免漂洗罗非鱼鱼糜凝胶品质改良及机理分析

罗颖莹, 黄卉, 李来好, 郝淑贤, 陈胜军, 魏涯, 岑剑伟, 相欢

罗颖莹, 黄卉, 李来好, 郝淑贤, 陈胜军, 魏涯, 岑剑伟, 相欢. 免漂洗罗非鱼鱼糜凝胶品质改良及机理分析[J]. 南方水产科学, 2025, 21(2): 164-173. DOI: 10.12131/20240238
引用本文: 罗颖莹, 黄卉, 李来好, 郝淑贤, 陈胜军, 魏涯, 岑剑伟, 相欢. 免漂洗罗非鱼鱼糜凝胶品质改良及机理分析[J]. 南方水产科学, 2025, 21(2): 164-173. DOI: 10.12131/20240238
LUO Yingying, HUANG Hui, LI Laihao, HAO Shuxian, CHEN Shengjun, WEI Ya, CEN Jianwei, XIANG Huan. Quality improvement and mechanism analysis of non-rinsing tilapia surimi gel[J]. South China Fisheries Science, 2025, 21(2): 164-173. DOI: 10.12131/20240238
Citation: LUO Yingying, HUANG Hui, LI Laihao, HAO Shuxian, CHEN Shengjun, WEI Ya, CEN Jianwei, XIANG Huan. Quality improvement and mechanism analysis of non-rinsing tilapia surimi gel[J]. South China Fisheries Science, 2025, 21(2): 164-173. DOI: 10.12131/20240238

免漂洗罗非鱼鱼糜凝胶品质改良及机理分析

基金项目: 国家现代农业产业技术体系(CARS-46);国家重点研发计划项目 (2022YFD2100903);广州市科技计划项目(2023B03J1263);中国水产科学研究院中央级公益性科研院所基本科研业务费专项资金资助(2023TD74);广东省科技计划项目(2023B0202010015)
详细信息
    作者简介:

    罗颖莹 (2000—),女,硕士研究生,研究方向为水产品加工与质量安全。E-mail: ying12102@163.com

    通讯作者:

    黄 卉 (1980—),女,副研究员,博士,研究方向为水产品加工与质量安全。E-mail: huanghuigd@aliyun.com

    李来好 (1963—),男,研究员,博士,研究方向为水产品加工与质量安全。E-mail: laihaoli@163.com

  • 中图分类号: TS 254.1

Quality improvement and mechanism analysis of non-rinsing tilapia surimi gel

  • 摘要:

    免漂洗鱼糜因含有较多的蛋白质和脂肪,风味较好,但凝胶特性不足。以罗非鱼免漂洗鱼糜为原料,探究淀粉、亲水胶体、膳食纤维等物质对其鱼糜凝胶质构特性、流变学特性、色泽、持水性及蒸煮损失率的影响,并从鱼糜水分分布、分子间作用力及蛋白质结构等角度多维分析免漂洗鱼糜凝胶品质增强的机理。结果表明:与对照组相比,淀粉、亲水胶体、膳食纤维等物质均能改善免漂洗鱼糜的质构特性和凝胶强度,提高其持水性且降低蒸煮损失率;在淀粉、亲水胶体及膳食纤维等作用下,免漂洗鱼糜中自由水转换为不易流动水和结合水,且蛋白质分子间的疏水相互作用增强,α-螺旋转变为有序β-折叠;形成十分致密、稳定的免漂洗鱼糜凝胶网络结构,明显改善了免漂洗鱼糜的凝胶品质。优化复配添加物 (1.5%羟丙基二淀粉磷酸酯、0.3%聚丙烯酸钠、12%玉米淀粉和1.5%海藻膳食纤维) 对免漂洗鱼糜凝胶的改善效果最显著。

    Abstract:

    Non-rinsing surimi has better flavor due to its higher protein and fat content, but it has insufficient gel properties. We investigated the effects of starch, hydrophilic colloid and dietary fiber on the texture characteristics, rheological properties, color, water holding capacity and cooking loss rate of tilapia non-rinsing surimi. Besides, we analyzed the mechanism of gel quality enhancement of non-rinsing surimi gel from the aspects of water distribution, intermolecular force and protein structure. The results show that compared with the control group, the starch, hydrophilic colloid, dietary fiber and other substances could improve the texture characteristics and gel strength of non-rinsing surimi. The water holding capacity of surimi increased and the cooking loss rate decreased. Under the influence of starch, hydrophilic colloid and dietary fiber, the free water in non-rinsing surimi was converted into immobilized water and bound water, the hydrophobic interaction between protein molecules enhanced, and the α-helix was transformed into ordered β-sheet. The formation of dense and stable surimi gel network structure could significantly improve the gel quality of non-rinsing surimi. Especially, the optimized compound addition (1.5% hydroxypropyl distarch phosphate, 0.3% sodium polyacrylate, 12% corn starch and 1.5% seaweed dietary fiber) had the most significant effect on surimi gel.

  • 黄唇鱼(Bahaba taipingensis)属石首鱼科,为近海大型暖温性底层鱼类,分布于中国南海和东海,尤其在珠江口较为常见,是中国特有种,1988年被列为国家二级重点保护水生野生动物[1-2]。黄唇鱼鱼鳔(俗称“鱼胶”)被认为有特殊的药用价值,自古以来一直是药用及滋补极品,极为珍贵[3]。黄唇鱼曾是珠江口重要的渔业捕捞对象[4],但20世纪后期以来,由于受到该海域水环境污染、高强度开发和非法捕捞等的影响,其资源量急剧下降,现处于濒临灭绝状态,2006年被世界自然保护联盟(IUCN)物种红色名录列为极度濒危物种(CR)[5]

    中国关于鱼类发声的研究在20世纪80年代已有开展[6-8],但其后一直发展缓慢,鲜有相关研究报道;且国外多研究鲸豚类发声,对鱼类发声特性的研究也较少报道[9-14]。石首鱼科鱼类能依靠鳔的振动发出明显的声音[15],其发声行为与生殖、防御、索饵等活动有密切关系[16-19],因而为研究者所关注。黄唇鱼和大黄鱼(Larimichthys crocea)均属石首鱼科,近年来已有使用被动声学方法研究大黄鱼、褐菖鲉(Sebastiscus marmoratus) 等的发声特性,但由于黄唇鱼的稀有性,目前尚未见对其发声特性的研究报道。

    声学探测包含被动探测与主动探测。使用被动声学方法探测黄唇鱼发声特性,既不会对鱼造成伤害,也不会破坏海洋环境。因此,本文通过被动声学方法监听黄唇鱼的声音,初步分析了其声谱特征,旨在为黄唇鱼声学无损调查、水下噪声影响分析和发声的生物学行为等物种保护研究提供基础数据。

    实验仪器为microMARS水听器,前置放大增益为18 dB,平坦频率响应范围为0.6~33 kHz,信号范围为70~166 dB re 1 μPa,用电池供电。

    2017年3—5月,对东莞黄唇鱼市级自然保护区救护驯养基地的室内水族箱和室外驯养池中黄唇鱼的水下发声情况进行了水下监听。室内水族箱高215 cm、长420 cm、宽150 cm、水深2 m,其中放养2尾体质量约25 kg的黄唇鱼,室内自然光,夜间不开灯。室外驯养池为矩形池塘,水深2~2.5 m,1#池面积约3 000 m2,驯养有29尾体质量约15~25 kg的黄唇鱼;2#池面积约6 300 m2,驯养有65尾体质量约8~13 kg的黄唇鱼。水听器固定在保护架上,放在水族箱底部一角,驯养池放置在池中央水深约2.5 m的池底。水听器采样频率为30 kHz,水族箱和2个训养池均监听2次,每次7 d。每次回收水听器后,导出并保存监听时间段内的WAV音频文件。

    通过音频软件Cool Edit Pro 2.1和Audacity试听音频并观察波形图,确定声信号类型,并对不同类型声信号、波形和时长等参数进行统计分析。白昼、夜晚的起始和结束时间以日出和日落时间为界线[20]。用MATLAB R2012a软件对声音信号进行时频分析,画出声音信号波形图;对声音信号进行短时傅立叶分析得到语谱图,亦称为可视语音;对声音信号作傅立叶变换得到频谱图,其中频谱图中的峰值对应的频率为谱峰中心频率[21-23]

    共获得音频文件总时长907.54 h,通过音频文件试听,结合声音信号的波形变化比对,将黄唇鱼发声分为7类:类鼓声、咔嚓声、雀鸣声、嗡嗡声、嗒嗒声、嚓咕声和其他声(图1)。监听期间共监听到黄唇鱼发声246次,其中类鼓声175次,约占71.1%,咔嚓声占比6.9%,雀鸣声、嗡嗡声、嗒嗒声、嚓咕声等占比均不超过4%,其他声音占比15.4% (表1)。其他声音主要出现在第二次水族箱监听中,共26次,且大多为不同声音。室外训养池与室内水族箱中黄唇鱼平均发声密度变化范围为0.040~0.712次·h–1,均随时间呈增加趋势(表1)。黄唇鱼中发声次数成对样品t检验分析表明,1#、2#池和水族箱中黄唇鱼的发声次数均无明显差异(P>0.18)。类鼓声包含的脉冲数变化范围为1~3个(图2),以单脉冲为主(139次),约占类鼓声总数的79%,类鼓声为类正弦波形,单脉冲类鼓声含3~43个波形;其他类别声音为单脉冲或多脉冲声音。

    图  1  黄唇鱼主要发出的6类声音
    a. 类鼓声;b. 嗡嗡声;c. 咔嚓声;d. 嗒嗒声;e. 雀鸣声;f. 嚓咕声
    Figure  1.  Six kinds of sounds made mainly by B. taipingensis
    a. drum sound; b. humming sound; c. cracking sound; d. clacking sound; e. bird sound; f. cha goo sound
    图  2  单脉冲 (a)、双脉冲 (b) 和三脉冲 (c) 类鼓声
    Figure  2.  Single pulse (a), double-pluse drum sound (b) and three-pluse (c) drum sound
    表  1  各类别发声次数
    Table  1.  Number of different sound types
    监听区
    monitored area
    时间 (月-日)
    time (month-date)
    总发声数
    total number of sounds
    平均发声密度/次·h–1
    mean sound density
    类鼓声
    drum sound
    咔嚓声
    cracking sound
    雀鸣声
    birds sound
    嗡嗡声
    humming sound
    嗒嗒声
    clacking sound
    嚓咕声
    cha goo sound
    其他声
    other sound
    1#
    Pool 1
    03-28—04-047
    0.040
    0006001
    04-21—04-2810
    0.058
    7300000
    2#
    Pool 2
    04-05—04-1219
    0.111
    5610502
    05-22—05-2963
    0.364
    50502006
    水族箱aquarium05-02—05-0424
    0.522
    21000003
    05-10—05-17123
    0.712
    923100126
    合计 total24617517285138
    下载: 导出CSV 
    | 显示表格

    实验监听期间,白昼监听到黄唇鱼发声134次,夜晚监听到112次,其中白昼类鼓声96次、夜晚79次。5月前监听夜晚发声次数多于白昼,之后白昼发声次数多于夜晚(图3),但成对样品t检验分析表明,黄唇鱼昼夜发声次数并没有明显差异(P=0.12)。

    图  3  总发声和类鼓声昼夜分布
    Figure  3.  Day and night signal distribution of total sound and drum sound

    黄唇鱼的类鼓声语谱图显示其声信号能量集中在0~1 000 Hz,其声纹与时间轴平行(图4);类鼓声频谱图显示其谱峰中心频率集中在50~140 Hz (图5)。

    图  4  类鼓声语谱图
    Figure  4.  Spectrogram of drum sound
    图  5  类鼓声的频谱图
    Figure  5.  Spectrum map of drum sound

    黄唇鱼的类鼓声时长范围为67~1 333 ms,总平均值为279 ms,众值为100 ms,67~533 ms时长段类鼓声占93% (图6);类鼓声的时长分布符合等差数列公式t=33.3+33.3n [t为时长(ms),n为正整数]。类鼓声脉冲宽度和脉冲间隔范围分别为35~733 ms和0~1 130 ms,总平均值分别为70 ms和183 ms。单脉冲类鼓声时长(脉冲宽度)范围为67~733 ms,平均值为243 ms;双脉冲类鼓声时长范围为100~1 333 ms,平均值为370 ms,脉冲宽度范围为35~350 ms,平均值为113 ms,脉冲间隔范围为0~1 130 ms,平均值为143 ms;三脉冲类鼓声时长范围为333~1 268 ms,平均值为655 ms,脉冲宽度范围为47~333 ms,平均值为100 ms,脉冲间隔范围为0~834 ms,平均值为179 ms (表2)。

    图  6  类鼓声时长分布
    Figure  6.  Distribution of duration time for drum sound
    表  2  类鼓声时域特征统计
    Table  2.  Pulse width and pulse interval of drum sound
    脉冲类型
    number of pulse
    时长/ms
    duration time
    脉冲宽度
    pulse width
    脉冲间隔
    pulse interval
    单脉冲 single pulse drum sound67~733 243 67~733 243
    双脉冲 double-pulse drum sound100~1 333 37035~350 1130~1 130 143
    三脉冲 three-pulse drum sound333~1 268 65547~333 1000~834 179
    总平均值 overall mean27970183
    下载: 导出CSV 
    | 显示表格

    黄唇鱼发出的类鼓声、咔嚓声、雀鸣声、嗡嗡声、嗒嗒声、嚓咕声等6类声音的语谱图及频谱图见图7。嗒嗒声的语谱图与类鼓声相似,显示其能量也集中在0~1 000 Hz,声纹与时间轴平行(图7-d1),但其谱峰中心频率范围为180~190 Hz (图7-d2)。嗡嗡声、咔嚓声、雀鸣声、嚓咕声能量和频率分布均范围较广,在低频和高频均有分布;其中嗡嗡声能量集中在0~1 000 Hz、2 000~6 000 Hz (图7-b1),谱峰中心频率范围为40~140 Hz (图7-b2);咔嚓声能量集中在2 000~5 000 Hz (图7-c1),谱峰中心频率范围为3 200~3 600 Hz (图7-c2);雀鸣声能量集中在0~3 000 Hz、10 000~12 500 Hz (图7-e1),谱峰中心频率有2处,范围分别为400~500 Hz和2 000~2 500 Hz;嚓咕声能量集中在0~5 000 Hz(图7-f1),谱峰中心频率范围为50~150 Hz (图7-f2)。

    图  7  语谱图和频谱图
    a1~a2. 类鼓声语谱图和声频谱图; b1~b2. 嗡嗡声语谱图和频谱图; c1~c2. 咔嚓声语谱图和频谱图; d1~d2. 嗒嗒声语谱图和频谱图; e1~e2. 雀鸣声语谱图和频谱图; f1~f2. 嚓咕声语谱图和频谱图
    Figure  7.  Spectrogram and spectrum map
    a1−a2. spectrogram and spectrum map of drum sound; b1−b2. spectrogram and spectrum map of humming sound; c1−c2. spectrogram and spectrum map of cracking sound; d1−d2. spectrogram and spectrum map of clacking sound; e1−e2. spectrogram and spectrum map of bird sound; f1−f2. spectrogram and spectrum map of cha goo sound

    鱼类发声行为的机制分别为鳔发声、摩擦发声、呼吸发声或其他[15]。石首鱼科鱼类主要依靠气鳔的振动发声,它们都有两束来自腹腔并直接或间接与鳔相联系的肌肉,肌肉急速收缩和放松,就能使鳔振动发声,鳔还可以作为共振器来帮助发声。鳔发声的强度和频率也可以调节。这种发声机制具有非常宽的频带,一般为几百至十几千赫兹。根据Sprague[24]的理论:发声鱼类的鱼鳔肌可视为振动弹簧模型,弹性肌肉的收缩和释放则分别对应于正弦波的不同半周期,而鱼鳔则作为一个阻尼结构,使鱼鳔肌的收缩逐渐衰减[25]。本研究中黄唇鱼的类鼓声脉冲波形图具有若干个类正弦波形,可以推测黄唇鱼类鼓声的发音类型属于鳔发声。此外,黄唇鱼类鼓声语谱图声纹与时间轴平行,显示了共振峰特征,根据语谱图声纹和共振发声的关系[26],可以推测黄唇鱼主要是以鳔为共振器来帮助发声[15]

    通常,不同种类的鱼所发出的声音在频率上差异较大,即使同一种类,由于其本身生物学状态的不同以及所处环境条件的变化,它们所发出的声音也各不相同[15]。珠江河口水域的生物发声监测辨认出66种声音类型,并倾向于拥有一个脉冲串结构[27]。大黄鱼觅食时发出的“咕噜噜”声信号都是简单的单脉冲,产卵时发出的“咯咯咯”声信号则大部分是连续的双脉冲或三脉冲,只有极个别为单脉冲或多脉冲[23]。大黄鱼也发出惊扰声和摄食声[28]。褐菖鲉在领地入侵实验中发出“咕噜噜”的叫声,其声音波形由几个单独脉冲或一组连续脉冲构成,波形特征基本相似[25]。与大黄鱼、褐菖鲉相似,本研究中黄唇鱼发出的声信号主要为单脉冲信号,也有双脉冲或三脉冲信号,主要发出类鼓声、咔嚓声、雀鸣声、嗡嗡声、嗒嗒声、嚓咕声等6类声音,类鼓声占比高达71.1%,由此可以推测类鼓声是黄唇鱼发声行为中最重要的类别,对种群内的信息传递有重要意义。

    不同水生生物的声谱特征存在较明显的差异。鱼类发声频率一般为低频,谱峰中心频率多在1 000 Hz以内(表2),珠江河口水域生物的66种声信号的谱峰中心频率范围为500~2 600 Hz,能量集中在4 000 Hz以下[27]。与鱼类不同,鲸豚类一般发出宽带高频声信号,如江豚(Neophocaena phocaenoides)发出的探测声信号谱峰中心频率为87~145 kHz[34];中华白海豚(Sousa chinensis)发出的click串声信号谱峰中心频率为70~80 kHz,最高频信号甚至在125 kHz以上,主要能量分布在50 kHz以上[8,35]。黄唇鱼发出的类鼓声能量集中在0~1 000 Hz,谱峰中心频率为50~140 Hz,发出的嗒嗒声的能量分布及谱峰中心频率范围与类鼓声相似,发出的嗡嗡声、咔嚓声、雀鸣声、嚓咕声能量同时包含低频(0~1 000 Hz)与高频成分(3 000~12 500 Hz),其谱峰中心频率范围也较广。与黄唇鱼同属石首鱼科的大黄鱼也会发出多种声音,如咕噜噜摄食声、咯咯咯产卵声和惊扰发声,其谱峰中心频率范围在630~800 Hz,梅童鱼(Collichthys lucidus)、黄姑鱼(Nibea albiflora)、白姑鱼(Argyrosomus argentatus)、叫姑鱼(Johnius belengeri)和拟石首鱼(Sciaenops ocellatus)等其他石首鱼科鱼类声信号的谱峰中心频率范围为139~2 000 Hz,非石首鱼科鱼类声信号的谱峰中心频率范围为83~1 200 Hz (表3)。可见,相比其他鱼类的声信号,黄唇鱼的类鼓声、嗒嗒声、嗡嗡声和嚓咕声的谱峰中心频率处于偏低水平。

    表  3  部分鱼类声信号谱峰中心频率
    Table  3.  Spectral frequency peak of sound signal of servaral fishes
    种类
    species
    谱峰中心频率/Hz
    spectral frequency peak
    文献来源
    Reference
    黄唇鱼 Bahaba taipingensis类鼓声50~140;嗒嗒声180~190;嗡嗡声40~140;咔嚓声3 200~3 600;
    雀鸣声400~500、2 000~2 500;嚓咕声50~150
    本研究
    大黄鱼 Larimichthys crocea630~800[7,23,28]
    梅童鱼 Collichthys lucidus1 000[8]
    黄姑鱼 Nibea albiflora 650±20.12[23]
    尖头黄姑鱼 Nibea acuta630±15.57[23]
    白姑鱼 Argyrosomus argentatus400[29]
    叫姑鱼 Johnius belengeri2 000[29]
    拟石首鱼 Sciaenops ocellatus139[30]
    金尾贝氏石首鱼 Bairdiella chrysoura1 046[30]
    狗䱛 Cynoscion regails347[30]
    云斑狗䱛 Cynoscion nebulosus300[30]
    红牙䱛 Otolithes ruber632±10.06[23]
    褐菖鲉 Sebasticus marmoratus83~174[25]
    金眼鲷 Beryx splendens Lowe337±8.50[23]
    带鱼 Trichiurus haumela 628±11.40[23]
    白鱼 Salangichthysm icrodon Bleeker536±10.39[23]
    刺鱼 Gasterosteus aculeatus Linnaeus420±0[23]
    大斑石鲈 Pomadasysmaculatus 415±9.40[23]
    粗纹鲾鱼 Leiognathus lineolatus757±24.70[23]
    黑鳍叶鲹 Atule malam542±16.90[23]
    游鳍叶鲹 Atule mate Cuvier et Va lenciennes528±9.67[23]
    白舌尾甲鲹 Uraspis helvola534±17.92[23]
    海鲶 Arius sp.735±12.39[23]
    东方豹鲂鮄鱼 Dactyloptena orientalis348±0[23]
    鳓鱼 Ilisha elongata251±18.41[23]
    白腹豆娘鱼 Abudefduf luridus356[31]
    鼬鳚 Ophidion marginatum1 200[32]
    红棘胸鲷 Gadidae mediterraneus180[33]
    下载: 导出CSV 
    | 显示表格

    黄唇鱼的声谱特征与其他鱼类相比,差异与共性并存,鱼类发声频率范围一般为低频(1 000 Hz以内),但这并不意味着不同鱼的声谱特征、时域特征是重复的,如不同声音听觉上就完全不同,其波形、谱峰中心频率、语谱图等也均有明显差异,可根据这些差异进行鱼类发声分类,及其声谱和时域特征辨别。待鱼类声信号特征提取达到一定水平和累积足够多的鱼类声信号数据后,才可能对鱼类声信号表征的鱼类信息交流和行为进行精准鉴别。

    黄唇鱼发出的类鼓声时长范围为67~1 333 ms,总平均值为279 ms,众值为100 ms,时长分布符合等差数列公式t=33.3+33.3n [t为时长(ms),n为正整数];类鼓声脉冲宽度和脉冲间隔范围分别为35~733 ms和0~1 130 ms,总平均值分别为70 ms和183 ms。黄唇鱼类鼓声时长和脉冲间隔随着声信号脉冲数的增加而增长,脉冲宽度则减短。大黄鱼摄食声或产卵声的声信号时长1~2 ms,摄食声的脉冲间隔为1~30 ms,产卵声的脉冲间隔为90~140 ms,其时长和脉冲间隔均远比黄唇鱼类鼓声的短[23]。褐菖鲉平均脉冲宽度(32.6±2.6) ms[25],也明显短于黄唇鱼类鼓声的平均脉宽。与鲸豚类比较,中华白海豚click声信号脉冲间隔变化范围为3.3~349.2 ms,也短于黄唇鱼类鼓声的脉冲间隔[35]。可见水生生物在发出的声信号时长、脉冲宽度和脉冲间隔等的差异主要与不同发声生物及不同声信号类型有关。

    本文对人工圈养的黄唇鱼在不同实验条件下(室内水族箱、室外池塘)的发声信号进行采集,对黄唇鱼的发声机制、发声类型、声谱特征及时域特征进行了初步分析。结果表明,黄唇鱼声学监听共监听到246次发声,发出的声音分为7类,分别是类鼓声、咔嚓声、雀鸣声、嗡嗡声、嗒嗒声、嚓咕声和其他声音等。黄唇鱼昼夜发声次数没有明显差异。黄唇鱼发声以类鼓声为主(175次),类鼓声由1~3个脉冲组成,又以单脉冲类鼓声为主(139次)。类鼓声为类正弦波形,能量集中在0~1 000 Hz,声纹与时间轴平行,谱峰中心频率为50~140 Hz。嗒嗒声与类鼓声相似,其能量也集中在0~1 000 Hz,但谱峰中心频率范围为180~190 Hz。嗡嗡声、咔嚓声、雀鸣声和嚓咕声同时包含低频(0~1 000 Hz)与高频(3 000~12 500 Hz)成分。类鼓声时长、脉冲宽度和脉冲间隔范围分别为67~1 333 ms、35~733 ms和0~1 130 ms,平均值分别为279 ms、70 ms和183 ms;类鼓声时长和脉冲间隔随着声信号脉冲数的增加而增长,脉冲宽度则减短。

    实验用水听器平坦频率响应范围为0.6~33 kHz,而监听到低于600 Hz的黄唇鱼发声信号,说明仅距离水听器较近的黄唇鱼发声信号被监听到,距离水听器较远的黄唇鱼发声信号未被监听到。所以有必要对实验监听系统作改进,以监听并记录到更多的黄唇鱼发声信号和获得更全面的黄唇鱼发声特征。另外,不同实验条件下黄唇鱼发声信号可能存在一定差异。目前声纹识别技术研究仅限于人类语音学,还未应用在鱼类声信号研究中。在今后的工作中需要通过更多实验获取更加丰富的数据和改进数据分析方法进行深入研究,并结合黄唇鱼的行为特征来归类划分、建立数据库,为人工救护、喂养、保护珍稀黄唇鱼提供参考。

  • 图  1   不同添加物对免漂洗鱼糜凝胶质构特性的影响

    注:同指标不同字母间具有显著性差异 (p<0.05)。

    Figure  1.   Effect of different additives on texture properties of non-rinsing surimi gel

    Note: Values with different letters for the same index are significantly different (p<0.05).

    图  2   不同添加物对免漂洗鱼糜凝胶强度的影响

    注:同指标不同字母间具有显著性差异 (p<0.05)。

    Figure  2.   Effect of different additives on gel strength of non-rinsing surimi gel

    Note: Values with different letters for the same index are significantly different (p<0.05).

    图  3   不同添加物对免漂洗鱼糜动态黏弹性的影响

    Figure  3.   Effect of different additives on dynamic viscoelasticity of non-rinsing surimi

    图  4   不同添加物对免漂洗鱼糜凝胶持水性及蒸煮损失率的影响

    注:同指标不同字母间具有显著性差异 (p<0.05)。

    Figure  4.   Effect of different additives on water-holding capacity and cooking loss rate of non-rinsing surimi gel

    Note: Values with different letters for the same index are significantly different (p<0.05).

    图  5   不同添加物对免漂洗鱼糜弛豫时间的影响

    Figure  5.   Effect of different additives on $ {T}_{2} $ relaxation time of non-rinsing surimi

    图  6   不同添加物对免漂洗鱼糜凝胶水分组成的影响

    Figure  6.   Effect of different additives on water content of non-rinsing surimi gel

    图  7   不同添加物对免漂洗鱼糜凝胶中水质子密度 (伪彩色图像) 的影响

    注:A—F分别为对照组和添加羟丙基二淀粉磷酸酯、聚丙烯酸钠、玉米淀粉、海藻膳食纤维和复配的免漂洗鱼糜凝胶。

    Figure  7.   Effect of different additives on water molecular density in non-rinsing surimi gel (Pseudo-color image)

    Note: A−F represent control group, hydroxypropyl distarch, phosphate, sodium polyacrylate, corn starch, seaweed dietary fiber and compound non-rinsing surimi gel, respectively.

    图  8   不同添加物对免漂洗鱼糜凝胶分子间作用力的影响

    注:同指标不同字母间具有显著性差异 (p<0.05)。

    Figure  8.   Effect of different additives on intermolecular forces of non-rinsing surimi gel

    Note: Values with different letters for the same index are significantly different (p<0.05).

    图  9   不同添加物对免漂洗鱼糜凝胶蛋白质二级结构的影响

    Figure  9.   Effect of different additives on the secondary structure of surimi proteins in no-rinsing surimi gel

    表  1   不同添加物对免漂洗鱼糜凝胶白度的影响

    Table  1   Effect of different additives on whiteness of non-rinsing surimi gel

    组别 Group 亮度 L* 红绿色度 a* 黄蓝色度 b* 白度 W
    对照 Control 69.460±0.309e −0.493±0.177a 11.023±0.526a 67.524±0.335d
    羟丙基二淀粉磷酸酯
    Hydroxypropyl distarch phosphate
    72.820±1.113cd −1.575±0.290c 8.154±0.488c 71.572±1.042c
    聚丙烯酸钠
    Sodium polyacrylate
    74.104±0.526b −1.103±0.125b 9.423±0.395b 72.419±0.554b
    玉米淀粉 Corn starch 72.149±0.696d −1.389±0.344c 8.436±0.679c 70.858±0.749c
    海藻膳食纤维 Seaweed dietary fiber 72.995±0.755c −0.520±0.116a 9.859±0.431b 71.241±0.623c
    复配 Compound 76.063±0.542a −2.168±0.281d 8.604±0.854c 74.457±0.528a
    注:同指标不同字母间具有显著性差异 (p<0.05)。 Note: Values with different letters for the same index are significantly different (p<0.05).
    下载: 导出CSV
  • [1] 何晓萌, 黄卉, 李来好, 等. 罗非鱼与海水鱼制备混合鱼糜的凝胶特性研究[J]. 食品工业科技, 2018, 39(2): 5-9.
    [2]

    BUDA U, PRIYADARSHINI M B, MAJUMDAR R K, et al. Quality characteristics of fortified silver carp surimi with soluble dietary fiber: effect of apple pectin and konjac glucomannan[J]. Int J Biol Macromol, 2021, 175: 123-130. doi: 10.1016/j.ijbiomac.2021.01.191

    [3] 刘慧. 食物多酚对未漂洗鱼糜脂质氧化的影响[D]. 长沙: 中南林业科技大学, 2023: 4-77.
    [4] 黄晓冰, 洪鹏志, 周春霞, 等. 不同原淀粉对金线鱼鱼糜凝胶品质的影响及其分子机制[J]. 广东海洋大学学报, 2024, 44(1): 133-141. doi: 10.3969/j.issn.1673-9159.2024.01.016
    [5] 王睿纯, 李义, 林松毅, 等. 不同类型变性淀粉对鲅鱼鱼糜凝胶特性的影响[J]. 食品工业科技, 2023, 44(20): 85-92.
    [6] 张慧敏, 刘平稳. 不同变性淀粉对鱼糜凝胶特性的影响[J]. 粮食与食品工业, 2024, 31(1): 30-34. doi: 10.3969/j.issn.1672-5026.2024.01.008
    [7]

    LAN H J, CHEN L, WANG Y T, et al. Effect of к-carrageenan on saltiness perception and texture characteristic related to salt release in low-salt surimi[J]. Int J Biol Macromol, 2023, 253: 126852. doi: 10.1016/j.ijbiomac.2023.126852

    [8] 陈静静, 张鹏辉, 杨晨昱, 等. 四种胶体在鱼肉丸中的应用性研究[J]. 湖北农业科学, 2023, 62(11): 149-154.
    [9]

    CHEN B, CAI Y J, LIU T X, et al. Formation and performance of high acyl gellan hydrogel affected by the addition of physical-chemical treated insoluble soybean fiber[J]. Food Hydrocoll, 2020, 101: 105526. doi: 10.1016/j.foodhyd.2019.105526

    [10]

    NIE J G, XUE C, XIONG S B, et al. Comparative analysis of soluble and insoluble dietary fiber on improving the gelation performance and fishy odors of silver carp surimi[J]. Int J Biol Macromol, 2024, 262: 129938. doi: 10.1016/j.ijbiomac.2024.129938

    [11] 赵跃, 李春生, 王悦齐, 等. 罗非鱼鱼糜自然发酵过程中微生物群落结构对其品质形成的影响[J]. 食品科学, 2021, 42(18): 119-126. doi: 10.7506/spkx1002-6630-20200915-194
    [12] 戚勃, 杨少玲, 王悦齐, 等. 羧甲基琼胶对罗非鱼鱼糜凝胶性能的影响[J]. 南方水产科学, 2022, 18(2): 83-89. doi: 10.12131/20210311
    [13] 刘璐, 洪鹏志, 周春霞, 等. 不同种类淀粉对罗非鱼鱼糜凝胶品质的影响[J]. 食品科学, 2023, 44(6): 82-89. doi: 10.7506/spkx1002-6630-20220522-279
    [14] 韦丽娜, 李来好, 郝淑贤, 等. 渗透处理对冷冻干燥罗非鱼肉品质和肌原纤维蛋白的影响[J]. 南方水产科学, 2023, 19(2): 133-141. doi: 10.12131/20220256
    [15]

    PAN Y M, SUN Q X, LIU Y, er al. Optimization of 3D printing formulation of shrimp surimi based on response surface method[J]. LWT, 2024, 199: 116126. doi: 10.1016/j.lwt.2024.116126

    [16]

    SUN X S, LYU Y Y, JIA H, et al. Improvement of flavor and gel properties of silver carp surimi product by Litsea cubeba oil high internal phase emulsions[J]. LWT, 2024, 192: 115745. doi: 10.1016/j.lwt.2024.115745

    [17]

    CHEN H Z, ZHANG M, YANG C H. Comparative analysis of 3D printability and rheological properties of surimi gels via LF-NMR and dielectric characteristics[J]. J Food Eng, 2021, 292: 110278. doi: 10.1016/j.jfoodeng.2020.110278

    [18]

    ZHANG H M, XIONG Y T, BAKRY A M, et al. Effect of yeast β-glucan on gel properties, spatial structure and sensory characteristics of silver carp surimi[J]. Food Hydrocoll, 2019, 88: 256-264. doi: 10.1016/j.foodhyd.2018.10.010

    [19]

    CEN K Y, YU X, GAO C C, et al. Effects of quinoa protein Pickering emulsion on the properties, structure and intermolecular interactions of myofibrillar protein gel[J]. Food Chem, 2022, 394: 133456. doi: 10.1016/j.foodchem.2022.133456

    [20]

    XIA S G, XUE Y, XUE C H, et al. Structural and rheological properties of meat analogues from Haematococcus pluvialis residue-pea protein by high moisture extrusion[J]. LWT, 2022, 154: 112756.

    [21]

    MI H B, YU W S, LI Y, et al. Effect of modified cellulose-based emulsion on gel properties and protein conformation of Nemipterus virgatus surimi[J]. Food Chem, 2024, 455: 139841. doi: 10.1016/j.foodchem.2024.139841

    [22]

    JIANG X, LIU J Y, XIAO N Y, et al. Characterization of the textural properties of thermally induced starch-surimi gels: morphological and structural observation[J]. Food Biosci, 2024, 58: 103675. doi: 10.1016/j.fbio.2024.103675

    [23]

    MI H B, LI Y, WANG C, et al. The interaction of starch-gums and their effect on gel properties and protein conformation of silver carp surimi[J]. Food Hydrocoll, 2021, 112: 106290. doi: 10.1016/j.foodhyd.2020.106290

    [24]

    ZHANG C, CHEN L, LU M X, et al. Effect of cellulose on gel properties of heat-induced low-salt surimi gels: physicochemical characteristics, water distribution and microstructure[J]. Food Chem: X, 2023, 19: 100820. doi: 10.1016/j.fochx.2023.100820

    [25]

    JIANG Q X, CHEN N, GAO P, et al. Influence of L-arginine addition on the gel properties of reduced-salt white leg shrimp (Litopenaeus vannamei) surimi gel treated with microbial transglutaminase[J]. LWT, 2023, 173: 114310. doi: 10.1016/j.lwt.2022.114310

    [26]

    YIN T, YAO R, ULLAH I, et al. Effects of nanosized okara dietary fiber on gelation properties of silver carp surimi[J]. LWT, 2019, 111: 111-116. doi: 10.1016/j.lwt.2019.05.023

    [27]

    PEI Z S, WANG H B, XIA G H, et al. Emulsion gel stabilized by tilapia myofibrillar protein: application in lipid-enhanced surimi preparation[J]. Food Chem, 2023, 403: 134424. doi: 10.1016/j.foodchem.2022.134424

    [28]

    ZHANG S, MEENU M, XIAO T, et al. Insight into the mechanism of pressure shift freezing on water mobility, microstructure, and rheological properties of grass carp surimi gel[J]. Innov Food Sci Emerg, 2024, 91: 103528. doi: 10.1016/j.ifset.2023.103528

    [29]

    ZHU S C, WANG Y Y, DING Y C, et al. Improved texture properties and toughening mechanisms of surimi gels by double network strategies[J]. Food Hydrocoll, 2024, 152: 109900. doi: 10.1016/j.foodhyd.2024.109900

    [30]

    FANG Q, SHI L F, REN Z Y, et al. Effects of emulsified lard and TGase on gel properties of threadfin bream (Nemipterus virgatus) surimi[J]. LWT, 2021, 146: 111513. doi: 10.1016/j.lwt.2021.111513

    [31]

    ZHOU X X, CHEN T, LIN H H, et al. Physicochemical properties and microstructure of surimi treated with egg white modified by tea polyphenols[J]. Food Hydrocoll, 2019, 90: 82-89. doi: 10.1016/j.foodhyd.2018.07.031

    [32]

    MONTO A R, YUAN L, XIONG Z Y, et al. Effect of α-tocopherol, soybean oil, and glyceryl monostearate oleogel on gel properties and the in-vitro digestion of low-salt silver carp (Hypophthalmichthys molitrix) surimi[J]. Food Chem, 2024, 460: 140588. doi: 10.1016/j.foodchem.2024.140588

    [33]

    KONG W J, ZHANG T, FENG D D, et al. Effects of modified starches on the gel properties of Alaska pollock surimi subjected to different temperature treatments[J]. Food Hydrocoll, 2016, 56: 20-28. doi: 10.1016/j.foodhyd.2015.11.023

    [34]

    TAN Z F, YANG X Q, WANG Z M, et al. Konjac glucomannan-assisted fabrication of stable emulsion-based oleogels constructed with pea protein isolate and its application in surimi gels[J]. Food Chem, 2024, 443: 138538. doi: 10.1016/j.foodchem.2024.138538

    [35]

    YI X Z, PEI Z S, XIA G H, et al. Interaction between liposome and myofibrillar protein in surimi: effect on gel structure and digestive characteristics[J]. Int J Biol Macromol, 2023, 253: 126731. doi: 10.1016/j.ijbiomac.2023.126731

    [36]

    ZHONG Y L, CAI Q Y, HUANG Q R, et al. Application of LF-NMR to characterize the roles of different emulsifiers in 3D printed emulsions[J]. Food Hydrocoll, 2022, 133: 107993. doi: 10.1016/j.foodhyd.2022.107993

    [37]

    ZHAO X, CHEN L, WONGMANEEPRATIP W, et al. Effect of vacuum impregnated fish gelatin and grape seed extract on moisture state, microbiota composition, and quality of chilled seabass fillets[J]. Food Chem, 2021, 354: 129581. doi: 10.1016/j.foodchem.2021.129581

    [38]

    ZHAO Y D, WEI K, CHEN J L, et al. Enhancement of myofibrillar protein gelation by plant proteins for improved surimi gel characteristics: mechanisms and performance[J]. LWT, 2024, 198: 116045. doi: 10.1016/j.lwt.2024.116045

    [39]

    LIU Y, SUN Q X, WEI S, et al. LF-NMR as a tool for predicting the 3D printability of surimi-starch systems[J]. Food Chem, 2022, 374: 131727. doi: 10.1016/j.foodchem.2021.131727

    [40]

    HE N, CHEN X R, LI L, et al. κ-Carrageenan masking bitterness perception in surimi gels containing potassium chloride-based salt substitutes: gel properties, oral processing, and sensory evaluation[J]. Food Chem, 2024, 456: 139859. doi: 10.1016/j.foodchem.2024.139859

    [41]

    ZHANG X H, XIE W X, LIANG Q Q, et al. High inner phase emulsion of fish oil stabilized with rutin-grass carp (Ctenopharyngodon idella) myofibrillar protein: application as a fat substitute in surimi gel[J]. Food Hydrocoll, 2023, 145: 109115. doi: 10.1016/j.foodhyd.2023.109115

    [42]

    LIU X J, CHI J H, LIN Y W, et al. Mechanistic insights into combined effects of continuous microwave heating and tremella powder addition on physiochemical properties of Nemipterus virgatus surimi gel[J]. Food Chem, 2024, 460: 140752. doi: 10.1016/j.foodchem.2024.140752

    [43]

    ZHANG X H, PAN H, JIANG X, et al. Study on the mechanism of soy protein isolate to improve quality of reduced-salt Hypophthalmichthys molitrix surimi gel: focus on gel quality, protein structure, and in vitro digestibility[J]. Food Chem: X, 2023, 20: 100878. doi: 10.1016/j.fochx.2023.100878

    [44]

    ZHAO X Y, WANG X F, ZENG L J, et al. Effects of oil-modified crosslinked/acetylated starches on silver carp surimi gel: texture properties, water mobility, microstructure, and related mechanisms[J]. Food Res Int, 2022, 158: 111521. doi: 10.1016/j.foodres.2022.111521

    [45]

    YAN S, LIU X H, SANG Y X, et al. Gel mechanism analysis of minced scallop (Patinopecten yessoensis) meat modified by three kinds of food colloids[J]. Food Biosci, 2024, 57: 103541. doi: 10.1016/j.fbio.2023.103541

    [46]

    LIU X, LIU Y N, DU X P, et al. Characterization of bamboo shoots dietary fiber modified by ball milling and its role in altering the physicochemical properties of shrimp surimi[J]. Int J Biol Macromol, 2024, 271: 131979. doi: 10.1016/j.ijbiomac.2024.131979

    [47]

    ZHAO Y D, PIAO X Y, ZHENG B, et al. Enhancement of surimi gel properties through the synergetic effect of fucoidan and oligochitosan[J]. Food Hydrocoll, 2023, 140: 108626. doi: 10.1016/j.foodhyd.2023.108626

    [48]

    MAN H, SUN P Z, LIN J X, et al. Based on hydrogen and disulfide-mediated bonds, l-lysine and l-arginine enhanced the gel properties of low-salt mixed shrimp surimi (Antarctic krill and Pacific white shrimp)[J]. Food Chem, 2024, 445: 138735. doi: 10.1016/j.foodchem.2024.138735

    [49] 张晓慧, 郭全友, 郑尧, 等. 变性淀粉协同非肌肉蛋白对鱿鱼鱼糜制品凝胶特性及其蛋白构象的影响[J]. 食品科学, 2023, 44(20): 43-52. doi: 10.7506/spkx1002-6630-20221219-194
    [50]

    WEI Q J, ZHANG W W, WANG J J, et al. Effect of κ-carrageenan on the quality of crayfish surimi gels[J]. Food Chem: X, 2024, 22: 101497. doi: 10.1016/j.fochx.2024.101497

    [51]

    HE X L, LV Y N, LI X P, et al. Improvement of gelation properties of silver carp surimi through ultrasound-assisted water bath heating[J]. Ultraso Sonochem, 2022, 83: 105942. doi: 10.1016/j.ultsonch.2022.105942

    [52]

    PIAO X Y, LI J W, ZHAO Y D, et al. Oxidized cellulose nanofibrils-based surimi gel enhancing additives: interactions, performance and mechanisms[J]. Food Hydrocoll, 2022, 133: 107893. doi: 10.1016/j.foodhyd.2022.107893

  • 期刊类型引用(4)

    1. 韩枫,张凯强,冯启超,温海深. 花鲈仔稚鱼视觉、消化和运动等器官发育组织学观察. 水产学杂志. 2023(04): 13-19 . 百度学术
    2. 房莹莹,陈璐璐,刘松涛,孙飞,吴燕玲,李鑫,刘鹰,马贺. 光谱对许氏平鲉消化代谢节律及生理应激研究. 海洋科学. 2023(10): 94-111 . 百度学术
    3. 符徐泽,邹芝英,肖炜,祝璟琳,李大宇,喻杰,陈炳霖,杨弘. 不同光照周期对尼罗罗非鱼生物钟基因表达的影响. 农业生物技术学报. 2022(03): 539-549 . 百度学术
    4. 史东杰,王文峰,李文通,魏东,王赛赛,姜巨峰. 5种光周期对锦鲤生长、能量收支及生物钟基因表达的影响. 水生生物学报. 2022(05): 664-670 . 百度学术

    其他类型引用(3)

图(9)  /  表(1)
计量
  • 文章访问数:  740
  • HTML全文浏览量:  24
  • PDF下载量:  15
  • 被引次数: 7
出版历程
  • 收稿日期:  2024-10-08
  • 修回日期:  2024-11-13
  • 录用日期:  2025-01-08
  • 网络出版日期:  2025-01-16
  • 刊出日期:  2025-04-04

目录

/

返回文章
返回