Effect of salinity on intestinal flora of channel catfish (Ictalurus punctatus)
-
摘要:
斑点叉尾鮰 (Ictalurus punctatus) 是我国盐碱池塘养殖的重要品种,盐度作为关键环境因子,其对斑点叉尾鮰肠道菌群的影响机制尚不明确。为探究盐度对斑点叉尾鮰肠道菌群的影响,实验设置4个盐度梯度:对照组 (S0, 0)、低盐组 (S3, 3‰)、中盐组 (S6, 6‰) 和高盐组 (S9, 9‰),进行为期8周的养殖实验。养殖期间,每2周采集1次肠道内容物,通过16S rRNA测序技术分析肠道菌群组成和功能。结果显示,随着盐度的增加,肠道菌群丰富度上升,但多样性显著下降。在门水平上,优势菌群为变形菌门、厚壁菌门、梭杆菌门、拟杆菌门、蓝藻门 和放线菌门。对照组及中、低盐度组中,肠道菌群呈现明显的节律性变化,以2周为周期在变形菌门与厚壁菌门、梭杆菌门、拟杆菌门间规律性波动,而高盐度组则破坏了这种变化节律,表现为变形菌门持续占优势的稳定状态。同时,高盐度条件下,肠道菌群功能也发生了显著变化,脂肪酸代谢与降解、维生素和氨基酸降解以及能量代谢等功能丰度显著升高,核苷酸错配、切除和修复等遗传修复功能显著降低。研究表明,高盐度导致斑点叉尾鮰产生了强烈应激反应,增加了能量消耗,最终引起肠道菌群结构和功能的适应性改变。建议在盐碱地开展斑点叉尾鮰养殖时应加强养殖管理,适当提高饲料能量水平,并补充益生菌群以维持肠道菌群平衡。
-
关键词:
- 斑点叉尾鮰 /
- 肠道菌群 /
- 盐度 /
- 节律 /
- 16S rRNA测序技术
Abstract:The channel catfish (Ictalurus punctatus) is an important species cultured in saline and alkaline in China. Salinity is a key environmental factor, but the mechanism of its influence on the intestinal flora of I. punctatus is not clear. To investigate the effect of salinity on the intestinal flora of I. punctatus, we designed an eight-week experiment and divided the fish into four groups: control group (S0, salinity 0), low-salt group (S3, salinity 3‰), medium-salt group (S6, salinity 6‰), and high-salt group (S9, salinity 9‰). The intestinal contents of fish were collected every two weeks, and the composition and function of the intestinal flora were analyzed by 16S rRNA sequencing. The results show that with the increase of salinity, the richness of the intestinal flora increased, but the diversity decreased significantly. On phylum level, Proteobacteria, Firmicutes, Fusobacteriota, Bacteroidetes, Cyanobacteria and Actinobacteria were the dominant bacterial phyla. In the control, low-salt and medium-salt groups, the intestinal flora showed rhythmic changes in the 2-week cycle, regularly repeating between Proteobacteria and Firmicutes, Fusobacteriota, Bacteroidetes. In contrast, the high salinity group disrupted the rhythm of changes, showing a maintenance of the predominance of Proteobacteria. Meanwhile, the functions of the intestinal flora also changed significantly in high-salinity condition, with significantly higher functional abundance in fatty acid metabolism and degradation, vitamin and amino acids degradation, and energy metabolism, and a significant decrease in the genetic repair functions such as mismatch repair, nucleotide excision repair. High salinity caused strong stress in I. punctatus, increased energy expenditure, and ultimately altered the composition and function of the intestinal flora. Therefore, it is recommended to culture I. punctatus in saline ponds, which requires higher energy and probiotic supplementation in feed.
-
Keywords:
- Ictalurus punctatus /
- Intestinal flora /
- Salinity /
- Rhythm /
- 16S rRNA sequencing technology
-
广东鲂 (Megalobrama terminalis) 是一种江河洄游鱼类,在我国南方水系中占有重要的渔业生产地位[1-2]。我国南方水系复杂多样,并经历了多次河流袭夺,而气候变化导致的海平面波动是形成其特有河网系统的重要因素之一[3]。由于广东鲂对淡水环境依赖性较强,因此,海平面波动产生的地理隔离,对广东鲂种群的遗传结构产生了一定影响。Chen等[3]指出3个广东鲂地理遗传种群分别为珠江、漠阳江和海南岛万泉河种群,并发现广东鲂种群在不同的淡水栖息地中表现出明显的适应性分化。刘凯等[4]研究表明,受地理分布、食物来源、遗传特征和栖息环境等因素的叠加影响,鱼类的不同地理种群在肌肉营养成分上能够产生相对稳定的变异。然而,不同广东鲂地理种群肌肉营养成分是否存在显著差异尚不清楚。目前,对广东鲂研究多在于早期资源、资源捕捞量、性腺发育、繁殖策略、消化生理等方面[1-3,5-8],针对不同广东鲂种群肌肉营养成分和能量密度的研究尚未见报道。由于人类活动的不断加强 (如水利水电工程、航道治理、水污染、过度捕捞等),珠江野生广东鲂种群数量持续下降[2,7-8],漠阳江和万泉河广东鲂种群则呈现规模小、片段化分布特征,在其他陆河河流如榕江、鉴江、韩江中已难以监测到野生样本。因此,本研究测定了万泉河、漠阳江、西江广东鲂种群肌肉营养成分和能量密度,探究不同地理广东鲂种群肌肉营养成分差异,以期充实鱼类营养学和能量生态学研究材料,也为不同广东鲂的野生地理种群的分类保护和合理利用提供科学依据。
1. 材料与方法
1.1 样本采集
2020年6—7月分别于海南省琼海市万泉河琼海段 (QH, 110°27"36'E, 19°12"36'N)、广东省阳江市漠阳江段 (YJ, 111°42"2'E, 22°48"7'N) 以及广东省肇庆市珠江干流 (西江) 肇庆江段 (ZQ, 112°24"35'E, 23°5"24'N) 采集到150尾广东鲂,各采样点50尾 (雌、雄各25尾) 。采用哈希水质分析仪测量取样点的水温、盐度、溶解氧 (Dissolved oxygen, DO) 和pH,并测量样品的体长和体质量。采样站位的环境信息和样本生物学信息见表1。采用液氮快速冷冻样本,于–20 ℃冷冻保存,随后带回实验室−80 ℃保存。采集背部中后段肌肉 (每尾在相同位置采集20 g肌肉) 用于检测肌肉成分。各项指标由广东省质量监督食品检验站进行检测,各实验组均设置3个重复,每个重复含10尾样本 (背部肌肉捣碎)。
表 1 3个广东鲂地理种群环境信息和样本生物学信息Table 1. Basic environmental information, biological information of three M. terminalis populations指标
Index采样点 Sampling site 琼海 QH 阳江 YJ 肇庆 ZQ 环境指标 Environmental index 水温 Water temperature/℃ 30.0±0.2 29.2±0.4 28.6±0.3 盐度 Salinity 0.03±0.01 0.01±0.02 0.01±0.01 酸碱度 pH 7.7±0.3 7.9±0.3 7.8±0.3 溶解氧质量浓度 DO/(mg∙L−1) 6.8±0.2 6.7±0.2 7.0±0.2 生物学指标 Biological index 体长 Body length ($\overline { X}\pm { \rm {SD}} $)/mm 233±17.6 253±20.7 271±27.3 体质量 Body mass ($\overline { X}\pm { \rm {SD}} $)/g 354±19.4 424±33.1 521±30.1 1.2 肌肉营养成分和能量密度测定方法
样本水分测定采用GB 5009.3—2016;粗蛋白测定采用GB 5009.5—2016;脂肪测定采用GB 5009.4—2016;灰分测定采用GB 5009.4—2016;氨基酸测定采用GB T5009.124—2016;脂肪酸测定采用GB 5009.168—2016。采用电感耦合等离子体质谱仪 (7700 Series) 依据GB 5009—2016测定样本中钾 (K)、钙 (Ca)、钠 (Na)、磷 (P)、镁 (Mg)、锌 (Zn)、铁 (Fe)、铜 (Cu)、锰 (Mn) 等矿质元素含量。根据联合国粮农组织/世界卫生组织 (FAO/WHO) 提出和1991年中国预防医学科学院营养与食品卫生研究所提出的氨基酸评分模式,计算氨基酸评分 (Amino acid score, AAS)、化学评分 (Chemical score, CS) 和必需氨基酸指数 (Essential amino acid index, EAAI) [9-10]。Phillipson微量能量仪 (Gentry Instruments Inc., Aiken, South Carolina, USA) 测定能量密度。
1.3 数据分析
采用单因素方差分析 (One-way ANOVA) 检验不同广东鲂地理种群肌肉营养成分差异显著性。如差异显著,则采用多重比较方法比较平均数之间的差异,显著性水平为0.05。数据分析采用SPSS 19.0统计软件进行。实验数据均用“平均值±标准差 (
$\overline X \pm {\rm{SD}} $ )”表示。采用R (3.1.14) 对3个广东鲂种群肌肉生化分析结果进行主成分分析 (Principal component analysis, PCA)。2. 结果
2.1 一般营养成分和能量密度分析
万泉河广东鲂肌肉水分质量分数显著高于西江种群,而粗蛋白质质量分数则显著低于西江种群 (P<0.05,表2)。粗脂肪和灰分质量分数在3个地理种群中均无显著性差异。西江种群肌肉能量密度显著高于万泉河和漠阳江种群 (P<0.05)。
表 2 3个广东鲂地理种群肌肉中的一般营养成分和能量密度Table 2. Nutritional composition of muscle of three M. terminalis populations项目
Item广东鲂种群 M. terminalis population 琼海 QH 阳江 YJ 肇庆 ZQ 水分质量分数 Moisture mass fraction/% 79.0±0.5a 78.2±0.9ab 77.0±0.6b 粗蛋白质质量分数 Crude protein mass fraction/% 18.3±0.5b 19.1±0.7ab 20.2±0.5a 粗脂肪质量分数 Crude lipid mass fraction/% 1.2±0.1 1.1±0.1 1.3±0.1 粗灰分质量分数 Ash mass fraction/% 1.1±0.1 1.2±0.1 1.2±0.1 能量密度 Energy density/(kJ·g−1) 3.1±0.1b 3.2±0.2b 3.6±0.2a 注:同行不同上标字母表示差异显著 (P<0.05),下表同此。 Note: Different superscript letters within the same row indicate significant difference (P<0.05). The same case in the following tables. 2.2 氨基酸组成分析与评价
3个广东鲂地理种群共检测出18种常见氨基酸 (表3)。西江种群肌肉中的总氨基酸含量 (Total amino acids, TAA) 最高,漠阳江种群次之,万泉河种群最低。在必需氨基酸 (Essential aamino acid, EAA) 中,西江种群的赖氨酸和亮氨酸含量显著高于万泉河种群 (P<0.05),漠阳江种群介于两者之间。呈味氨基酸中,西江种群肌肉中的天冬氨酸、谷氨酸、甘氨酸和丙氨酸含量均显著高于万泉河种群 (P<0.05)。漠阳江种群肌肉中必需氨基酸/总氨基酸 (EAA/TAA) 最高,而西江种群最低。呈味氨基酸/总氨基酸 (DAA/TAA) 在3个广东鲂地理种群肌肉中无明显差异。芳香氨基酸/支链氨基酸 (BCAA/AAA) 在万泉河种群肌肉中最高,漠阳江种群次之,西江种群最低。将3个广东鲂地理种群肌肉的EAAI进行标准模式 (FAO/WHO) 及全鸡蛋蛋白质模式2种评价 (表3),分别计算出各EAA的AAS、CS和EAAI (表4)。万泉河、漠阳江和西江种群肌肉中的第一限制性氨基酸为蛋氨酸+半胱氨酸,第二限制性氨基酸为缬氨酸,其余各EAA的AAS均高于1;各EAA的CS与AAS结果保持一致。3个广东鲂地理种群肌肉中的EAAI达80以上,说明其氨基酸组成十分均衡。其中西江种群肌肉EAAI最高 (85.05)。
表 3 3个广东鲂地理种群肌肉氨基酸组成Table 3. Comparison of amino acid composition of muscles of three M. terminalis populations项目
Item广东鲂种群 M. terminalis population 琼海 QH 阳江 YJ 肇庆 ZQ 天冬氨酸* Asp 1.80±0.04b 1.82±0.07b 1.99±0.05a 苏氨酸# Thr 0.80±0.02 0.80±0.03 0.86±0.04 丝氨酸 Ser 0.72±0.02 0.73±0.03 0.80±0.04 谷氨酸* Glu 2.78±0.06b 2.68±0.10b 2.99±0.14a 脯氨酸 Pro 0.61±0.02 0.63±0.02 0.66±0.04 甘氨酸* Gly 0.83±0.04b 0.87±0.04ab 0.97±0.06a 丙氨酸* Ala 1.06±0.02b 1.09±0.03b 1.18±0.08a 缬氨酸#△ Val 0.85±0.02 0.87±0.03 0.92±0.04 蛋氨酸 Met 0.53±0.01 0.53±0.02 0.57±0.03 异亮氨酸#△ Ile 0.78±0.02 0.79±0.02 0.83±0.03 亮氨酸#△ Leu 1.41±0.03b 1.41±0.05ab 1.52±0.05a 半胱氨酸 Cys 0.11±0.07 0.19±0.03 0.43±0.15 酪氨酸◆ Tyr 0.62±0.02 0.61±0.02 0.66±0.02 苯丙氨酸# Phe 0.72±0.02 0.74±0.02 0.80±0.03 赖氨酸# Lys 1.73±0.05a 1.73±0.09ab 1.87±0.03b 组氨酸○ His 0.42±0.01 0.45±0.04 0.48±0.05 精氨酸○ Arg 1.07±0.04 1.07±0.04 1.17±0.07 色氨酸# Trp 0.27±0.04 0.35±0.03 0.37±0.05 氨基酸总量 TAA 17.11±0.58a 17.37±0.69a 19.07±0.57b 呈味氨基酸总量 DAA 6.47±0.06a 6.46±0.08a 7.13±0.07b 必需氨基酸/非必需氨基酸 EAA/NEAA/% 72.41 73.03 69.95 必需氨基酸/总氨基酸 EAA/TAA/% 38.34 38.51 37.60 半必需氨基酸/总氨基酸 SEAA/TAA/% 8.36 8.41 8.26 芳香氨基酸/支链氨基酸 BCAA/AAA/% 4.90 5.03 4.05 注:#. 必需氨基酸;○. 半必需氨基酸;*. 呈味氨基酸;△. 支链氨基酸;◆. 芳香氨基酸。 Note: #. Essential amino acid; ○. Semiessential amino acid; *. Delicious amino acid; △. Branched chain amino acid; ◆. Aromatic amino acid. 表 4 3个广东鲂地理种群肌肉氨基酸评价Table 4. Evaluation of essential amino acids composition of muscle of three M. terminalis populations评价模式
Evaluation method氨基酸
Amino acids广东鲂种群 M. terminalis population 琼海 QH 阳江 YJ 肇庆 ZQ 氨基酸评分 AAS 苏氨酸 Thr 1.09 1.05 1.07 缬氨酸 Val 0.94 0.92 0.92 色氨酸 Trp 1.53 1.91 1.91 异亮氨酸 Ile 1.06 1.03 1.03 亮氨酸 Leu 1.09 1.05 1.07 赖氨酸 Lys 1.73 1.66 1.70 苯丙氨酸 Phe+酪氨酸 Tyr 1.20 1.17 1.19 蛋氨酸 Met+半胱氨酸 Cys 0.82 0.78 0.80 化学评分 CS 苏氨酸 Thr 0.93 0.90 0.91 缬氨酸 Val 0.71 0.69 0.69 色氨酸 Trp 0.96 1.24 1.31 异亮氨酸 Ile 0.80 0.78 0.78 亮氨酸 Leu 0.90 0.86 0.88 赖氨酸 Lys 1.34 1.28 1.31 苯丙氨酸 Phe+酪氨酸 Tyr 0.81 0.78 0.80 蛋氨酸 Met+半胱氨酸 Cys 0.47 0.45 0.46 必需氨基酸指数 EAAI 83.31 83.37 85.05 2.3 脂肪酸组成分析
3个广东鲂地理种群肌肉中共检测出23种常见脂肪酸 (表5),其中包括7 种饱和脂肪酸 (Saturated fatty acid, SFA) 7种单不饱和脂肪酸 (Monounsaturated fatty acid, MUFA) 和9种多不饱和脂肪酸 (Polyunsaturated fatty acids, PUFA)。SFA中C14:0、C16:0和C22:0在万泉河种群肌肉中的含量显著高于漠阳江和西江种群 (P<0.05)。万泉河种群肌肉中MUFA总量显著低于西江和漠阳江种群 (P<0.05)。其中,C16:1、C18:1 n-9t、C18:1 n-9c漠阳江种群肌肉中含量最高,而在万泉河种群肌肉中含量最低。C22:1 n-9、C24:1在漠阳江种群肌肉中含量显著低于西江和万泉河种群。西江种群肌肉中二十二碳六希酸 (DHA) 含量最高,显著高于万泉河和漠阳江种群 (P<0.05)。PUFA在万泉河种群肌肉中含量最高,西江种群次之,漠阳江种群最低。
表 5 3个广东鲂地理种群肌肉脂肪酸组成Table 5. Comparison of fatty acids of muscles of three M. terminalis populations% 项目
Item广东鲂种群 M. terminalis population 琼海 QH 阳江 YJ 肇庆 ZQ 肉豆蔻酸 C14:0 5.36±0.85a 3.53±0.41b 3.40±0.32b 十五碳酸 C15:0 1.02±0.25 0.66±0.05 0.70±0.13 棕榈酸 C16:0 27.33±1.47 a 21.83±1.16 b 21.80±1.99 b 珠光脂酸 C17:0 2.03±0.35 0.99±0.18 1.13±0.33 硬脂酸 C18:0 11.34±1.79a 5.97±1.03b 8.14±1.65ab 花生酸 C20:0 0.29±0.05a 0.15±0.02b 0.21±0.07ab 花生酸 C22:0 0.30±0.08a 0.10±0.01c 0.17±0.01b ∑饱和脂肪酸 SFA 47.67±2.12a 33.23±2.85b 35.56±4.35b 肉豆蔻烯酸 C14:1 0.06±0.02 0.12±0.02 0.08±0.01 棕榈油酸 C16:1 6.21±1.22b 10.45±1.73a 8.10±0.52ab 顺-11-二十碳一烯酸 C20:1 2.32±0.36 1.85±0.08 2.06±0.15 顺-15-二十四碳一烯酸 C24:1 0.27±0.09a 0.06±0.01b 0.24±0.10a 反式油酸 C18:1 n-9t 0.21±0.05b 0.43±0.07a 0.35±0.07ab 油酸 C18:1 n-9c 16.73±3.87b 35.53±4.35a 31.80±3.65a 二十二碳一烯酸 C22:1 n-9 1.09±0.36a 0.11±0.03b 1.03±0.61a ∑单不饱和脂肪酸 MUFA 26.89±3.93a 48.54±5.20b 43.66±7.08b 亚油酸 C18:2 n-6c 4.30±0.64a 2.23±0.33b 1.59±0.64b α-亚麻酸 C18:3 n-3 5.54±0.86a 4.03±1.56ab 2.35±0.51b γ-亚麻酸 C18:3 n-6 0.14±0.02a 0.08±0.02ab 0.01±0.00b 顺,顺-11,14-二十碳二烯酸 C20:2 0.39±0.08 0.34±0.01 0.36±0.04 顺-11,14,17-二十碳三烯酸 C20:3 n-3 0.32±0.05 0.27±0.06 0.21±0.08 顺,顺,顺-8,11,14-二十碳三烯酸 C20:3 n-6 0.39±0.09a 0.22±0.03b 0.14±0.01c 花生四烯酸 C20:4 n-6 (ARA) 5.27±0.89a 2.94±0.42b 4.88±0.95a 二十碳五烯酸 C20:5 n-3 (EPA) 3.16±0.72 4.06±0.10 4.09±0.87 二十二碳六烯酸 C22:6 n-3 (DHA) 5.74±1.03b 3.95±0.13c 7.03±1.28a ∑多不饱和脂肪酸 PUFA 25.11±2.83a 18.04±2.47b 20.64±5.61ab 2.4 矿质元素组成分析
3个广东鲂地理种群肌肉中均含有丰富的矿质元素,其中K质量分数最高,Ca次之 (表6)。西江种群肌肉中K和Ca质量分数显著高于万泉河种群,而Na和Mg质量分数则显著低于万泉河种群 (P<0.05)。万泉河种群肌肉Zn质量分数显著高于漠阳江和西江种群,而Mn和Fe质量分数显著低于漠阳江和西江种群 (P<0.05)。
表 6 3个广东鲂地理种群肌肉矿质元素组成Table 6. Mineral element of muscle of three M. terminalis populationsmg∙kg−1 元素
Element广东鲂种群 M. terminalis population 琼海 QH 阳江 YJ 肇庆 ZQ 钾 K 3 340.05±105.36b 3 460.04±192.92ab 3 820.36±221.12a 钙 Ca 1 050.12±28.87 b 1 100.25±40.02 ab 1 200.11±34.64 a 钠 Na 487.34±58.96a 345.35±7.23b 385.57±30.66b 镁 Mg 298.65±3.79 303.05±2.65 332.31±5.51 磷 P 241.59±25.97 230.45±2.08 247.78±4.04 锌 Zn 6.47±0.15a 4.16±0.18b 3.82±0.17b 铁 Fe 3.06±0.13c 4.75±0.14b 6.43±0.18a 铜 Cu 0.12±0.00 0.12±0.01 0.13±0.01 锰 Mn 0.21±0.01c 0.38±0.02b 0.64±0.01a 2.5 3个广东鲂种群生化分析结果的主成分分析
综合3个广东鲂种群生化分析结果,并进行PCA。西江种群分布距均万泉河和漠阳江种群较远,万泉河种群和漠阳江种群相对较近。PCA共提取了2个主成分,对变异的累积贡献率为80.25%。其中主成分1的贡献率为50.75%,主成分2的为29.50% (图1)。
3. 讨论
鱼类肌肉中蛋白质和脂肪含量是评价其营养价值的重要指标[11]。3 个广东鲂地理种群肌肉的粗蛋白质量分数 (18.3%~20.2%) 高于团头鲂 (Megalobrama amblycephala)、鲤 (Cyprinus carpio)、鲢 (Hypophthalmichthys molitrix)、鳙 (H. nobilis) 和草鱼 (Ctenopharyngodon idella),与翘嘴鲌 (Culter alburnus) 接近[12-13]。3个广东鲂地理种群肌肉粗脂肪质量分数 (1.1%~1.3%) 较团头鲂、翘嘴鲌、鲢、鳙、斑鳜 (Siniperca scherzeri) 等低[12-14],与常见的海水鱼类如牙鲆 (Paralichthys olivaceus)[15]、黄斑篮子鱼 (Siganus oramin)[16]和日本鳗鲡 (Anguilla japonica)[17]类似,表现出典型的低脂肪、高蛋白的特点。本研究发现,3个广东鲂种群肌肉生化PCA结果显示西江种群分布距万泉河和漠阳江种群较远,可能是由于栖息地环境因子以及饵料生物种类存在明显差异。本研究还发现,西江种群能量密度显著高于漠阳江和万泉河种群。能量密度被认为是衡量鱼体能量储备水平的重要指标,能直接反映鱼类发育状况以及对外界环境因子的适应性[18]。鱼类生殖洄游是主动的、定期定向的高耗能运动,且鱼体自身能量储备有限,因此鱼类洄游须尽可能地调节自身身体结构、能量储备和代谢能力以适应生殖洄游的需要[19-20]。3个广东鲂种群生殖洄游距离存在明显差异,可能是导致种群间肌肉中能源物质的积累程度不同的主要原因之一。有研究发现鱼类肌肉能量累积和消耗与其洄游能力密切相关[21-22]。
鱼类肌肉中蛋白质的营养价值由各种EAA含量和组成比例决定[23-24]。本研究显示,在3个广东鲂种群肌肉中谷氨酸含量均最高,谷氨酸作为一种重要呈味氨基酸,具有促进脑发育、治疗神经系统疾病等作用[25]。3个广东鲂种群肌肉中谷氨酸含量均高于团头鲂与翘嘴鲌[12]。西江种群肌肉中谷氨酸含量显著高于漠阳江和万泉河种群,表明西江种群肌肉较万泉河和漠阳江种群风味更佳。3个广东鲂种群肌肉中赖氨酸含量均较高,其中,西江种群肌肉中赖氨酸含量最高。赖氨酸是人体EAA之一,不仅具有提高蛋白质利用率和促进人体生长发育的作用,还可以增强免疫力、改善神经系统、预防骨质疏松[24,26]。在FAO/WHO提出的人体均衡蛋白需求理想模式中,EAA/NEAA>60%的蛋白质质量较好[27],3个野生广东鲂种群肌肉均属于良好的蛋白源。西江种群肌肉中的EAAI最高 (85.05),说明其肌肉中EAA组成最为平衡,蛋白质营养价值最高。肌肉中的脂肪酸含量是影响肌肉风味的重要因素之一[28]。本研究发现,西江和漠阳江种群肌肉均表现出MUFA的高占比。有研究表明,MUFA在调节人体脂质代谢方面具有重要的生理作用[29]。PUFA中DHA与EPA含量是评价鱼类营养成分的关键指标[30]。西江种群肌肉中的DHA含量显著高于漠阳江和万泉河种群,表明西江种群肌肉的脂肪质量较高。
矿物质元素是构成人体组织的重要成分,参与人体内多种物质的代谢和生理活动[31]。3个广东鲂种群肌肉中Na、K、Ca等常规矿质元素以及Fe、Zn、Cu、Mn等微量元素均有检出。K、Fe、Zn等矿质元素含量低于异齿裂腹鱼 (Schizothoraxo connori)[32]。Ca含量显著高于褐点石斑鱼 (Epinephelus fuscoguttatus) 和青石斑鱼 (E. awoara) 等多种海鱼[31]。西江种群肌肉中Fe含量显著高于漠阳江和万泉河种群,而Zn含量则显著低于万泉河种群。Fe具有造血功能和促进人体生长的作用等,Zn可以促进儿童智力的正常发育[33]。3个广东鲂地理种群肌肉多种微量元素含量差异显著,这可能是由于栖息水环境的差异所致。万泉河种群相对西江种群,其主要栖息水域为河口,盐度相对较高,易受潮汐影响。有研究发现淡水环境中Fe含量均显著高于海水,Zn含量明显低于海水环境[34-35]。因此,栖息地环境差异导致了Zn在万泉河种群肌肉中富集度更高,Fe和Mn则在西江种群肌肉中富集度更高。
-
图 4 不同盐度下斑点叉尾鮰肠道微生物在门水平的菌群组成
注:图中样本为同盐度每次采样数据的均值,由盐度+采样次数表示 (S01—S94)。
Figure 4. Intestinal bacterial communities of I. punctatus at different salinity on phylum level
Note: The samples are the average values of the data collected each time at the same salinity, which are represented by salinity + sampling time (S01–S94).
图 5 不同盐度下斑点叉尾鮰肠道微生物在属水平的菌群组成
注:图中样本为同盐度每次采样数据的均值,由盐度+采样次数表示 (S01—S94)。
Figure 5. Intestinal bacterial communities of I. punctatus at different salinity on genus level
Note: The samples are the average values of the data collected each time at the same salinity, which are represented by salinity + sampling time (S01–S94).
表 1 斑点叉尾鮰肠道菌群多样性指数及双因素方差分析
Table 1 Diversity index and two-way ANOVA of intestinal flora of I. punctatus
多样性指数
Diversity index盐度
Salinity盐度
Salinity采样时间
Sampling timeS0 (0‰) S3 (3‰) S6 (6‰) S9 (9‰) F p F p Ace 174.922±43.497 188.927±76.149 194.244±190.195 203.559±300.436 0.057 8 0.981 5 2.873 3 0.047 8 Chao 171.524±41.909 184.472±73.977 186.829±178.379 203.047±299.770 0.070 7 0.975 3 2.960 7 0.043 3 Shannon 2.129±0.524A 1.922±0.712AB 1.718±0.873AB 1.486±1.345B 1.301 2 0.287 0 3.863 1 0.016 0 Simpson 0.251±0.167B 0.338±0.241AB 0.389±0.282AB 0.530±0.293A 2.916 2 0.045 5 2.689 5 0.058 8 注:同行数据不同上标字母表示差异显著 (p<0.05)。 Note: Values with different lettersw ithin the same line represent significant differences (p<0.05). -
[1] ROBINSON E H, Li M H. Channel catfish, Ictalurus punctatus, nutrition in the United States: a historical perspective[J]. J World Aquacult Soc, 2020, 50(1): 93-118.
[2] 农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2024年中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2024: 25. [3] ZHONG L Q, SONG C, CHEN X H, et al. Channel catfish in China: historical aspects, current status, and problems[J]. Aquaculture, 2016, 465: 367-373. doi: 10.1016/j.aquaculture.2016.09.032
[4] 钟立强, 王明华, 陈校辉, 等. 江苏斑点叉尾鮰产业现状及发展战略思考[J]. 中国农学通报, 2021, 37(17): 137-143. doi: 10.11924/j.issn.1000-6850.casb2020-0426 [5] 段永强, 张世勇, 王明华, 等. 斑点叉尾鮰苗对盐度的急性耐受力及行为反应研究[J]. 水产科学, 2023, 42(6): 1047-1053. [6] ZHOU L Y, WANG M H, ZHANG S Y, et al. Spatial distribution of bacterial communities driven by multiple environmental factors in sediment of brackish channel catfish ponds in Eastern China[J]. Aquaculture, 2024, 578: 740105. doi: 10.1016/j.aquaculture.2023.740105
[7] IMSLAND A K, GSTAVSSON A, GUNNARSSON S, et al. Effects of reduced salinities on growth, feed conversion efficiency and blood physiology of juvenile Atlantic halibut Hippoglossus hippoglossus[J]. Aquaculture, 2008, 274: 254-259. doi: 10.1016/j.aquaculture.2007.11.021
[8] 强俊, 任洪涛, 徐跑, 等. 温度与盐度对吉富品系尼罗罗非鱼幼鱼生长和肝脏抗氧化酶活力的协同影响[J]. 应用生态学报, 2012, 23(1): 255-263. [9] MO Y Y, PENG F, GAO X F, et al. Low shifts in salinity determined assembly processes and network stability of microeukaryotic plankton communities in a subtropical urban reservoir[J]. Microbiome, 2021, 9: 128. doi: 10.1186/s40168-021-01079-w
[10] LIU C Q, WU F, JIANG X Y, et al. Salinity is a key determinant for the microeukaryotic community in lake ecosystems of the Inner Mongolia Plateau, China[J]. Front Microbiol, 2022, 13: 841686. doi: 10.3389/fmicb.2022.841686
[11] SOMMER F, BÄCKHED F. The gut microbiota-masters of host development and physiology[J]. Nat Rev Microbiol, 2013, 11: 227-238. doi: 10.1038/nrmicro2974
[12] MAYER E A, NACE K, CHEN S. The gut-brain axis[J]. Annu Rev Med, 2022, 73: 439-453. doi: 10.1146/annurev-med-042320-014032
[13] 赵子丰, 金文杰, 赵静, 等. 青海湖裸鲤肠道菌群对不同盐度胁迫的响应[J]. 大连海洋大学学报, 2024, 39(2): 225-233. [14] 黄健旋, 刘悦, 黎学友, 等. 盐度对弓背青鳉行为及肠道菌群的影响[J]. 农业与技术, 2024, 44(13): 114-120. [15] OLAFSEN J A, HANSEN G H. Intact antigen uptake in intestinal epithelial cells of marine fish larvae[J]. J of Fish Bio, 1992, 40(2): 141-156. doi: 10.1111/j.1095-8649.1992.tb02562.x
[16] 季英杰. 发酵有机肥对草鱼池塘水环境及草鱼肠道菌群的影响评价[D]. 武汉: 华中农业大学, 2017: 45-46. [17] 徐静雯, 钟立强, 张世勇, 等. 施肥对斑点叉尾鮰肠道菌群的影响[J]. 南方水产科学, 2024, 20(4): 116-123. doi: 10.12131/20230240 [18] ABASS N Y, ALSAQUFI A S, MAKUBU N. Genotype-environment interactions for growth and survival of channelcatfish (Ictalurus punctatus), blue catfish (Ictalurus furcatus), and channel catfish, I. punctatus, ♀×blue catfish, I. furcatus, ♂ hybrid fry at varying levels of sodium chloridee[J]. Aquaculture, 2017, 471: 28-36. doi: 10.1016/j.aquaculture.2016.12.029
[19] 张世勇, 邵俊杰, 陈校辉, 等. 盐度对斑点叉尾幼鱼生长性能、肌肉持水力和营养组成的影响[J]. 生物学杂志, 2018, 35(3): 57-61. doi: 10.3969/j.issn.2095-1736.2018.03.057 [20] 钟立强, 周丽颖, 张世勇, 等. 养殖池塘水体异味物质土臭素与环境因子关系解析[J]. 中国农学通报, 2024, 40(27): 159-164. doi: 10.11924/j.issn.1000-6850.casb2024-0114 [21] ZHANG S Y, DUAN Y Q, ZHONG L Q, et al. Using comparative transcriptome analysis to identify molecular response mechanisms to salinity stress in channel catfish (Ictalurus punctatus)[J]. Environ Pollut, 2023, 333: 121911. doi: 10.1016/j.envpol.2023.121911
[22] TANG L Y, DUAN Y Q, XIE B J, et al. Effects of salinity stress on the growth performance, histological characteristics, and expression of genes related to apoptosis and immunity in channel catfish (Ictalurus punctatus)[J]. J Fish Biol, 2024, https://doi.org/10.1111/jfb.16029
[23] SUN F L, WANG C Z, CHEN X L. Bacterial community in Sinonovacula constricta intestine and its relationship with culture environment[J]. Appl Microbiol Biotechnol, 2022, 106: 5211-5220. doi: 10.1007/s00253-022-12048-0
[24] 张紫娟, 戴文芳, 薛清刚, 等. 急性盐度胁迫对缢蛏肠道菌群结构及功能的影响[J]. 海洋学报, 2023, 45(11): 131-141. [25] 符振强, 董扬帆, 汤上上, 等. 低盐胁迫下饲料中添加α-硫辛酸对凡纳滨对虾生长、抗氧化能力及肠道健康的影响[J]. 动物营养学报, 2021, 33(9): 5203-5218. doi: 10.3969/j.issn.1006-267x.2021.09.040 [26] 王海亮, 温海深, 张晓燕. 盐度胁迫对花鲈幼鱼肠道抗氧化和非特异性免疫能力的影响[J]. 现代农业科技, 2016(4): 261-269. doi: 10.3969/j.issn.1007-5739.2016.04.162 [27] 温久福, 蓝军南, 周慧, 等. 盐度对花鲈幼鱼消化没和抗氧化系统的影响[J]. 动物学杂志, 2019, 54(5): 719-726. [28] LIU D R, ZHANG Z W, SONG Y K, et al. Effects of salinity on growth, physiology, biochemistry and gut microbiota of juvenile grass carp (Ctenopharyngodon idella)[J]. Aquat Toxicol, 2023, 258: 106482. doi: 10.1016/j.aquatox.2023.106482
[29] 熊向英, 赵艳飞, 王志成. 斑点叉尾鮰肠道及其养殖环境菌群结构分析[J]. 水产科学, 2022, 41(4): 589-596. [30] LARSEN A M, MOHAMMED H H, ARIAS C R. Characterization of the gut microbiota of three commercially valuable warmwater fish species[J]. J Appl Microbiol, 2014, 116(6): 1396-1404. doi: 10.1111/jam.12475
[31] 田璐. 盐度对黄姑鱼生存生长、非特异性免疫及肠道菌群的影响[D]. 舟山: 浙江海洋大学, 2019: 39. [32] 黎烽. 盐度对草鱼肉质和肠道菌群的影响研究[D]. 广州: 仲恺农业工程学院, 2022: 35. [33] BUIJS Y, BECH P K, VAZQUE-ALBACETE D, et al. Marine Proteobacteria as a source of natural products: advances in molecular tools and strategies[J]. Nat Prod Rep, 2019, 36(9): 1333-1350. doi: 10.1039/C9NP00020H
[34] 孙云霞, 周演根, 周思岐, 等. 饲料精氨酸含量对海水驯化虹鳟的渗透调节、抗氧化和免疫力的影响[J]. 水生生物学报, 2024, 481(9): 1459-1472. doi: 10.7541/2024.2024.0043 [35] SHEENAN H, YANIV H, TATIYANA S, et al. Effects of adding salt to the diet of Asian sea bass Lates calcarifer reared in fresh or salt water recirculating tanks, on growth and brush border enzyme activity[J]. Aquaculture, 2004, 248: 315-324.
[36] MAGNE S, BENGT F. The effects of dietary NaCl supplement on hypo-osmoregulatory ability and sea water performance of Arctic charr (Salvelinus alpinus L.) smolts[J]. Aquac Res, 2000, 31(10): 737-743. doi: 10.1046/j.1365-2109.2000.00495.x
[37] SHIAU S Y, LU L S. Dietary sodium requirement determined for juvenile hybrid tilapia (Oreochromis niloticus×O. aureus) reared in fresh water and seawater[J]. Brit J Nut, 2004, 91(4): 585-590. doi: 10.1079/BJN20041091
-
期刊类型引用(5)
1. 王志龙,夏耘,谢骏,舒锐,王广军,郁二蒙,雷小婷,龚望宝. 两种养殖蛙类肌肉品质、肠道形态学及微生物构成比较分析. 南方水产科学. 2024(01): 173-183 . 本站查看
2. 滕忠作,招志杰,张英兰,杨宾兰,莫飞龙,卢玉典,叶香尘,韦玲静. 暗色唇鲮肌肉营养成分分析与品质评价. 江西农业学报. 2024(01): 107-113 . 百度学术
3. 龚雅婷,王兰梅,朱文彬,傅建军,罗明坤,董在杰. 不同体色福瑞鲤2号的肌肉品质. 水产学报. 2024(04): 289-297 . 百度学术
4. 张钰伟,杨静茹,温为庚,邓正华,赵旺,陈明强,王雨,马振华,于刚. 3个大珠母贝养殖群体生物学特征及肌肉营养成分分析. 南方农业学报. 2024(05): 1530-1539 . 百度学术
5. 齐子鑫,牛丽珠,王新华,海佳薇. 不同地理种群土鲶体成分比较分析. 中国饲料. 2024(21): 91-95 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 16
- HTML全文浏览量: 5
- PDF下载量: 0
- 被引次数: 5