盐度对斑点叉尾鮰肠道菌群的影响

蔡小雨, 徐静雯, 张世勇, 刘洪岩, 陈校辉, 钟立强

蔡小雨, 徐静雯, 张世勇, 刘洪岩, 陈校辉, 钟立强. 盐度对斑点叉尾鮰肠道菌群的影响[J]. 南方水产科学. DOI: 10.12131/20250003
引用本文: 蔡小雨, 徐静雯, 张世勇, 刘洪岩, 陈校辉, 钟立强. 盐度对斑点叉尾鮰肠道菌群的影响[J]. 南方水产科学. DOI: 10.12131/20250003
CAI Xiaoyu, XU Jingwen, ZHANG Shiyong, LIU Hongyan, CHEN Xiaohui, ZHONG Liqiang. Effect of salinity on intestinal flora of channel catfish (Ictalurus punctatus)[J]. South China Fisheries Science. DOI: 10.12131/20250003
Citation: CAI Xiaoyu, XU Jingwen, ZHANG Shiyong, LIU Hongyan, CHEN Xiaohui, ZHONG Liqiang. Effect of salinity on intestinal flora of channel catfish (Ictalurus punctatus)[J]. South China Fisheries Science. DOI: 10.12131/20250003

盐度对斑点叉尾鮰肠道菌群的影响

基金项目: 

国家特色淡水鱼产业技术体系 (CARS-46);国家自然科学基金青年科学基金项目 (32002378)

详细信息
    作者简介:

    蔡小雨 (2000—),女,硕士研究生,研究方向为鱼类健康养殖。E-mail: 18136877121@163.com

    通讯作者:

    钟立强 (1985—),男,副研究员,博士,研究方向为鱼类绿色养殖。E-mail: stevezhong1985@163.com

  • 中图分类号: S 965

Effect of salinity on intestinal flora of channel catfish (Ictalurus punctatus)

  • 摘要:

    斑点叉尾鮰 (Ictalurus punctatus) 是我国盐碱池塘养殖的重要品种,盐度作为关键环境因子,其对斑点叉尾鮰肠道菌群的影响机制尚不明确。为探究盐度对斑点叉尾鮰肠道菌群的影响,实验设置4个盐度梯度:对照组 (S0, 0)、低盐组 (S3, 3‰)、中盐组 (S6, 6‰) 和高盐组 (S9, 9‰),进行为期8周的养殖实验。养殖期间,每2周采集1次肠道内容物,通过16S rRNA测序技术分析肠道菌群组成和功能。结果显示,随着盐度的增加,肠道菌群丰富度上升,但多样性显著下降。在门水平上,优势菌群为变形菌门、厚壁菌门、梭杆菌门、拟杆菌门、蓝藻门 和放线菌门。对照组及中、低盐度组中,肠道菌群呈现出明显的节律性变化,以2周为周期在变形菌门与厚壁菌门、梭杆菌门、拟杆菌门间规律性波动,而高盐度组则破坏了这种变化节律,表现为变形菌门持续占优势的稳定状态。同时,高盐度条件下,肠道菌群功能也发生了显著变化,脂肪酸代谢与降解、维生素和氨基酸降解以及能量代谢等功能丰度显著升高,核苷酸错配、切除和修复等遗传修复功能显著降低。研究表明,高盐度导致斑点叉尾鮰产生了强烈应激反应,增加了能量消耗,最终引起肠道菌群结构和功能的适应性改变。建议在盐碱地开展斑点叉尾鮰养殖时应加强养殖管理,适当提高饲料能量水平,并补充益生菌群以维持肠道菌群平衡。

    Abstract:

    Channel catfish (Ictalurus punctatus) is an important species cultured in saline and alkaline in China. Salinity is a key environmental factor, but the mechanism of its influence on the intestinal flora of I. punctatus is not clear. To investigate theeffect of salinity on the intestinal flora of I. punctatus, we designed an eight-week experiment and divided the fish into four groups: control group (S0, salinity 0), low-salt group (S3, salinity 3‰), medium-salt group (S6, salinity 6‰), and high-salt group (S9, salinity 9‰). The intestinal contents of fish were collected every two weeks, and the composition and function of the intestinal flora were analyzed by 16S rRNA sequencing. The results show that with the increase of salinity, the richness of theintestinal flora increased, but the diversity decreased significantly. On phylum level, Proteobacteria, Firmicutes, Fusobacteriota, Bacteroidetes, Cyanobacteria and Actinobacteria were the dominant bacterial phyla. In the control, low-salt and medium-salt groups, the intestinal flora showed rhythmic changes in the 2-week cycle, regularly repeating between Proteobacteria and Firmicutes, Fusobacteriota, Bacteroidetes. In contrast, the high salinity group disrupted the rhythm of changes, showing a maintenance of the predominance of Proteobacteria. Meanwhile, the functions of the intestinal flora also changed significantly in high-salinity condition, with significantly higher functional abundance in fatty acid metabolism and degradation, vitamin and amino acids degradation, and energy metabolism, and a significant decrease in the genetic repair functions such as mismatchrepair, nucleotide excision repair. High salinity caused strong stress in I. punctatus, increased energy expenditure, and ultimately altered the composition and function of the intestinal flora. Therefore, it is recommended to culture I. punctatus in saline ponds, which requires higher energy and probiotic supplementation in feed.

  • 乌鳢 (Channa argus) 是一种备受欢迎的淡水鱼,常作为原料生产调理鱼片或冷冻鱼片,但其加工过程中产生的鱼头、鱼骨等下脚料利用率较低,造成较大的资源浪费,并产生较严重的环境问题。中国素有熬制鱼头汤的饮食习惯,但较为耗时。乌鳢鱼头富含矿物质元素、氨基酸和不饱和脂肪酸,是熬制鱼汤的优选原料。因此开发方便即食的乌鳢鱼头汤制品具有较好的市场前景。目前市场上存在少量的鱼汤制品多为浓缩型汤膏,体积大且含水量高,保藏条件较严格,其消费受到较大的限制。随着干燥技术在速溶汤上的应用,出现了一些速溶汤制品。如采用微波冷冻干燥方法制备的速溶蔬菜汤[1];通过微波预糊化与红外冷冻干燥制备的奶油蘑菇汤粉[2];Singh等[3]用喷雾干燥法制成的蘑菇乳清汤粉可在30 ℃下保存8个月。但鲜见作为粉末型的方便鱼汤产品。为适应现代人快节奏的生活方式和对美味鱼汤产品的需求,本研究选取喷雾干燥法制备乌鳢鱼头汤粉,探索干燥参数对干燥效果和产品品质的影响,优化出最佳干燥条件,为冲调式鱼头汤粉的生产提供技术支撑,从而提高乌鳢加工副产物的利用价值。

    新鲜乌鳢 [(1.0±0.2) kg] 购于江苏省镇江市吉麦隆超市,宰杀后取鱼头,用碎冰保藏于泡沫箱中运至实验室;麦芽糊精 (食品级) 购于河南新乡中信化学有限公司。

    JSM-7800F场发射扫描电子显微镜 (日本电子株式会社);均质机 (上海申鹿均质机有限公司);OM-1500A小型喷雾干燥器 (上海欧蒙有限公司);Lab-1C-50真空冷冻干燥机 (北京博医康实验仪器有限公司);3810 (PAL-1) Digital Pocket Refractometer糖度计 (日本Atago公司);MB27快速水分测定仪 (奥豪斯仪器 (常州) 有限公司);CR-400色差计 (日本Konica Minolta, Inc.)。

    将新鲜乌鳢鱼头清洗后沥干,用刀剁成小块,称质量,用料酒和少量姜块腌制30 min,沥干备用。不锈钢锅内放入约50 mL的大豆油加热,放入鱼头块 [(250±5) g] 煎炸40~60 s至变色,然后再转入汤锅中[ m(料)∶V(液)=1∶6],大火 (98 ℃) 熬煮30 min,再转小火 (90 ℃) 熬制,在熬煮至第60分钟时添加1%的食盐,总熬煮时间为150 min。当汤体温度降至40 ℃时,用勺子除去上层的油层,选取下层的鱼汤利用棉纱布进行过滤,得率约为最初添加水体积的40%,然后进行后续干燥。

    物料黏度是喷雾干燥过程中的一个重要因素[4]。选择常用的麦芽糊精作为助干剂控制黏度,添加质量浓度为0、5、10、15和20 g·L−1。喷雾干燥进料速度设为10 mL·min−1,进风温度为180 ℃,结束后收集样品并计算集粉率,根据粉末的水分质量分数、色泽、溶解性和堆积密度等指标及干燥过程中的粘壁情况确定麦芽糊精的最佳添加量。

    在1.4.1确定麦芽糊精用量的基础上,将进风温度设定为60、170、180和190 ℃,进料速度固定为10 mL·min−1,进行喷雾干燥实验。测定所得产品的集粉率、水分质量分数、色泽、溶解性和堆积密度等,筛选出最优的进风温度。

    在1.4.1确定麦芽糊精用量的基础上,将进料速度设定为6、9、12和15 mL·min−1,进口温度设为1.4.2得到的最优温度,进行喷雾干燥实验。测定产品集粉率,以及粉末的水分质量分数、色泽、溶解性和堆积密度等,确定最优的进料速度。

    利用扫描电镜观察所得粉末的形貌和表面特征。将粉末样品粘在贴有双面胶的圆柱形铝底座上,然后进行离子溅射喷金,在不同放大倍数下以15 kV的加速电压进行检测。选取适当放大倍数 (1 000×、5 000×和10 000×) 作为每个样品的代表。采用激光衍射粒度仪分析颗粒的粒度。选用通用的样品池,将2.0 g样品悬浮于20 mL蒸馏水中超声30 s,折光系数为1.50,利用光衍射法进行样品分析。平均粒径用体积平均直径D[3,4]表示,粒径分布用跨度 (Span) 表征。跨度指数计算为:

    $$ I_{\rm {span }}=\left(D_{90}-D_{10}\right) / D_{50} $$ (1)

    式中:Ispan为跨度指数;D90为90%颗粒的平均粒径 (μm);D50为50%颗粒的平均粒径 (μm);D10为10%颗粒的平均粒径 (μm)。

    使用糖度计测定鱼头汤固形物的质量分数。

    参考郑唯等[5]的方法,计算公式为:

    $$ P=m_{0} /\left(m_{1}+m_{2}\right) \times 100 {\text{%}} $$ (2)

    式中:P为集粉率 (%);m0为粉末质量 (g);m1为液料中的干物质质量 (g);m2为助干剂麦芽糊精添加质量 (g)。

    参考Teo等[6]的方法,即粉末的质量与在量筒中固定体积的比值。称量10 mL量筒中可堆积的样品质量,重复3次,取平均值,计算公式为:

    $$ \rho=m / V $$ (3)

    式中:ρ为堆积密度 (g·mL−1);m为粉末样品质量 (g);V为粉末样品体积 (mL)。

    利用色差仪对所得粉末颜色进行测定分析,得到样品的明度 (L*)、红绿色度 (a*)、蓝黄色度 (b*) 并计算白度。

    采用快速水分测定仪进行分析。

    参考李秀军等[7]的方法,用量筒量取 50~55 ℃的蒸馏水 8 mL 放入 10 mL试管中冲调1 g样品,并用玻璃棒搅拌,观察并记录样品完全溶解所需时间。

    参考Cai和Corke[8]的方法并适当修改。取1 g样品置于含饱和氯化钠 (NaCl) 溶液 (相对湿度75%) 的干燥器中,在25 ℃条件下放置1周后称质量,吸湿性为每100 g样吸附的水分质量 [g·(100 g)−1]:

    $$ A=\left(W_{1}+W_{2}\right)/W_1 \times 100 {\text{%}} $$ (4)

    式中:A为吸湿性 (%);W1为样品初始质量 (g);W2为1周后的样品质量 (g)。

    取0.5 g样品加入50 mL蒸馏水中,搅拌器搅拌30 min,离心5~10 min (3 000~4 000 r·min−1),取上清液10 mL转移至玻璃皿中,烘干至恒质量:

    $$ S=m / M \times 100 {\text{%}} $$ (5)

    式中:S为溶解度 [g·(100 mL)−1];m为上清液中固形物的质量 (g);M为样品溶液体积 (mL)。

    所有实验重复3次,结果取平均值。显著性分析用SPSS 20.0软件进行,以P<0.05 作为标准。采用Origin 8.0软件绘图。

    助干剂 (麦芽糊精) 对鱼头汤喷雾干燥产品品质的影响见表1。未添加麦芽糊精时,鱼头汤经喷雾干燥后所得到的粉末积粉率和堆积密度均最低,同时冲调时间最长并存在严重的粘壁现象。而添加麦芽糊精可显著提高鱼头汤粉末的集粉率,当其质量浓度高于10 g·L−1时,集粉率增至39.2%。但麦芽糊精质量浓度进一步增加对集粉率无显著影响。助干剂质量浓度较低时,料液中固形物的包埋效果差,影响玻璃化温度,导致雾化不充分[9],易出现粘壁现象,造成集粉率低。而随着添加量的增加,助干剂能在物料表面形成一层膜,从而改善粘壁现象,集粉率变大[10-11]。此外,随着麦芽糊精质量浓度的增加,产品的水分质量分数逐渐下降且趋于稳定,当大于15 g·L−1时水分质量分数降至5%以下,有利于长期存放。结果表明麦芽糊精的添加可改变物料间的粘黏程度,使颗粒间隔增大,利于水分的脱除,干燥加快。因此,麦芽糊精不仅可提高集粉率还有助于干燥过程中的脱水[12-13]

    表  1  助干剂对产品喷雾干燥的影响
    Table  1.  Effect of carrier on spray drying of product
    麦芽糊精质量浓度
    Addition of
    maltdextrin/(g·L−1)
    集粉率
    Powder collection
    rate/%
    水分质量分数
    Moisture
    mass fraction/%
    堆积密度
    Bulk density/
    (g·mL−1)
    冲调时间
    t/s
    亮度
    L*
    红绿色度
    a*
    蓝黄色度
    b*
    白度
    Brightness
    粘壁情况
    Wall
    sticking
    0 13.5a 4.84b 0.365a 117d 50.13b −0.14d 7.01c 49.64b 粘壁严重
    5 19.9b 6.07c 0.456d 104c 48.00a −0.31a 3.39b 47.89a 粘壁严重
    10 38.5c 5.08b 0.441c 84b 48.63a −0.26b 2.55a 48.57a 部分粘壁
    15 37.7c 4.17a 0.434b 77a 51.49b −0.35a 2.39a 51.43b 轻微粘壁
    20 39.2c 4.03a 0.429b 74a 50.60b −0.22c 2.13a 50.55b 几乎不粘壁
    注:同一列标注不同小写字母表示组间存在显著差异(P<0.05);下表同此。 Note: Different lowercase letters within the same column indicate significant difference between groups (P<0.05). The same case in the following tables.
    下载: 导出CSV 
    | 显示表格

    此外,麦芽糊精的添加还会影响产品的堆积密度。未添加麦芽糊精时所得到的粉末堆积密度仅为0.365 g·mL−1,当添加质量浓度为5 和15 g·L−1时,堆积密度增大;而当添加质量浓度超过15 g·L−1时,堆积密度则无明显差异,可能是由于粉末水分质量分数不同造成。麦芽糊精的添加还导致冲调时间的缩短,表明产品的溶解度随着麦芽糊精的增多而提高。麦芽糊精影响了产品的色泽,未添加麦芽糊精或添加量较低时,b*较高,粉末偏黄;随着添加量的增加,L*增大,b*显著降低并趋于稳定,白度升高,但添加量过大会有浓郁的麦芽糊精味,影响产品原有风味。因此,综合各参数,确定麦芽糊精的添加质量浓度为15 g·L−1。该条件下干燥粉末的水分质量分数低于5%,溶解性较好且色泽佳。

    进风温度对喷雾干燥过程中能量传递及利用率会产生较大影响,是影响喷雾干燥效果和产品品质的重要参数。进风温度对鱼头汤喷雾干燥的影响见表2。随着温度的上升,粉末的集粉率呈现先增大后减小的趋势,在170 ℃时达到最大。温度较低时,液体无法迅速干燥,半干的颗粒会粘壁,导致集粉率下降;温度较高时,热量能够充分传递给喷出的雾滴,干燥室内的气流分子无规则运动加剧,水分蒸发速率加快,物料在气化后能迅速干燥。提高干燥速度,粘壁现象得到改善,粉末不易结块。但若温度过高,粉体表面会快速形成较硬的外壳,导致颗粒内部水分不易向外扩散,造成水分含量又有所升高。此外,在较高温度下蛋白质和麦芽糊精粉末则容易糊化,不仅影响产品最终的口感,还会影响其色泽,造成品质下降。黄绍天和王步江[14]报道进风温度过高会导致喷雾干燥后期料液温度大于黏流温度,糖类等物质发生轻微焦化现象,产生轻微的热粘壁现象。

    表  2  进风温度对产品喷雾干燥的影响
    Table  2.  Effect of inlet air temperature on spray drying of product
    温度
    Temperature/
    集粉率
    Powder collection
    rate/%
    水分质量分数
    Moisture
    mass fraction/%
    堆积密度
    Bulk density/
    (g·mL−1)
    冲调时间
    t/min
    亮度
    L*
    红绿色度
    a*
    蓝黄色度
    b*
    白度
    Brightness
    粘壁情况
    Wall sticking
    16041.86c6.11c0.390b1.40b54.59b−0.38b4.29a54.39b部分粘壁
    17043.02d4.77a0.362b1.32a56.29c−0.48a4.66b56.04b轻微粘壁
    18037.70b6.09c0.401c1.29a51.49a−0.32b4.30a51.29a轻微粘壁
    19035.41a4.97b0.304a1.46c51.50a−0.47a5.34c51.20a少量粘壁
    下载: 导出CSV 
    | 显示表格

    粉末的水分质量分数的变化规律与集粉率基本一致,在170 ℃时最低 (4.77%),产品得率最高 (表2)。此外,干燥粉末的堆积密度在180 ℃时达到最大,而粉末的冲调时间在170和180 ℃时较短且无显著性差异 (P>0.05)。但当进风温度过高时,粉末的冲调时间则会变长,可能是因为温度低时物料干燥不充分导致溶解性降低,而温度过高会形成坚硬的外壳,则需要更多的时间才能被溶解。此外,进风温度对产品色泽也产生了显著影响,当升高至190 ℃时,b*明显增大,可能是由于温度过高使物料糊化从而导致粉末颜色偏黄。粘壁情况除了在160 ℃下不理想外,其他组均呈现较好的效果。综上,本实验选择最佳的进风温度为170 ℃。

    进料速度也是影响喷雾干燥过程中产品品质的重要参数。当进料速度过低时,鱼头汤的喷雾干燥时间较长,不仅增加能耗,还会影响生产效率。进料速度对干燥产品的影响见表3。集粉率随进料速度的增加总体上呈下降趋势,在较低进料速度范围内集粉率较高,但当进料速度增加到一定程度时,集粉率则显著降低 (P<0.05)。当进料速度较低时,水分能够充分蒸发,物料可在雾化室得到较彻底的干燥,但当进料速度过快时,物料雾化不充分,水分蒸发不彻底,会导致干燥不完全,产生大量粘壁,出现结块,同时还易造成聚集堵塞影响喷雾。结果显示,当鱼头汤进料速度为6 mL·min−1时,水分质量分数最低 (3.91%),堆积密度与其他组无明显差异,并且在该条件下溶解性较好,冲调时间小于1 min,且轻微粘壁。综上,本实验选择进料速度为6 mL·min−1

    表  3  进料速度对产品喷雾干燥的影响
    Table  3.  Effect of feeding speed on spray drying of product
    进料速度
    Processing velocity/
    (mL·min−1)
    集粉率
    Powder collection
    rate/%
    水分质量分数
    Moisture
    mass fraction/%
    堆积密度
    Bulk density/
    (g·mL−1)
    冲调时间
    t/s
    亮度
    L*
    红绿色度
    a*
    蓝黄色度
    b*
    白度
    Brightness
    粘壁情况
    Wall sticking
    644.55c3.91a0.301b58b52.75a−0.30b4.01b52.58a轻微粘壁
    940.64b4.54b0.297b47a55.80b−0.39a3.84a55.63b部分粘壁
    1242.29b4.93c0.296b75d53.53a−0.36ab4.36c53.32a轻微粘壁
    1534.99a5.41d0.287a65c54.89b−0.43a3.87ab54.72b严重粘壁
    下载: 导出CSV 
    | 显示表格

    喷雾干燥获得的是较细的白色粉状产品 (图1)。 蒋丽施等[15]利用白乌鱼 (Opniocepnalus argus)熬煮鱼汤,通过喷雾干燥所得到的鱼汤粉的白度也呈现白色,且麦芽糊精添加量越多白度越高。

    图  1  喷雾干燥鱼头汤粉外观
    Figure  1.  Product by spray drying

    含水量是检验干燥产品的一个重要指标,与产品存放条件和时间有关[16]。喷雾干燥过程中,物料与热空气充分接触并进行热量交换,水分从颗粒内部快速扩散,物料在雾化后形成细小的颗粒,呈均匀多孔的球状,有利于水分的扩散。本实验显示鱼头汤经过喷雾干燥得到的粉末水分质量分数仅为4.03%,有利于产品的后期存放。蒋丽施等[15]同样采用最佳进风温度为170 ℃对白乌鱼鱼汤进行喷雾干燥,所得鱼汤粉的水分质量分数为10.26%。这可能与不同原料来源的鱼汤中组分种类和含量不同有关。

    堆积密度是一个反映粉体质构的参数,与微观结构有关[17-18]。堆积密度大可以减少包装和运输成本[19]表4显示了喷雾干燥得到的产品堆积密度。喷雾干燥过程中,液滴会被雾化,在这个过程中会受重力、阻力和碰撞等影响产生形变,产生不同的颗粒结构,导致粉末堆积密度增大。进料温度、进料速度和鱼汤的固形物含量是影响鱼头汤粉的重要因素[20],利用本研究优化的喷雾干燥条件所得鱼头汤粉末的堆积密度为0.542 g·mL−1。朱琳芳[20]利用喷雾干燥制备的鳙 (Aristichthys nobilis) 汤粉的堆积密度约为0.25 g·mL−1。堆积密度与喷雾过程中所形成的粉末粒径有关,粒径越小,堆积密度越大。

    表  4  喷雾干燥的乌鳢鱼头汤粉品质指标
    Table  4.  Quality index of C. argus head soup powder made by spray drying
    水分质量分数
    Moisture mass fraction/%
    堆积密度
    Bulk density/(g·mL−1)
    溶解度
    Solubility/[g·(100 mL)−1]
    吸湿性
    Hygroscopicity/[g·(100 g)−1]
    4.03±0.150.54±0.0999.13±1.9824.47±1.65
    下载: 导出CSV 
    | 显示表格

    本实验中喷雾干燥产品的溶解度较高 (表4),可能是因为喷雾干燥过程中所形成的颗粒直径小,且较为均匀,空隙更多,与水分接触的通道多,导致粉末溶解度较高[21],这与付露莹等[22]的研究结果一致。鳙鱼汤的喷雾干燥粉也具有相当高的溶解度,但随进料浓度和进料温度的升高而降低,随进料速度的增加而增大[20]

    喷雾干燥制得的粉末吸湿性较低,主要与添加的助干剂有关。在较低浓度下,麦芽糊精的添加提高了产量,降低了粉体的吸湿性[23-24],因为其具有较少的亲水性基团,显示出较低的吸湿性。通过本研究优化的喷雾干燥条件获得鱼头汤粉的吸湿性约为24.47 g·(100 g)−1 (表4)。Ferrari等[25]在对黑莓 (Rubus fruticosus) 果肉进行喷雾干燥时加入5%~10%的麦芽糊精,产品的吸湿性随麦芽糊精添加量的升高而降低,但过高时会导致粉末的吸湿性增大[26-27],因此,适量的助干剂才有利于降低产品的吸湿性。

    通过喷雾干燥制备的鱼头汤粉粉末粒径及其分布见表5。D[4,3]所代表的平均粒径显示喷雾干燥样品的平均粒径较小。根据D90D50D10计算得到跨度指数接近1,表明粉末粒径分布较窄[28],进一步说明喷雾干燥获得的粉体大小更均匀。在进行喷雾干燥时,雾化的过程会将液体先分散为小雾滴,受热后水分蒸发,形成细小的粉末状颗粒,得到的粉体粒径小且分布相对均匀。

    表  5  粉末粒径和跨度指数
    Table  5.  Particle sizes and span index of powder
    粉末粒径 Particle size/μm跨度指数
    Span
    D[4,3]D90D50D10
    2.84±1.155.43±0.572.80±0.070.87±0.011.63±0.15
    下载: 导出CSV 
    | 显示表格

    粉体的微观形态及结构与干燥产品的流动性、速溶性、堆积密度等指标密切相关。喷雾干燥得到的鱼头汤粉末的微观形态扫描电镜图见图2。如前所述,在喷雾干燥过程中经过雾化器液体被均匀地分散成雾滴,使得制成的颗粒形状基本相同。放大1 000倍大多呈现球型颗粒状或扁球状,而放大5 000和10 000倍喷雾干燥的颗粒形状较圆、非常规则,表面光滑、大小均匀且多孔,分散性好,颗粒间的空隙大。该结果进一步解释了喷雾干燥的粉末含水量低,同时具较好的流动性、速溶性和堆积密度的原因。一些喷雾干燥的颗粒会融合在一起,这可能与吸湿性、物料浓度、添加的辅料黏度以及成膜能力有关[29]

    图  2  扫描电镜结果
    Figure  2.  SEM of the spray drying samples

    麦芽糊精可作为乌鳢鱼头汤喷雾干燥的助干剂,能有效改善喷雾干燥过程中的粉末粘壁现象,当添加质量浓度为15 g·L−1、喷雾干燥进风温度为170 ℃、进料速度为6 mL·min−1时,乌鳢鱼头汤喷雾干燥效果最佳,制得的鱼头汤粉末集粉率最高,水分质量分数低于5%,堆积密度较大,色泽佳,速溶性较好。此外,产品颗粒呈球状,粒径小且分布较均匀,表面光滑,颗粒间空隙较大,吸湿性较低,利于存放。总之,喷雾干燥方法可应用于方便快捷的鱼头汤粉末产品生产,但规模化生产工艺还有待进一步研究。

  • 图  1   物种数目饱和度稀释曲线图

    注:图中样本S01—S94由盐度+采样次数表示。

    Figure  1.   Species saturation rarefaction curves

    Note: The samples are represented by salinity+sampling time.

    图  2   不同盐度下的斑点叉尾鮰肠道微生物OTUs

    Figure  2.   Intestinal microorganisms OTUs of channel catfish at different salinity

    图  3   不同盐度斑点叉尾鮰肠道菌群NMDS分析图

    注:图中样本S011—S934由盐度+3平行+采样次数表示。

    Figure  3.   NMDS analysis of intestinal bacterial communities of I. punctatus at different salinity

    Note: The samples are represented by salinity+3 parallel samples+sampling time.

    图  4   不同盐度下斑点叉尾鮰肠道微生物在门水平的菌群组成

    注:图中样本为同盐度每次采样数据的均值,由盐度+采样次数表示 (S01—S94)。

    Figure  4.   Intestinal bacterial communities of I. punctatus at different salinity on phylum level

    Note: The samples are the average values of the data collected each time at the same salinity, which are represented by salinity + sampling time (S01–S94).

    图  5   不同盐度下斑点叉尾鮰肠道微生物在属水平的菌群组成

    注:图中样本为同盐度每次采样数据的均值,由盐度+采样次数表示 (S01—S94)。

    Figure  5.   Intestinal bacterial communities of I. punctatus at different salinity on genus level

    Note: The samples are the average values of the data collected each time at the same salinity, which are represented by salinity+sampling time (S01–S94).

    图  6   不同盐度下斑点叉尾鮰肠道微生物在门和属水平组间的显著性差异

    注:*. p<0.05;**. p<0.01 ;***. p<0.001。

    Figure  6.   Significance of intestinal bacterial communities on phylum and genus levels

    Note: *. p<0.05; **. p<0.01; ***. p<0.001.

    图  7   不同盐度下养殖8周斑点叉尾鮰肠道菌群主要功能丰度比对

    注:*. p<0.05;**. p<0.01。图中样本由盐度+采样次数表示。

    Figure  7.   KEGG functions in intestinal bacterial communities of I. punctatus after 8-week culture at different salinity.

    Note: *. p<0.05; **. p<0.01. The samples are represented by salinity+sampling time.

    表  1   斑点叉尾鮰肠道菌群多样性指数及双因素方差分析

    Table  1   Diversity index and two-way ANOVA of intestinal flora of I. punctatus

    多样性指数
    Diversity index
    盐度
    Salinity
    盐度
    Salinity
    采样时间
    Sampling time
    S0 (0‰)S3 (3‰)S6 (6‰)S9 (9‰)FpFp
    Ace174.922±43.497188.927±76.149194.244±190.195203.559±300.4360.057 80.981 52.873 30.047 8
    Chao171.524±41.909184.472±73.977186.829±178.379203.047±299.7700.070 70.975 32.960 70.043 3
    Shannon2.129±0.524A1.922±0.712AB1.718±0.873AB1.486±1.345B1.301 20.287 03.863 10.016 0
    Simpson0.251±0.167B0.338±0.241AB0.389±0.282AB0.530±0.293A2.916 20.045 52.689 50.058 8
    注:同行数据不同上标字母表示差异显著 (p<0.05)。 Note: Values with different letters within the same line represent significant differences (p<0.05).
    下载: 导出CSV
  • [1]

    ROBINSON E H, Li M H. Channel catfish, Ictalurus punctatus, nutrition in the United States: a historical perspective[J]. J World Aquacult Soc, 2020, 50(1): 93-118.

    [2] 农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2024年中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2024: 25.
    [3]

    ZHONG L Q, SONG C, CHEN X H, et al. Channel catfish in China: historical aspects, current status, and problems[J]. Aquaculture, 2016, 465: 367-373. doi: 10.1016/j.aquaculture.2016.09.032

    [4] 钟立强, 王明华, 陈校辉, 等. 江苏斑点叉尾鮰产业现状及发展战略思考[J]. 中国农学通报, 2021, 37(17): 137-143. doi: 10.11924/j.issn.1000-6850.casb2020-0426
    [5] 段永强, 张世勇, 王明华, 等. 斑点叉尾鮰苗对盐度的急性耐受力及行为反应研究[J]. 水产科学, 2023, 42(6): 1047-1053.
    [6]

    ZHOU L Y, WANG M H, ZHANG S Y, et al. Spatial distribution of bacterial communities driven by multiple environmental factors in sediment of brackish channel catfish ponds in Eastern China[J]. Aquaculture, 2024, 578: 740105. doi: 10.1016/j.aquaculture.2023.740105

    [7]

    IMSLAND A K, GSTAVSSON A, GUNNARSSON S, et al. Effects of reduced salinities on growth, feed conversion efficiency and blood physiology of juvenile Atlantic halibut Hippoglossus hippoglossus[J]. Aquaculture, 2008, 274: 254-259. doi: 10.1016/j.aquaculture.2007.11.021

    [8] 强俊, 任洪涛, 徐跑, 等. 温度与盐度对吉富品系尼罗罗非鱼幼鱼生长和肝脏抗氧化酶活力的协同影响[J]. 应用生态学报, 2012, 23(1): 255-263.
    [9]

    MO Y Y, PENG F, GAO X F, et al. Low shifts in salinity determined assembly processes and network stability of microeukaryotic plankton communities in a subtropical urban reservoir[J]. Microbiome, 2021, 9: 128. doi: 10.1186/s40168-021-01079-w

    [10]

    LIU C Q, WU F, JIANG X Y, et al. Salinity is a key determinant for the microeukaryotic community in lake ecosystems of the Inner Mongolia Plateau, China[J]. Front Microbiol, 2022, 13: 841686. doi: 10.3389/fmicb.2022.841686

    [11]

    SOMMER F, BÄCKHED F. The gut microbiota-masters of host development and physiology[J]. Nat Rev Microbiol, 2013, 11: 227-238. doi: 10.1038/nrmicro2974

    [12]

    MAYER E A, NACE K, CHEN S. The gut-brain axis[J]. Annu Rev Med, 2022, 73: 439-453. doi: 10.1146/annurev-med-042320-014032

    [13] 赵子丰, 金文杰, 赵静, 等. 青海湖裸鲤肠道菌群对不同盐度胁迫的响应[J]. 大连海洋大学学报, 2024, 39(2): 225-233.
    [14] 黄健旋, 刘悦, 黎学友, 等. 盐度对弓背青鳉行为及肠道菌群的影响[J]. 农业与技术, 2024, 44(13): 114-120.
    [15]

    OLAFSEN J A, HANSEN G H. Intact antigen uptake in intestinal epithelial cells of marine fish larvae[J]. J of Fish Bio, 1992, 40(2): 141-156. doi: 10.1111/j.1095-8649.1992.tb02562.x

    [16] 季英杰. 发酵有机肥对草鱼池塘水环境及草鱼肠道菌群的影响评价[D]. 武汉: 华中农业大学, 2017: 45-46.
    [17] 徐静雯, 钟立强, 张世勇, 等. 施肥对斑点叉尾鮰肠道菌群的影响[J]. 南方水产科学, 2024, 20(4): 116-123. doi: 10.12131/20230240
    [18]

    ABASS N Y, ALSAQUFI A S, MAKUBU N. Genotype-environment interactions for growth and survival of channelcatfish (Ictalurus punctatus), blue catfish (Ictalurus furcatus), and channel catfish, I. punctatus, ♀×blue catfish, I. furcatus, ♂ hybrid fry at varying levels of sodium chloridee[J]. Aquaculture, 2017, 471: 28-36. doi: 10.1016/j.aquaculture.2016.12.029

    [19] 张世勇, 邵俊杰, 陈校辉, 等. 盐度对斑点叉尾幼鱼生长性能、肌肉持水力和营养组成的影响[J]. 生物学杂志, 2018, 35(3): 57-61. doi: 10.3969/j.issn.2095-1736.2018.03.057
    [20] 钟立强, 周丽颖, 张世勇, 等. 养殖池塘水体异味物质土臭素与环境因子关系解析[J]. 中国农学通报, 2024, 40(27): 159-164. doi: 10.11924/j.issn.1000-6850.casb2024-0114
    [21]

    ZHANG S Y, DUAN Y Q, ZHONG L Q, et al. Using comparative transcriptome analysis to identify molecular response mechanisms to salinity stress in channel catfish (Ictalurus punctatus)[J]. Environ Pollut, 2023, 333: 121911. doi: 10.1016/j.envpol.2023.121911

    [22]

    TANG L Y, DUAN Y Q, XIE B J, et al. Effects of salinity stress on the growth performance, histological characteristics, and expression of genes related to apoptosis and immunity in channel catfish (Ictalurus punctatus)[J]. J Fish Biol, 2024, https://doi.org/10.1111/jfb.16029

    [23]

    SUN F L, WANG C Z, CHEN X L. Bacterial community in Sinonovacula constricta intestine and its relationship with culture environment[J]. Appl Microbiol Biotechnol, 2022, 106: 5211-5220. doi: 10.1007/s00253-022-12048-0

    [24] 张紫娟, 戴文芳, 薛清刚, 等. 急性盐度胁迫对缢蛏肠道菌群结构及功能的影响[J]. 海洋学报, 2023, 45(11): 131-141.
    [25] 符振强, 董扬帆, 汤上上, 等. 低盐胁迫下饲料中添加α-硫辛酸对凡纳滨对虾生长、抗氧化能力及肠道健康的影响[J]. 动物营养学报, 2021, 33(9): 5203-5218. doi: 10.3969/j.issn.1006-267x.2021.09.040
    [26] 王海亮, 温海深, 张晓燕. 盐度胁迫对花鲈幼鱼肠道抗氧化和非特异性免疫能力的影响[J]. 现代农业科技, 2016(4): 261-269. doi: 10.3969/j.issn.1007-5739.2016.04.162
    [27] 温久福, 蓝军南, 周慧, 等. 盐度对花鲈幼鱼消化没和抗氧化系统的影响[J]. 动物学杂志, 2019, 54(5): 719-726.
    [28]

    LIU D R, ZHANG Z W, SONG Y K, et al. Effects of salinity on growth, physiology, biochemistry and gut microbiota of juvenile grass carp (Ctenopharyngodon idella)[J]. Aquat Toxicol, 2023, 258: 106482. doi: 10.1016/j.aquatox.2023.106482

    [29] 熊向英, 赵艳飞, 王志成. 斑点叉尾鮰肠道及其养殖环境菌群结构分析[J]. 水产科学, 2022, 41(4): 589-596.
    [30]

    LARSEN A M, MOHAMMED H H, ARIAS C R. Characterization of the gut microbiota of three commercially valuable warmwater fish species[J]. J Appl Microbiol, 2014, 116(6): 1396-1404. doi: 10.1111/jam.12475

    [31] 田璐. 盐度对黄姑鱼生存生长、非特异性免疫及肠道菌群的影响[D]. 舟山: 浙江海洋大学, 2019: 39.
    [32] 黎烽. 盐度对草鱼肉质和肠道菌群的影响研究[D]. 广州: 仲恺农业工程学院, 2022: 35.
    [33]

    BUIJS Y, BECH P K, VAZQUE-ALBACETE D, et al. Marine Proteobacteria as a source of natural products: advances in molecular tools and strategies[J]. Nat Prod Rep, 2019, 36(9): 1333-1350. doi: 10.1039/C9NP00020H

    [34] 孙云霞, 周演根, 周思岐, 等. 饲料精氨酸含量对海水驯化虹鳟的渗透调节、抗氧化和免疫力的影响[J]. 水生生物学报, 2024, 481(9): 1459-1472. doi: 10.7541/2024.2024.0043
    [35]

    SHEENAN H, YANIV H, TATIYANA S, et al. Effects of adding salt to the diet of Asian sea bass Lates calcarifer reared in fresh or salt water recirculating tanks, on growth and brush borderenzyme activity[J]. Aquaculture, 2004, 248: 315-324.

    [36]

    MAGNE S, BENGT F. The effects of dietary NaCl supplement on hypo-osmoregulatory ability and sea water performance of Arctic charr (Salvelinus alpinus L.) smolts[J]. Aquac Res, 2000, 31(10): 737-743. doi: 10.1046/j.1365-2109.2000.00495.x

    [37]

    SHIAU S Y, LU L S. Dietary sodium requirement determined for juvenile hybrid tilapia (Oreochromis niloticus×O. aureus) reared in fresh water and seawater[J]. Brit J Nut, 2004, 91(4): 585-590. doi: 10.1079/BJN20041091

  • 期刊类型引用(3)

    1. 焦晓磊,李清,樊威,苏建,罗煜,吴俊,邓语,张崟. 白乌鱼头骨和脊骨理化成分分析及营养价值比较. 农产品加工. 2025(01): 52-56 . 百度学术
    2. 王益娟,周芳,焦文娟,赵甜甜,林以琳,张业辉,南海军,黄文. 基于非靶向代谢组学的药膳鱼汤代谢产物差异分析. 中国调味品. 2024(05): 148-155 . 百度学术
    3. 陈胜军,路美明,相欢,薛勇,黄卉,李来好,胡晓. 乌鳢营养评价与加工保鲜技术研究进展. 肉类研究. 2023(02): 40-45 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  31
  • HTML全文浏览量:  9
  • PDF下载量:  0
  • 被引次数: 3
出版历程
  • 收稿日期:  2025-01-03
  • 修回日期:  2025-02-09
  • 录用日期:  2025-03-04
  • 网络出版日期:  2025-04-16

目录

/

返回文章
返回