调节、抗氧化和免疫力的影响[J]. 水生生物学报, 2024, 481(9): 1459-1472. doi: 10.7541/2024.2024.0043
    [35]

    SHEENAN H, YANIV H, TATIYANA S, et al. Effects of adding salt to the diet of Asian sea bass Lates calcarifer reared in fresh or salt water recirculating tanks, on growth and brush borderenzyme activity[J]. Aquaculture, 2004, 248: 315-324.

    [36]

    MAGNE S, BENGT F. The effects of dietary NaCl supplement on hypo-osmoregulatory ability and sea water performance of Arctic charr (Salvelinus alpinus L.) smolts[J]. Aquac Res, 2000, 31(10): 737-743. doi: 10.1046/j.1365-2109.2000.00495.x

    [37]

    SHIAU S Y, LU L S. Dietary sodium requirement determined for juvenile hybrid tilapia (Oreochromis niloticus×O. aureus) reared in fresh water and seawater[J]. Brit J Nut, 2004, 91(4): 585-590. doi: 10.1079/BJN20041091

推荐阅读
基于环境dna技术的西江珍稀鱼类省级自然保护区鱼类多样性研究
钟占友 et al., 南方水产科学, 2025
低盐水体so4 2−/cl− 胁迫下凡纳滨对虾生长、肝胰腺与鳃组织结构及酶活力比较
贺铮 et al., 南方水产科学, 2025
3组常用鱼类edna宏条形码通用引物对三亚水环境样品的物种检出效果比较
郭瑶杰 et al., 南方水产科学, 2025
3种常见消毒药物对纤毛虫种群动力学的影响
张欣悦 et al., 南方水产科学, 2024
The effect of saline water and exchange magnetization saline water drip irrigation on salt content and water-saving effect in the chinese wolfberry root zone water-saving effect—taking kashgar region as an example
丽巴哈·吾斯曼 古, 林业世界, 2024
十二烷基苯磺酸钠对黄颡鱼免疫相关酶活性的影响
TIAN Haijun et al., CHINESE JOURNAL OF FISHERIES, 2024
Exogenous hydrogen sulfide alleviates chromium toxicity by modulating chromium, nutrients and reactive oxygen species accumulation, and antioxidant defence system in mungbean (vigna radiata l.) seedlings
Singh, Deepti et al., PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2023
Bioelectricity-driven, sulfurized fe species anode in situ generate sulfate radicals from sulfates in antibiotic wastewater for enhanced ciprofloxacin hydrochloride removal: performance and mechanism
Jiang, Shengtao et al., CHEMICAL ENGINEERING JOURNAL, 2024
Study of the process of neutralizing and oxidizing harmful phenol compounds in wastewater using ozone technology
WATER CONSERVATION AND MANAGEMENT, 2024
Research article in vitro and in vivo modulation of postprandial hyperglycemia by solanum incanum l. (bitter apple)
INTERNATIONAL JOURNAL OF PHARMACOLOGY, 2023
Powered by
图(7)  /  表(1)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-03
  • 修回日期:  2025-02-09
  • 录用日期:  2025-03-04
  • 网络出版日期:  2025-04-16
  • 刊出日期:  2025-06-04

目录

    /

    返回文章
    返回