Abstract:
Regarding the cumbersome finite element modeling problem caused by the complex structure and diverse loads of deep-sea floating raft aquaculture cages, we applied an efficient finite element analysis and designed a structural optimization method. Taking a 40-meter-diameter deep-sea raft-type aquaculture cage as an example, we achieved parametric calculation and application of loads including wind, wave, and current through systematic algorithm development and programming. The work implemented functions such as node/element definition and real-time optimization parameter updates, while conducting secondary development based on ANSYS software. This approach enabled efficient modeling and reconstruction of the cage's finite element model. On the basis of the efficient finite element modeling, the structural optimization based on the genetic algorithm was realized, and the robustness of the optimization algorithm was enhanced by introducing the power variation function. The results show that under the condition of consistent structural strength, the optimized cage effectively reduced the mass by 17.98%. The method in this paper can provide a reference for the design and structural optimization of deep-sea floating raft aquaculture cages.