Quality improvement and mechanism analysis of non-rinsing tilapia surimi gel
-
摘要:
免漂洗鱼糜因含有较多的蛋白质和脂肪,风味较好,但凝胶特性不足。以罗非鱼免漂洗鱼糜为原料,探究淀粉、亲水胶体、膳食纤维等物质对其鱼糜凝胶质构特性、流变学特性、色泽、持水性及蒸煮损失率的影响,并从鱼糜水分分布、分子间作用力及蛋白质结构等角度多维分析免漂洗鱼糜凝胶品质增强的机理。结果表明:与对照组相比,淀粉、亲水胶体、膳食纤维等物质均能改善免漂洗鱼糜的质构特性和凝胶强度,提高其持水性且降低蒸煮损失率;在淀粉、亲水胶体及膳食纤维等作用下,免漂洗鱼糜中自由水转换为不易流动水和结合水,且蛋白质分子间的疏水相互作用增强,α-螺旋转变为有序β-折叠;形成十分致密、稳定的免漂洗鱼糜凝胶网络结构,明显改善了免漂洗鱼糜的凝胶品质。优化复配添加物 (1.5%羟丙基二淀粉磷酸酯、0.3%聚丙烯酸钠、12%玉米淀粉和1.5%海藻膳食纤维) 对免漂洗鱼糜凝胶的改善效果最显著。
Abstract:Non-rinsing surimi has better flavor due to its higher protein and fat content, but it has insufficient gel properties. We investigated the effects of starch, hydrophilic colloid and dietary fiber on the texture characteristics, rheological properties, color, water holding capacity and cooking loss rate of tilapia non-rinsing surimi. Besides, we analyzed the mechanism of gel quality enhancement of non-rinsing surimi gel from the aspects of water distribution, intermolecular force and protein structure. The results show that compared with the control group, the starch, hydrophilic colloid, dietary fiber and other substances could improve the texture characteristics and gel strength of non-rinsing surimi. The water holding capacity of surimi increased and the cooking loss rate decreased. Under the influence of starch, hydrophilic colloid and dietary fiber, the free water in non-rinsing surimi was converted into immobilized water and bound water, the hydrophobic interaction between protein molecules enhanced, and the α-helix was transformed into ordered β-sheet. The formation of dense and stable surimi gel network structure could significantly improve the gel quality of non-rinsing surimi. Especially, the optimized compound addition (1.5% hydroxypropyl distarch phosphate, 0.3% sodium polyacrylate, 12% corn starch and 1.5% seaweed dietary fiber) had the most significant effect on surimi gel.
-
华贵栉孔扇贝(Chalmys nobilis)具有生长快、产量高、养殖周期短等特点,是中国华南沿海地区主要的海水养殖贝种之一,具有重要的经济价值。闭壳肌是华贵栉孔扇贝主要的食用部分。目前对扇贝闭壳肌的研究较少,主要有闭壳肌与其他性状的相关性研究,如墨西哥湾扇贝(Argopecten irradians concentricus)体质量和壳长与闭壳肌质量紧密相关[1];华贵栉孔扇贝软体部质量对闭壳肌质量的直接影响最大,其次是壳宽[2];影响虾夷扇贝(C. farreri)闭壳肌质量的主要因素是壳宽[3];另外闭壳肌颜色和蛋白分布也有涉及[4-5]。但很少见到闭壳肌生长和发育的相关研究。
肌肉生长抑制素myostatin (MSTN)是转化生长因子-β (transforming growth factor-beta)超家族的成员,在动物肌肉生长和发育过程中起负调控作用[6]。Myostatin蛋白包括1个分泌信号序列、蛋白水解处理位点、含有9个半胱氨酸残基的保守型羧基末端区[7-8]。Myostatin的前体蛋白由信号序列、N-末端前肽区域和1个活性配基的C-末端区域组成[7-8]。前体蛋白经过2次蛋白质水解切割后,Myostatin即可活化[8-9]。成熟的Myostatin蛋白是一个C-末端由二硫键连接的二聚体,与MSTN基因受体结合,从而发挥其生物活性[8-9]。
目前在海湾扇贝(A. irradians)、栉孔扇贝 (C. farreri)、华贵栉孔扇贝、贻贝(Mytilus chilensis)、小狮爪海扇蛤(Nodipecten subnodosus)和竹蛏(Sinonovacula constricta)等贝类中有myostatin基因的研究报道[10-16]。Morelos等[14]研究1龄小狮爪海扇蛤一年中myostatin在闭壳肌中的表达情况、闭壳肌质量和肌纤维数量和大小,证实myostatin表达和闭壳肌性状有关联。在一些贝类中发现MSTN有与生长性状相关联的SNP位点[15,17-18]。Hu等[11]预测了栉孔扇贝MSTN启动子中有MEF2、COMP、MTBF、E-box等调控元件。
笔者已获得了华贵栉孔扇贝MSTN启动子序列[16]。本研究拟对启动子序列进行生物信息学分析。通过构建不同缺失长度的报告基因系统,检测启动子的转录活性,为今后进一步研究MSTN基因的调控机制奠定基础。
1. 材料与方法
1.1 实验材料
华贵栉孔扇贝采购于广东深圳南澳,剪取其闭壳肌组织,液氮冷冻后放置于– 80 ℃冰箱保存。
1.2 实验方法
1.2.1 DNA提取
用海洋动物DNA提取试剂盒(天根)提取DNA,终质量浓度为50 ng·mL–1,– 20 ℃保存备用。
1.2.2 myostatin启动子的生物信息学分析
笔者已获得myostatin基因启动子序列[16]。用在线软件BDGP (http://www.fruitfly.org/seq_tools/promoter.html)预测核心启动子区域和转录起始位点(transcription start site,TSS)。用MatInspector软件预测潜在的转录因子结合位点。用MethPrimer软件(http://www.urogene.org/methprimer2/)预测CpG岛。
1.2.3 不同长度片段表达载体构建
根据潜在的转录因子结合位点分析结果,设计6个正向引物和1个反向引物。上、下游引物分别添加KpnⅠ和HindⅢ酶切位点和保护碱基(表1)。以PGL-22为正向引物,P1322A为反向引物,扩增出最长的启动子片段,胶回收后,连接到pMD18-T载体,转化到DH5α大肠杆菌中,挑单克隆菌送上海生工生物工程有限公司测序。测序正确后,用质粒提取试剂盒(生工)提取质粒,以质粒DNA为模板,分别以PGL-102、PGL-274、PGL-534、PGL-995和PGL-1143为正向引物,P1322A为反向引物,通过PCR扩增不同片段长度的MSTN基因启动子片段,随后连接转化,测序验证序列正确后提取质粒。
表 1 实验所用引物Table 1. Primers used in this experiment引物
primer序列 (5'−3')
sequencePGL-22 CGGggtaccACACGGCGAAAAAATGGAGC PGL-102 CGGggtaccGGATGCCATAAATCAAAACCACAAC PGL-274 CGGggtaccAAAACGCCGCCAAACG PGL-534 CGGggtaccACTTCAGGCTGTATCGCAAAT PGL-995 CGGggtaccACCCGTTGGCAGCGTTCA PGL-1143 CGGggtaccTCTAAATGCTAACCCTTGTGCTG P1322A CTAaagcttTATAGCGGTTACGTTACAGATGGTT 注:小写字体为酶切位点 Note: Lowercase letters represent restriction enzyme loci. 用KpnⅠ和HindⅢ2种内切酶同时在37 ℃水浴酶切含有不同长度片段的pMD18-T重组质粒和pGL3-basic质粒,分别纯化后,用Solution I连接酶(TaKaRa) 16 ℃连接过夜,转化到DH5α大肠杆菌中,用去内毒素质粒提取试剂盒(OMEGA)提取重组质粒,测序以验证序列是否正确。
1.2.4 细胞培养
在24孔培养板中接种HEK293T细胞,使转染时细胞密度在70%~80%。所用培养基为DMEM高糖培养基(Hyclone),加入10% FBS (Gibco)。细胞放置于37 ℃、5% CO2培养箱中培养约20 h。
1.2.5 瞬时转染
内参质粒为pRL-TK (Promega),分别将各pGL3-basic重组质粒和内参质粒以20∶1的比例共转染到细胞。转染对照组为pGL3-basic载体和pRL-TK载体。每组做5个平行。瞬时转染采用转染试剂盒Lipofectamine 2000 Transfection Reagent (Invitrogen),根据试剂盒的说明进行实验。
1.2.6 双荧光素酶活性检测
用萤光素酶检测试剂盒Dual-Luciferase®Reporter Assay System(Promega)分析报告基因Luciferase活性。转染24 h后,吸去旧的培养基,加入1×PBS清洗1~2次,吸出PBS后,每孔中加入细胞裂解液PLB (passive lysis buffer,Promega) 200 μL,室温孵育10 min;将裂解液10 000 r·min–1离心5 min,取上清作为待测液;取100 μL裂解液上清加入96孔发光板中,加入100 μL萤火虫荧光素酶检测工作液(碧云天),吹吸混匀;上机测发光值,积分时间5 s;加入海肾荧光素酶检测工作液(碧云天) 100 μL,吹吸混匀,用化学发光分析仪BK-L96C (中生北控)监测发光值。用SPSS 19.0软件中的单因素方差分析检测各样品间差异的显著性。
2. 结果
2.1 华贵栉孔扇贝MSTN基因启动子的生物信息学分析
华贵栉孔扇贝MSTN基因5'调控区序列长1 358 bp (GenBank登录号:KY888888)。BDGP预测有4个TSS,分别为位于ATG上游第70个碱基“A”,第233个碱基“G”,第1 059个碱基“A”和第1 299个碱基“T”(图1)。核心启动子区在–100~–51 bp。MatInspector在线软件分析潜在的转录因子结合位点包括MEF2、MEF3、FoxO、MTBF和MyoD等,存在1个TATA-box (位于–92~–86bp)和2个E-box顺式作用元件 (图1)。MethPrimer软件预测无CpG岛。
图 1 MSTN启动子序列分析下划直线表示转录因子结合位点,下划波浪线为顺式作用元件,斜体表示核心启动子区域,阴影部分表示转录起始位点Figure 1. Analysis of MSTN gene promoter sequenceThe potential transcription factor binding sites are straightly underlined. The cis-regulatory elements are wavily underlined. Core promoter region is in italic. Nucletide of each transcription start sites are in shadow.2.2 MSTN基因启动子不同长度片段的扩增和表达载体构建
6个正向引物(PGL-22、PGL-102、PGL-274、PGL-534、PGL-995和PGL-1143)和1个下游引物(P1322A)分别扩增出6个长度不同的启动子片段,长度依次为1 301 bp、1 221 bp、1 049 bp、789 bp、328 bp和180 bp (图2)。构建的pGL3-basic重组质粒名字与正向引物名字一一对应,即PGL-22、PGL-102、PGL-274、PGL-534、PGL-995和PGL-1143,经测序确定序列正确。
2.3 MSTN启动子活性分析
将构建的6个不同长度缺失片段pGL3-basic重组质粒分别与pRL-TK质粒共转染到HEK293T细胞。pGL3-basic空载体作为阴性对照。荧光素酶活性检测结果见图3,6个启动子片段的pGL3-basic重组载体与阴性对照pGL-basic空载体相比,荧光强度均有显著性差异(P<0.05)。除PGL-22和PGL-274外,其他启动子片段的荧光强度彼此间均有显著性差异(P<0.05)。PGL-534的转录活性最高,其次为PGL-274、PGL-22和PGL-102,最低为PGL-995。
3. 讨论
启动子是基因的“开关”,决定着基因的活动。通过生物信息学预测启动子上的顺式作用元件和反式作用因子,是研究启动子结构和功能的基础。
本研究对华贵栉孔扇贝MSTN启动子序列进行生物信息学分析,结果显示核心启动子区为–100~–51 bp。华贵栉孔扇贝MSTN启动子包含4个TSS,分别位于起始密码ATG上游的第70、第233、第1 059和第1 299个碱基。栉孔扇贝和人的MSTN启动子有3个TSS[11,19],但在牛中只有1个[20]。TATA-box是真核生物启动子中重要组成部分,在猪[21]、大黄鱼 (Larimichthys crocea)[22]、栉孔扇贝[11]和华贵栉孔扇贝MSTN启动子中均发现有1个TATA-box,金头鲷 (Sparus aurata) MSTN启动子有2个TATA-box[23]。在大黄鱼和金头鲷MSTN启动子中,还检测到CAAT-box,但在扇贝中均未发现。E-box (核心序列为5'-CANNTG-3')在以上物种MSTN启动子中均检测到,说明E-box在不同物种MSTN启动子区域具有保守性。E-box突变会降低启动子活性[24]。E-box能被生肌调控家族因子(myogenic regular factor,MRFs)中的碱基螺旋-环-螺旋(bHLH)结构特异性识别,从而调控MSTN的转录[25]。
华贵栉孔扇贝MSTN启动子中存在的转录因子结合位点有MEF2、MEF3、FoxO、MTBF和MyoD。在其他物种中也发现有一样的转录因子结合位点,如在栉孔扇贝中发现MEF2和MTBF[11],在金头鲷中发现MEF2[23],在猪中发现MEF2和MyoD[21],在牛中发现MEF2、MyoD和FoxO1[26]。均为肌肉特异性相关的转录因子结合位点,参与MSTN基因的转录和表达[27-28]。MEF2广泛存在于肌肉细胞中,可与许多肌肉特异性基因的启动子结合[29]。MEF2有MEF2A、MEF2B、MEF2C、MEF2D等4种亚型。
CpG岛主要存在于启动子或第一外显子中,在基因表达调控中起负调控作用。本研究未发现华贵栉孔扇贝MSTN启动子存在CpG岛,这与栉孔扇贝MSTN启动子的分析结果相同。
报告基因是检测启动子活性的常用方法。本研究构建了6个不同缺失片段的启动子报告基因,发现它们都有转录活性。这些报告基因均包含核心启动子区域,说明预测的核心启动子区域结果可靠。6个不同缺失片段启动子的转录活性与启动子长度无关。如PGL-534的活性最高,但该序列并不是最长。这说明MSTN启动子序列中有的序列是促进该基因表达的调控元件,有的则是抑制该基因表达的调控元件。这些表达元件在一起产生作用,产生不同的转录活性。如PGL-1143转录活性比PGL-995的强,说明–216~–364 bp区域可能存在负调控基因表达的转录因子结合位点;PGL-995的转录活性远低于PGL-534,说明–364~–825 bp区域可能存在正调控基因表达的转录因子结合位点。这些推论还需要进一步研究证实。
-
图 7 不同添加物对免漂洗鱼糜凝胶中水质子密度 (伪彩色图像) 的影响
注:A—F分别为对照组和添加羟丙基二淀粉磷酸酯、聚丙烯酸钠、玉米淀粉、海藻膳食纤维和复配的免漂洗鱼糜凝胶。
Figure 7. Effect of different additives on water molecular density in non-rinsing surimi gel (Pseudo-color image)
Note: A−F represent control group, hydroxypropyl distarch, phosphate, sodium polyacrylate, corn starch, seaweed dietary fiber and compound non-rinsing surimi gel, respectively.
表 1 不同添加物对免漂洗鱼糜凝胶白度的影响
Table 1 Effect of different additives on whiteness of non-rinsing surimi gel
组别 Group 亮度 L* 红绿色度 a* 黄蓝色度 b* 白度 W 对照 Control 69.460±0.309e −0.493±0.177a 11.023±0.526a 67.524±0.335d 羟丙基二淀粉磷酸酯
Hydroxypropyl distarch phosphate72.820±1.113cd −1.575±0.290c 8.154±0.488c 71.572±1.042c 聚丙烯酸钠
Sodium polyacrylate74.104±0.526b −1.103±0.125b 9.423±0.395b 72.419±0.554b 玉米淀粉 Corn starch 72.149±0.696d −1.389±0.344c 8.436±0.679c 70.858±0.749c 海藻膳食纤维 Seaweed dietary fiber 72.995±0.755c −0.520±0.116a 9.859±0.431b 71.241±0.623c 复配 Compound 76.063±0.542a −2.168±0.281d 8.604±0.854c 74.457±0.528a 注:同指标不同字母间具有显著性差异 (p<0.05)。 Note: Values with different letters for the same index are significantly different (p<0.05). -
[1] 何晓萌, 黄卉, 李来好, 等. 罗非鱼与海水鱼制备混合鱼糜的凝胶特性研究[J]. 食品工业科技, 2018, 39(2): 5-9. [2] BUDA U, PRIYADARSHINI M B, MAJUMDAR R K, et al. Quality characteristics of fortified silver carp surimi with soluble dietary fiber: effect of apple pectin and konjac glucomannan[J]. Int J Biol Macromol, 2021, 175: 123-130. doi: 10.1016/j.ijbiomac.2021.01.191
[3] 刘慧. 食物多酚对未漂洗鱼糜脂质氧化的影响[D]. 长沙: 中南林业科技大学, 2023: 4-77. [4] 黄晓冰, 洪鹏志, 周春霞, 等. 不同原淀粉对金线鱼鱼糜凝胶品质的影响及其分子机制[J]. 广东海洋大学学报, 2024, 44(1): 133-141. doi: 10.3969/j.issn.1673-9159.2024.01.016 [5] 王睿纯, 李义, 林松毅, 等. 不同类型变性淀粉对鲅鱼鱼糜凝胶特性的影响[J]. 食品工业科技, 2023, 44(20): 85-92. [6] 张慧敏, 刘平稳. 不同变性淀粉对鱼糜凝胶特性的影响[J]. 粮食与食品工业, 2024, 31(1): 30-34. doi: 10.3969/j.issn.1672-5026.2024.01.008 [7] LAN H J, CHEN L, WANG Y T, et al. Effect of к-carrageenan on saltiness perception and texture characteristic related to salt release in low-salt surimi[J]. Int J Biol Macromol, 2023, 253: 126852. doi: 10.1016/j.ijbiomac.2023.126852
[8] 陈静静, 张鹏辉, 杨晨昱, 等. 四种胶体在鱼肉丸中的应用性研究[J]. 湖北农业科学, 2023, 62(11): 149-154. [9] CHEN B, CAI Y J, LIU T X, et al. Formation and performance of high acyl gellan hydrogel affected by the addition of physical-chemical treated insoluble soybean fiber[J]. Food Hydrocoll, 2020, 101: 105526. doi: 10.1016/j.foodhyd.2019.105526
[10] NIE J G, XUE C, XIONG S B, et al. Comparative analysis of soluble and insoluble dietary fiber on improving the gelation performance and fishy odors of silver carp surimi[J]. Int J Biol Macromol, 2024, 262: 129938. doi: 10.1016/j.ijbiomac.2024.129938
[11] 赵跃, 李春生, 王悦齐, 等. 罗非鱼鱼糜自然发酵过程中微生物群落结构对其品质形成的影响[J]. 食品科学, 2021, 42(18): 119-126. doi: 10.7506/spkx1002-6630-20200915-194 [12] 戚勃, 杨少玲, 王悦齐, 等. 羧甲基琼胶对罗非鱼鱼糜凝胶性能的影响[J]. 南方水产科学, 2022, 18(2): 83-89. doi: 10.12131/20210311 [13] 刘璐, 洪鹏志, 周春霞, 等. 不同种类淀粉对罗非鱼鱼糜凝胶品质的影响[J]. 食品科学, 2023, 44(6): 82-89. doi: 10.7506/spkx1002-6630-20220522-279 [14] 韦丽娜, 李来好, 郝淑贤, 等. 渗透处理对冷冻干燥罗非鱼肉品质和肌原纤维蛋白的影响[J]. 南方水产科学, 2023, 19(2): 133-141. doi: 10.12131/20220256 [15] PAN Y M, SUN Q X, LIU Y, er al. Optimization of 3D printing formulation of shrimp surimi based on response surface method[J]. LWT, 2024, 199: 116126. doi: 10.1016/j.lwt.2024.116126
[16] SUN X S, LYU Y Y, JIA H, et al. Improvement of flavor and gel properties of silver carp surimi product by Litsea cubeba oil high internal phase emulsions[J]. LWT, 2024, 192: 115745. doi: 10.1016/j.lwt.2024.115745
[17] CHEN H Z, ZHANG M, YANG C H. Comparative analysis of 3D printability and rheological properties of surimi gels via LF-NMR and dielectric characteristics[J]. J Food Eng, 2021, 292: 110278. doi: 10.1016/j.jfoodeng.2020.110278
[18] ZHANG H M, XIONG Y T, BAKRY A M, et al. Effect of yeast β-glucan on gel properties, spatial structure and sensory characteristics of silver carp surimi[J]. Food Hydrocoll, 2019, 88: 256-264. doi: 10.1016/j.foodhyd.2018.10.010
[19] CEN K Y, YU X, GAO C C, et al. Effects of quinoa protein Pickering emulsion on the properties, structure and intermolecular interactions of myofibrillar protein gel[J]. Food Chem, 2022, 394: 133456. doi: 10.1016/j.foodchem.2022.133456
[20] XIA S G, XUE Y, XUE C H, et al. Structural and rheological properties of meat analogues from Haematococcus pluvialis residue-pea protein by high moisture extrusion[J]. LWT, 2022, 154: 112756.
[21] MI H B, YU W S, LI Y, et al. Effect of modified cellulose-based emulsion on gel properties and protein conformation of Nemipterus virgatus surimi[J]. Food Chem, 2024, 455: 139841. doi: 10.1016/j.foodchem.2024.139841
[22] JIANG X, LIU J Y, XIAO N Y, et al. Characterization of the textural properties of thermally induced starch-surimi gels: morphological and structural observation[J]. Food Biosci, 2024, 58: 103675. doi: 10.1016/j.fbio.2024.103675
[23] MI H B, LI Y, WANG C, et al. The interaction of starch-gums and their effect on gel properties and protein conformation of silver carp surimi[J]. Food Hydrocoll, 2021, 112: 106290. doi: 10.1016/j.foodhyd.2020.106290
[24] ZHANG C, CHEN L, LU M X, et al. Effect of cellulose on gel properties of heat-induced low-salt surimi gels: physicochemical characteristics, water distribution and microstructure[J]. Food Chem: X, 2023, 19: 100820. doi: 10.1016/j.fochx.2023.100820
[25] JIANG Q X, CHEN N, GAO P, et al. Influence of L-arginine addition on the gel properties of reduced-salt white leg shrimp (Litopenaeus vannamei) surimi gel treated with microbial transglutaminase[J]. LWT, 2023, 173: 114310. doi: 10.1016/j.lwt.2022.114310
[26] YIN T, YAO R, ULLAH I, et al. Effects of nanosized okara dietary fiber on gelation properties of silver carp surimi[J]. LWT, 2019, 111: 111-116. doi: 10.1016/j.lwt.2019.05.023
[27] PEI Z S, WANG H B, XIA G H, et al. Emulsion gel stabilized by tilapia myofibrillar protein: application in lipid-enhanced surimi preparation[J]. Food Chem, 2023, 403: 134424. doi: 10.1016/j.foodchem.2022.134424
[28] ZHANG S, MEENU M, XIAO T, et al. Insight into the mechanism of pressure shift freezing on water mobility, microstructure, and rheological properties of grass carp surimi gel[J]. Innov Food Sci Emerg, 2024, 91: 103528. doi: 10.1016/j.ifset.2023.103528
[29] ZHU S C, WANG Y Y, DING Y C, et al. Improved texture properties and toughening mechanisms of surimi gels by double network strategies[J]. Food Hydrocoll, 2024, 152: 109900. doi: 10.1016/j.foodhyd.2024.109900
[30] FANG Q, SHI L F, REN Z Y, et al. Effects of emulsified lard and TGase on gel properties of threadfin bream (Nemipterus virgatus) surimi[J]. LWT, 2021, 146: 111513. doi: 10.1016/j.lwt.2021.111513
[31] ZHOU X X, CHEN T, LIN H H, et al. Physicochemical properties and microstructure of surimi treated with egg white modified by tea polyphenols[J]. Food Hydrocoll, 2019, 90: 82-89. doi: 10.1016/j.foodhyd.2018.07.031
[32] MONTO A R, YUAN L, XIONG Z Y, et al. Effect of α-tocopherol, soybean oil, and glyceryl monostearate oleogel on gel properties and the in-vitro digestion of low-salt silver carp (Hypophthalmichthys molitrix) surimi[J]. Food Chem, 2024, 460: 140588. doi: 10.1016/j.foodchem.2024.140588
[33] KONG W J, ZHANG T, FENG D D, et al. Effects of modified starches on the gel properties of Alaska pollock surimi subjected to different temperature treatments[J]. Food Hydrocoll, 2016, 56: 20-28. doi: 10.1016/j.foodhyd.2015.11.023
[34] TAN Z F, YANG X Q, WANG Z M, et al. Konjac glucomannan-assisted fabrication of stable emulsion-based oleogels constructed with pea protein isolate and its application in surimi gels[J]. Food Chem, 2024, 443: 138538. doi: 10.1016/j.foodchem.2024.138538
[35] YI X Z, PEI Z S, XIA G H, et al. Interaction between liposome and myofibrillar protein in surimi: effect on gel structure and digestive characteristics[J]. Int J Biol Macromol, 2023, 253: 126731. doi: 10.1016/j.ijbiomac.2023.126731
[36] ZHONG Y L, CAI Q Y, HUANG Q R, et al. Application of LF-NMR to characterize the roles of different emulsifiers in 3D printed emulsions[J]. Food Hydrocoll, 2022, 133: 107993. doi: 10.1016/j.foodhyd.2022.107993
[37] ZHAO X, CHEN L, WONGMANEEPRATIP W, et al. Effect of vacuum impregnated fish gelatin and grape seed extract on moisture state, microbiota composition, and quality of chilled seabass fillets[J]. Food Chem, 2021, 354: 129581. doi: 10.1016/j.foodchem.2021.129581
[38] ZHAO Y D, WEI K, CHEN J L, et al. Enhancement of myofibrillar protein gelation by plant proteins for improved surimi gel characteristics: mechanisms and performance[J]. LWT, 2024, 198: 116045. doi: 10.1016/j.lwt.2024.116045
[39] LIU Y, SUN Q X, WEI S, et al. LF-NMR as a tool for predicting the 3D printability of surimi-starch systems[J]. Food Chem, 2022, 374: 131727. doi: 10.1016/j.foodchem.2021.131727
[40] HE N, CHEN X R, LI L, et al. κ-Carrageenan masking bitterness perception in surimi gels containing potassium chloride-based salt substitutes: gel properties, oral processing, and sensory evaluation[J]. Food Chem, 2024, 456: 139859. doi: 10.1016/j.foodchem.2024.139859
[41] ZHANG X H, XIE W X, LIANG Q Q, et al. High inner phase emulsion of fish oil stabilized with rutin-grass carp (Ctenopharyngodon idella) myofibrillar protein: application as a fat substitute in surimi gel[J]. Food Hydrocoll, 2023, 145: 109115. doi: 10.1016/j.foodhyd.2023.109115
[42] LIU X J, CHI J H, LIN Y W, et al. Mechanistic insights into combined effects of continuous microwave heating and tremella powder addition on physiochemical properties of Nemipterus virgatus surimi gel[J]. Food Chem, 2024, 460: 140752. doi: 10.1016/j.foodchem.2024.140752
[43] ZHANG X H, PAN H, JIANG X, et al. Study on the mechanism of soy protein isolate to improve quality of reduced-salt Hypophthalmichthys molitrix surimi gel: focus on gel quality, protein structure, and in vitro digestibility[J]. Food Chem: X, 2023, 20: 100878. doi: 10.1016/j.fochx.2023.100878
[44] ZHAO X Y, WANG X F, ZENG L J, et al. Effects of oil-modified crosslinked/acetylated starches on silver carp surimi gel: texture properties, water mobility, microstructure, and related mechanisms[J]. Food Res Int, 2022, 158: 111521. doi: 10.1016/j.foodres.2022.111521
[45] YAN S, LIU X H, SANG Y X, et al. Gel mechanism analysis of minced scallop (Patinopecten yessoensis) meat modified by three kinds of food colloids[J]. Food Biosci, 2024, 57: 103541. doi: 10.1016/j.fbio.2023.103541
[46] LIU X, LIU Y N, DU X P, et al. Characterization of bamboo shoots dietary fiber modified by ball milling and its role in altering the physicochemical properties of shrimp surimi[J]. Int J Biol Macromol, 2024, 271: 131979. doi: 10.1016/j.ijbiomac.2024.131979
[47] ZHAO Y D, PIAO X Y, ZHENG B, et al. Enhancement of surimi gel properties through the synergetic effect of fucoidan and oligochitosan[J]. Food Hydrocoll, 2023, 140: 108626. doi: 10.1016/j.foodhyd.2023.108626
[48] MAN H, SUN P Z, LIN J X, et al. Based on hydrogen and disulfide-mediated bonds, l-lysine and l-arginine enhanced the gel properties of low-salt mixed shrimp surimi (Antarctic krill and Pacific white shrimp)[J]. Food Chem, 2024, 445: 138735. doi: 10.1016/j.foodchem.2024.138735
[49] 张晓慧, 郭全友, 郑尧, 等. 变性淀粉协同非肌肉蛋白对鱿鱼鱼糜制品凝胶特性及其蛋白构象的影响[J]. 食品科学, 2023, 44(20): 43-52. doi: 10.7506/spkx1002-6630-20221219-194 [50] WEI Q J, ZHANG W W, WANG J J, et al. Effect of κ-carrageenan on the quality of crayfish surimi gels[J]. Food Chem: X, 2024, 22: 101497. doi: 10.1016/j.fochx.2024.101497
[51] HE X L, LV Y N, LI X P, et al. Improvement of gelation properties of silver carp surimi through ultrasound-assisted water bath heating[J]. Ultraso Sonochem, 2022, 83: 105942. doi: 10.1016/j.ultsonch.2022.105942
[52] PIAO X Y, LI J W, ZHAO Y D, et al. Oxidized cellulose nanofibrils-based surimi gel enhancing additives: interactions, performance and mechanisms[J]. Food Hydrocoll, 2022, 133: 107893. doi: 10.1016/j.foodhyd.2022.107893
-
期刊类型引用(1)
1. 赵德风,陈然,肖国强,滕爽爽. 泥蚶转录因子c-Myc与下游ATP结合盒转运蛋白基因ABCA3启动子的结合鉴定. 浙江农业科学. 2023(06): 1317-1322 . 百度学术
其他类型引用(1)