Structural and functional characteristics of intestinal bacterial community associated with red spotting disease of Strongylocentroyus intermedius
-
摘要:
红斑病是海胆养殖过程中最常见的细菌性疾病之一,具有发病速度快、传染性强、致死率高等特点。为揭示机体患病和肠道菌群间的相关性,基于16S rRNA测序技术,开展了患红斑病中间球海胆 (Strongylocentroyus intermedius) 肠道菌群结构和功能特征研究。结果显示,与健康组海胆相比,患病组海胆肠道菌群可操作分类单元 (Operational taxonomic units, OTUs) 数量减少,Alpha多样性显著下降 (p<0.05)。门水平上,患病组海胆肠道菌群结构特征表现为变形菌门和拟杆菌门的相对丰度显著上升,以及厚壁菌门的相对丰度显著下降 (p<0.05)。属水平上,Burkholderia_Caballeronia_Paraburkholderia、短波单胞菌属 (Brevundimonas)、弧菌属 (Vibrio)、假单胞菌属 (Pseudomonas) 等的相对丰度显著增加 (p<0.05)。功能分析进一步揭示了患病组海胆肠道菌群代谢通路的变化,具体表现为肾素-血管紧张素系统、蛋白质消化、吸收、霍乱弧菌 (V. cholerae) 感染等相关代谢通路丰度显著增加,而叶酸生物合成途径通路丰度显著降低 (p<0.05)。研究表明,红斑病扰乱了中间球海胆肠道微生态平衡,降低了肠道菌群的稳定性。
Abstract:Red spot disease is one of the most prevalent bacterial diseases in sea urchin (Strongylocentrotus intermedius) aquaculture, exhibiting rapid development, high contagion and a considerable mortality rate. We investigated the gut bacterial community composition and function characteristics of sea urchins with red spotting disease by using 16S rRNA sequencing technology, so as to reveal the correlation between diseases and gut bacterial communities. The results demonstrate that compared with the healthy sea urchins, the number of operational taxonomic units (OTUs) and the Alpha index in the gut microbiota of the diseased ones decreased significantly (p<0.05). On phylum level, the relative abundance of Proteobacteria and Bacteroidota in the gut of diseased sea urchin increased significantly, while the relative abundance of Firmicutes was significantly lower (p<0.05). On genus level, the relative abundance of Burkholderia_Caballeronia_Paraburkholderia, Brevundimonas, Vibrio and Pseudomonas increased significantly (p<0.05). The analysis of the functional characteristics of the microbial communities reveals that the paths related to the Renin-angiotensin system, protein digestion, and Vibrio cholerae infection in diseased sea urchins increased significantly, while the Folate biosynthesis pathway decreased significantly (p<0.05). The results indicate that the microbial ecological balance and stability were reduced by red spot disease in the gut bacterial community of S. intermedius.
-
富山武装乌贼 (Enoploteuthis chunii) 最早发现于日本海富山湾,是一种小型头足类,其活动范围很广,昼深夜浅[1],在中国、韩国海域内也有分布[2]。富山武装乌贼作为西太平洋海洋食物网的重要一环,是海洋哺乳动物和鱼类的重要食饵,常被大量发现于条纹原海豚 (Stenella caeru-leoalba) [3]、太平洋蓝鳍金枪鱼 (Thunnus orientalis)[4]的胃中。目前国内外学者对其相关研究较少,Hong[2]研究了富山武装乌贼的形态信息,但针对其生长规律、摄食习惯等其他信息的研究仍是空白。头足类生长发育过程中角质颚的形态大小、色素沉积等表型特征的变化与其摄食习性的转变息息相关[5-7]。因此,了解和掌握富山武装乌贼角质颚的生长发育规律,不仅有利于掌握其个体发育期摄食生态的变化,也有助于进一步研究其在海洋生态系统中的地位和作用。
角质颚是研究头足类的重要硬组织,作为头足类的摄食器官,有着结构稳定、不易腐蚀等优点[8-11]。除此之外,角质颚还储藏了头足类丰富的个体生长信息 [12-14]。刘必林等[12]研究了智利外海茎柔鱼 (Dosidicus gigas) 角质颚微结构,探讨了其生长规律;林静远等[13]分析了剑尖乌贼 (Uro-teuthis edulis) 的日龄及生长;方舟等[14]研究了北太平洋柔鱼 (Ommastrephes bartramii) 的角质颚形态,认为环境因素也会对角质颚生长产生影响。角质颚的色素沉积情况也是研究生长的重要依据,陆化杰等[15]分析了中国南海西沙群岛海域鸢乌贼 (Sthenoeuthis oualaniensis) 色素沉积等级与胴长、体质量、性腺成熟度和角质颚形态参数的生长关系,陈炫妤等[16]也通过此方法对西北印度洋鸢乌贼的色素沉积进行了研究。且由于富山武装乌贼昼夜垂直活动的生活习性为西太平洋众多生物提供了饵料,因此不同水层生活的鱼类胃中均能发现其角质颚,研究其角质颚的表型特征与生长的关系有助于研究西北太平洋海洋生物间的食物网关系。本研究将富山武装乌贼角质颚形态参数及色素沉积面积变化与胴长结合,通过研究其表型变化分析生长发育规律。
本研究根据2019年上海海洋大学“淞航号”在西太平洋海域进行渔业资源调查时采集的样本,通过研究富山武装乌贼角质颚的各部分形态指标及色素沉积面积的变化特点,结合胴长分析其不同个体发育时期的生长特点及规律,可为后续研究其捕食者的摄食规律提供相关资料,也可根据其捕食者胃含物中富山武装乌贼的数量来估算其在西太平洋的资源量[17-18]。另外,本研究还结合富山武装乌贼摄食习性的变化分析了不同胴长组角质颚表型变化差异的原因。
1. 材料与方法
1.1 材料
富山武装乌贼样本由上海海洋大学“淞航号”远洋渔业资源调查船于2019年3月和9月采自西北太平洋海域 (148°00'E—148°10'E, 31°99'N—38°76'N),共91尾 (表1)。样品在实验室进行解冻及清洗处理后,使用游标卡尺测量其胴长 (Mantel length, ML),精确到1 mm。从头部提取角质颚,清洗后存放于含75%乙醇的离心管中[18]。
表 1 富山武装乌贼采样信息Table 1. Sampling information of E. chunii采样海域
Sampling
sea area采样日期
Sampling
date样品数量
Sample
size胴长范围
Mantle length
range/mm148°00'E, 33°00'N 2019年3月21日 25 32~62 148°00'E, 31°99'N 2019年3月23日 4 43~49 148°10'E, 38°76'N 2019年9月5日 62 18~45 1.2 数据处理方法
1.2.1 拍照及图片处理
使用体视显微镜OLYMPUSSZ61对角质颚的侧视图进行拍照,拍取的照片用 Photoshop CS 6.0 (Adobe Systems Inc.,2019) 对图像进行亮度、对比度和去噪声等处理。
1.2.2 角质颚长度测定
使用生物图像处理软件Digimizer测量角质颚形态学指标,包括上头盖长 (Upper hood length, UHL)、上脊突长 (Upper crest length, UCL)、上喙长 (Upper rostrum length, URL)、上侧壁长 (Upper lateral wall length, ULWL)、上翼长 (Upper wing length, UWL)、下头盖长 (Lower hood length, LHL)、下脊突长 (Lower crest length, LCL)、下喙长 (Lower rostrum length, LRL)、下侧壁长 (Lower lateral wall length, LLWL)、下翼长 (Lower wing length, LWL) (图1),测量结果精确到0.01 mm[19]。
1.2.3 角质颚色素面积计算
根据角质颚色素沉积情况,将其分为2个区域,色素沉积较深的部分为Ⅰ区,色素沉积较浅的部分为Ⅱ区 (图2)。由于通过拍照将角质颚转换为图片形式进行测量,因此其色素沉积面积均为实际的投影面积,使用Photoshop测量角质颚色素沉积面积,计算其占角质颚总面积的比例。
1.2.4 统计分析
分别采用线性、指数、幂函数、对数关系对富山武装乌贼角质颚长度与胴长进行拟合,根据最小AIC原则选择最适方程[20]。采用单因素方差分析法 (One-way ANOVA) 对不同胴长组富山武装乌贼角质颚长度和色素沉积进行差异性分析,显著水平P=0.05 [21]。
2. 结果
2.1 角质颚长度与胴长总体关系
富山武装乌贼角质颚各项形态参数随着胴长增加逐渐增大 (表2)。根据AIC原则分析显示,角质颚长度与胴长呈显著的线性关系 (图3),其方程式为:
表 2 富山武装乌贼角质颚形态参数值Table 2. Morphometric parameters of beak of E. chunii mm形态指标
Morphologic
index最大值
Maximum最小值
Minimum均值
Mean标准差
Standard
deviation上头盖长 UHL 6.16 3.34 4.48 0.86 上脊突长 UCL 8.68 4.57 6.14 1.18 上喙长 URL 2.18 0.87 1.45 0.31 上侧壁长 ULWL 7.09 3.56 4.95 0.98 上翼长 UWL 3.36 1.55 2.38 0.50 下头盖长 LHL 3.25 1.87 1.47 0.32 下脊突长 LCL 3.43 1.69 2.32 0.44 下喙长 LRL 2.60 1.01 1.60 0.38 下侧壁长 LLWL 6.45 3.33 4.56 0.92 下翼长 LWL 4.12 1.90 2.60 0.52 YML=0.072 3XUHL−2.008 (R2=0.730 3, N=91)
YML=0.099 8XUCL−2.721 1 (R2=0.735 8, N=91)
YML=0.023 4XURL−0.649 (R2=0.602 5, N=91)
YML=0.083 5XULWL−2.094 (R2=0.743 3, N=91)
YML=0.042 4XUWL−0.928 2 (R2=0.746, N=91)
YML=0.026 1XLHL−0.570 7 (R2=0.703 8, N=91)
YML=0.038 2XLCL−1.013 3 (R2=0.772 7, N=91)
YML=0.031 2XLRL−0.529 7 (R2=0.697 2, N=91)
YML=0.079XLLWL−1.855 2 (R2=0.752 8, N=91)
YML=0.042 7XLWL−1.142 1 (R2=0.692 2, N=91)
2.2 角质颚色素沉积面积与胴长的关系
根据最小AIC原则分析显示,角质颚色素沉积面积随胴长总体呈线性增长趋势 (图4)。
上颚色素沉积面积与胴长关系式为:
Y上1=0.002 4XML−0.112 2 (R2=0.395 4, N=91)
Y上2=0.006 1XML+0.112 9 (R2=0.594 9, N=91)
下颚色素沉积面积与胴长关系式为:
Y下1=0.005 2XML+0.121 1 (R2=0.422 4, N=91)
Y下2=0.002 9XML+0.106 2 (R2=0.396 6, N=91)
2.3 角质颚表型变化分析
2.3.1 角质颚各项形态参数变化
富山武装乌贼角质颚各项形态参数随着角质颚生长总体呈上升趋势,各项形态指标在31、41、62 mm处发生明显的跃变 (图5)。ANOVA进一步分析发现,角质颚各项形态指标在18~31 mm、32~41 mm、>42 mm均存在显著的组间差异 (P<0.05)。
2.3.2 角质颚色素沉积面积占比变化
富山武装乌贼角质颚色素沉积由喙部开始向侧壁延伸,呈依次减少的趋势,由深变浅,且随着胴长增加其色素覆盖面积也逐步增加;上颚头盖、下颚头盖和下颚侧壁在胴长32 mm处色素沉积发生跃变,上颚侧壁在胴长43 mm处色素沉积突变明显 (图6)。ANOVA进一步分析发现,角质颚上颚头盖Ⅰ区、上颚Ⅰ、Ⅱ区色素沉积在18~31 mm、>42 mm两个胴长组间存在显著性差异 (P<0.05),上颚侧壁Ⅰ、Ⅱ区色素沉积在18~41 mm、>42 mm两个胴长组间存在显著性差异 (P<0.05)。上颚头盖Ⅱ区色素沉积随胴长增加不断变化,胴长组间无明显差异,随着角质颚生长,在胴长介于31~40 mm,上、下颚色素沉积面积增加明显。
2.3.3 个体发育期角质颚表型变化
根据角质颚长度和色素沉积度可按胴长将富山武装乌贼分为A组(18~31 mm)、B组(32~41 mm)、C组(>42 mm)共3组 (表3)。胴长18~31 mm时,上颚喙部相对较短,上、下颚侧壁色素沉积面积较小,色素沉积程度较浅,下颚翼部无色素沉积,下颚侧壁脊不明显;胴长31~41 mm时,上颚喙部长度增加且变尖,上下颚侧壁及头盖部分色素沉积明显增加,下颚翼部有轻微色素沉积,下颚侧壁脊略明显;胴长>42 mm时,上颚喙部尖且长,上、下颚色素沉积面积变大,程度加深,下颚翼部有明显色素沉积,下颚侧壁脊明显 (图7)。
表 3 角质颚表型变化信息Table 3. Information of beak phenotype change胴长组
Mantle length
group/mm上颚 Upper beak 下颚 Lower beak 喙部
Beak侧壁色素沉积面积
Pigmentation area of
lateral wall翼部色素沉积面积
Pigmentation area
of wing侧壁脊
Ridge of
lateral wall侧壁色素沉积面积
Pigmentation area of
lateral wall18~31 较长 24% 无沉积 不明显 42% 32~41 尖且长 36% 较小 略明显 64% 42~62 尖且长 51% 较大 明显 65% 3. 讨论
3.1 角质颚大小、色素沉积与胴长关系
最小AIC分析显示,角质颚各项形态参数和胴长呈显著的线性相关,这与南海北部秋季杜氏枪乌贼 (U. duvaucelii) [22]、印度洋西北海域鸢乌贼[23]结果相似。分析关系式斜率发现,角质颚各部分生长也存在一定差异,斜率越小就代表其生长越快。富山武装乌贼UCL、ULWL、LLWL斜率分别为0.099 8、0.083 5、0.079,因此上颚脊突部、侧壁部及下颚侧壁部生长较快。角质颚不同部位的生长速度与其摄食习惯相关,上、下颚的脊突部与侧壁部在富山武装乌贼摄食活动中主要起支撑作用,快速生长可方便其咬合食物[24]。
角质颚色素沉积面积占比随胴长总体也呈增长趋势,这与阿根廷滑柔鱼 (Illex argentinus) 和秘鲁外海茎柔鱼的研究结果相似。方舟等[25]分析阿根廷滑柔鱼角质颚色素变化及其与个体生长等因素的关系,发现色素沉积的平均等级总体上随着其生长而增加;胡贯宇等[26]发现上喙长和下翼长是影响角质颚色素沉积等级的主要因素,且角质颚各形态参数与角质颚色素沉积等级呈正相关关系。
3.2 个体发育期角质表型变化
在个体发育的不同阶段,角质颚的增长速度也有不同。研究结果显示胴长18~31 mm角质颚生长较缓慢,胴长32~41 mm角质颚生长较快,胴长>42 mm角质颚生长速度又逐渐减缓 (图5),这与柔鱼从仔鱼到稚鱼再到成鱼的生长规律相符[27]。根据已有的研究资料显示,19 mm富山武装乌贼为仔鱼幼体 [4];胴长38 mm的希氏武装乌贼 (E. higginsi) 为雌性未成熟个体,胴长62 mm的琼氏武装乌贼 (E. jonesi) 为成熟个体[28]。希氏武装乌贼、琼氏武装乌贼与富山武装乌贼同为武装乌贼属,因此本研究胴长18~31 mm富山武装乌贼处于仔稚鱼期,胴长32~41 mm处于未成熟的幼鱼期,胴长>42 mm慢慢处于成鱼期。仔鱼期时,头足类摄食小型浮游动物、营养需求有限,因而角质颚发育较慢;稚鱼期时,个体快速生长需提高摄食量,以获取足够丰富的营养;成鱼期时,个体发育逐渐变大,发育逐渐趋于成熟,生长速度也逐渐趋于稳定,摄食习惯相对固定,因此其角质颚变化速度逐渐下降[29-31]。
在个体发育的不同阶段,角质颚的色素沉积也不同。研究结果显示,富山武装乌贼角质颚上颚头盖、下颚头盖和下颚侧壁在胴长32 mm处色素沉积发生跃变,上颚侧壁在胴长43 mm处色素沉积跃变明显 (图6)。结合个体发育期分析认为,第一次色素沉积的跃变发生在仔稚鱼向未成熟幼体过渡期,这个阶段往往食性会发生改变,食物由小型浮游动物转变成较大的甲壳类;第二次色素沉积的跃变发生在幼体向成体过渡期,此时进入性腺成熟阶段,食物转向具有较高能量的鱼类[32-34]。在富山武装乌贼生长过程中,由于其摄食习惯的改变,导致其色素沉积逐渐加深,角质颚的硬度也逐渐增加 [34-37],进而有助于其更好地撕碎食物[32],提高进食效率。
综合角质颚大小及色素沉积变化,本研究将富山武装乌贼角质颚表型变化分为仔稚鱼期 (胴长18~31 mm)、幼鱼期 (胴长32~41 mm) 和成鱼期 (胴长>42 mm) 3个阶段 (图7)。仔稚鱼期,较短的上颚喙部和较浅的色素沉积适合捕食游泳能力弱的浮游动物类;幼鱼期,尖长的上颚喙部和较深的色素沉积适合捕食有壳的甲壳类;成鱼期,更加尖长的上颚喙部和更深的色素沉积适合捕食游泳迅速的鱼类[10]。
3.3 展望与不足
富山武装乌贼具有昼夜垂直移动的习性,一般是昼深夜浅,这为西太平洋众多生物提供了丰富的饵料。角质颚因具有耐腐蚀特性长存于捕食者的胃中[3-4]。因此,在掌握个体发育角质颚的生长变化基础上,有助于通过分析捕食者胃含物中残留的角质颚来评估富山武装乌贼的资源量,揭示其在海洋生态系统中的作用[18]。目前,有关富山武装乌贼的研究较少,仅针对特定海域内以及一些海洋生物胃含物中残留个体有零星报道[38]。本研究分析了富山武装乌贼不同生长发育时期角质颚长度及色素沉积面积的变化,并结合其摄食、生活习性等分析其表型变化的原因和特点。本研究认为,富山武装乌贼角质颚表型的变化主要与其个体发育期的食性转变有关。然而,由于样本量偏少,并没有开展其食性方面的研究。因此,今后希望采用胃含物、脂肪酸及碳、氮稳定同位素等分析技术,来准确解析富山武装乌贼的摄食习性,以此来佐证本文的相关研究结论,同时为研究其他海洋生物的摄食习性提供参考。
-
图 1 中间球海胆肠道菌群多样性分析
注:a. 肠道菌群Alpha多样性指数;b. 肠道菌群Beta多样性分析;c. 肠道菌群样本OTUs分布韦恩图。HG. 健康组;ZG. 患病组。
Figure 1. Diversity analysis of gut bacterial community in S. intermedius
Note: a. Alpha index of gut bacterial community; b. Beta diversity analysis of gut bacterial community; c. Venn diagram of gut bacterial community with OTUs. HG. Healthy sea urchins; ZG. Diseased sea urchins.
表 1 中间球海胆肠道样品16S rRNA测序结果
Table 1 16S rRNA sequencing results of gut bacterial community in S. intermedius
样品
Sample原始序列数
Number of
original sequences有效序列数
Number of
valid sequences有效序列占比
Effective
ratio/%ZG_1 90 532 83 123 91.82 ZG_2 74 820 68 460 91.50 ZG_3 77 709 71 386 91.86 ZG_4 72 610 66 221 91.20 ZG_5 82 318 75 457 91.67 HG_1 75 986 69 356 91.27 HG_2 82 751 76 104 91.98 HG_3 86 256 79 864 92.59 HG_4 84 634 78 123 92.31 HG_5 85 561 78 946 92.27 -
[1] KISELEV K V, AGEENKO N V, KURILENKO V V. Involvement of the cell-specific pigment genes pks and sult in bacterial defense response of sea urchins Strongylocentrotus intermedius[J]. Dis Aquat Org, 2013, 103(2): 121-132. doi: 10.3354/dao02570
[2] 王斌, 李岩, 李霞, 等. 中间球海胆“红斑病”病原弧菌致病机理的研究[J]. 大连水产学院学报, 2005, 20(1): 11-15. [3] 王斌, 李岩, 李霞, 等. 虾夷马粪海胆“红斑病”病原弧菌特性及致病性[J]. 水产学报, 2006, 30(3): 371-376. [4] LI R J, DANG H F, HUANG Y X, et al. Vibrio coralliilyticus as an agent of red spotting disease in the sea urchin Strongylocentrotus intermedius[J]. Aquaculture, 2020, 16: 100244.
[5] 高闯, 刘家洋, 韩泠姝, 等. 患“红斑综合征”的海胆体腔液中菌群结构特征[J]. 水产学杂志, 2023, 36(6): 14-23. [6] 曾繁爽. 中间球海胆细菌性疾病病原菌鉴定及体腔细胞异质性与功能特征解析[D]. 大连: 大连海洋大学, 2024: 14. [7] CLIFFORD C, WALSH J, REIDY N, et al. Digestive enzymes and subcellular localization of disaccharidases in some echinoderms[J]. Comp Biochem, 1982, 71(1): 105-110.
[8] 孙雯, 王永杰, 鲍俊杰, 等. 嗜水气单胞菌 (Aeromonas hydrophila) 引起斑马鱼肠道生理损伤和肠道菌群失调[J]. 海洋与湖沼, 2023, 54(4): 1191-1198. [9] ZHANG L, WANG L, HUANG J T, et al. Effects of Aeromonas hydrophila infection on the intestinal microbiota, transcriptttome, and metabolomic of common carp (Cyprinus carpio)[J]. Fish Shellfish Immun, 2023, 139: 108876. doi: 10.1016/j.fsi.2023.108876
[10] HE Z H, ZHONG Y Q, LIAO M Z, et al. Integrated analysis of intestinal microbiota and metabolomic reveals that decapod iridescent virus 1 (DIV1) infection induces secondary bacterial infection and metabolic reprogramming in Marsupenaeus japonicus[J]. Front Immunol, 2022, 13: 982717. doi: 10.3389/fimmu.2022.982717
[11] ZHANG Z, XING R L, LYU Z M, et al. Analysis of gut microbiota revealed Lactococcus garviaeae could be an indicative of skin ulceration syndrome in farmed sea cucumber Apostichopus japonicus[J]. Fish Shellfish Immun, 2018, 80: 148-154. doi: 10.1016/j.fsi.2018.06.001
[12] 张碧云, 杨红玲, 汪攀, 等. 鱼类肠道微生物与宿主免疫系统相互作用研究进展[J]. 微生物学报, 2021, 61(10): 3046-3058. [13] 熊向英, 王贤丰, 彭银辉, 等. 健康和患病卵形鲳鲹肠道菌群结构的差异[J]. 水产学报, 2019, 43(5): 1317-1325. [14] 朱文根, 李星浩, 饶刘瑜, 等. 感染草鱼呼肠孤病毒对肠道菌群多样性的影响[J]. 水生生物学报, 2019, 43(1): 109-116. [15] 张乐乐, 邹强, 田雅楠, 等. 线纹海马肠道菌群结构与功能对迟钝爱德华氏菌 (Edwardsiella tarda) 感染的响应特征研究[J]. 热带海洋学报, 2022, 41(2): 177-188. [16] VOS W M D, TILG H, HUL M V, et al. Gut microbiome and health: mechanistic insights[J]. Gut, 2022, 71(5): 1020-1032. doi: 10.1136/gutjnl-2021-326789
[17] WANG L, HE B W, CHANG Y Q, et al. Characterization of the bacterial community associated with red spotting disease of the echinoid Strongylocentroyus intermedius[J]. Aquaculture, 2020, 529: 735606.
[18] BRADLEY P H, POLLARD K S. Proteobacteria explain significant functional variability in the human gut microbiome[J]. Microbiome, 2017, 5(1): 36. doi: 10.1186/s40168-017-0244-z
[19] SHIN N R, WHON T W, BAE J W. Proteobacteria: microbial signature of dysbiosis in gut microbiota[J]. Trends Biotechnol, 2015, 33(9): 496-503. doi: 10.1016/j.tibtech.2015.06.011
[20] 郭仕辉, 余永涛, 万佳宏, 等. 变形菌门与哺乳动物结肠肠道菌群失调相关研究进展[J]. 中国微生态学杂志, 2022, 34(4): 479-484. [21] MA L P, WEI J, CHANG J X, et al. LPS mediates the activation of platelet by Toll-like receptor 4[J]. Blood, 2009, 114(22): 3001. doi: 10.1182/blood.V114.22.3001.3001
[22] 王兆霞, 补娟, 张晓玲, 等. 刺槐素对鞭毛蛋白诱导的小鼠骨髓巨噬细胞NLRC4炎症小体活化的影响[J]. 海南医学院学报, 2022, 28(17): 1294-1298. [23] 李翠茹, 彭买姣, 谭周进. 肠道菌群相关短链脂肪酸的研究进展[J]. 世界华人消化杂志, 2022, 30(13): 562-570. [24] KIRCHMAN D L. The ecology of Cytophaga-Flavobacteria in aquatic environments[J]. FEMS Microbiol Ecol, 2002, 39(2): 91-100.
[25] 宋兆齐, 王莉, 刘秀花, 等. 云南4处酸性热泉中的变形菌门细菌多样性[J]. 河南农业大学学报, 2016, 50(3): 376-382. [26] 刘广锋, 徐力文, 黄建荣, 等. 杂色鲍养殖环境中致病性弧菌分布调查[J]. 南方水产, 2005, 1(3): 60-64. [27] BEN-YOSEF M, AHARON Y, JURKEVITCH E. Give us the tools and we will do the job: symbiotic bacteria affect olive fly fitness in a diet-dependent fashion[J]. Proc Royal Soc B: Biol Sci, 2010, 277(1687): 1545-1552.
[28] 姚明燕, 季清娥, 陈家骅. 实蝇肠杆菌科共生菌的研究进展[J]. 生物安全学报, 2017, 26(2): 103-110. [29] 张倩, 钟森杰, 熊霞军, 等. 主动脉弓缩窄术诱导心力衰竭大鼠的肠道菌群变化特征[J]. 中国微生态学杂志, 2023, 35(3): 257-262, 268. [30] ALVAREZ-ORDONZE A, LEONG D, MORGAN C A, et al. Occurrence, persistence, and virulence potential of Listeria ivanovii in foods and food processing environments in the Republic of Ireland[J]. BioMed Res Int, 2015(43): 350526.
[31] 张静之, 包春辉, 施征, 等. 肠道菌群参与炎症性肠病发病机制研究新进展[J]. 世界华人消化杂志, 2016, 24(33): 4505-4013. [32] 李楚楚, 李伟燕, 潘建义. 副溶血弧菌III型分泌系统 (T3SS) 效应蛋白及其对宿主细胞的操控[J]. 中国生物化学与分子生物学报, 2017, 33(3): 247-251. [33] WANG S Q, ZHANG Z H, MALAKAR P K, et al. The fate of bacteria in human digestive fluids: a new perspective into the pathogenesis of Vibrio parahaemolyticus[J]. Front Microbiol, 2019, 10: 1614. doi: 10.3389/fmicb.2019.01614
[34] 高文涛, 张一楚. 肾素-血管紧张素系统对细胞免疫的调节作用[J]. 上海免疫学杂志, 2003(4): 286-289. [35] OKAMURA A, RAKUGI H, OHISHI M, et al. Upregulation of renin-angiotensin system during differentiation of monocytes to macrophages[J]. J Hypertens, 1999, 17(4): 537-545. doi: 10.1097/00004872-199917040-00012
[36] LOKSHINA L A, UREEVA T A, LISSEEVAl Y E, et al. Proteolytic enzymes in human leukemic lymphoid cells. III. Aminopeptidases, angiotensin-converting enzyme, and its inhibitor in cells of different immunological phenotype[J]. Biochem Mosc, 1999, 64(4): 448-455.
[37] 石磊. 叶酸对中期草鱼生长和肠道免疫的影响及其调控机制研究[D]. 雅安: 四川农业大学, 2015: 38. [38] 孔维溧, 芦鑫荣, 侯琳琳, 等. 维生素与免疫系统健康[J]. 四川大学学报 (医学版), 2023, 54(1): 7-13. [39] 何树芬, 李晓然, 柳陈坚. 乳酸菌合成叶酸的研究进展[J]. 微生物学通报, 2015, 42(10): 1994-2001. -
期刊类型引用(3)
1. 张嘉琦,刘必林. 基于碳氮稳定同位素技术的西北太平洋富山武装乌贼和相拟钩腕乌贼生态位变化研究. 大连海洋大学学报. 2023(03): 515-523 . 百度学术
2. 刘必林,顾心雨,王冰妍,储莫闲. 角质颚色素沉积可视化及其在头足类判别分类中的应用. 上海海洋大学学报. 2023(04): 785-793 . 百度学术
3. 黎婷婷,周敏华,王超,方舟. 个体发育对黄海南部金乌贼角质颚形态的影响. 水产学报. 2023(08): 68-80 . 百度学术
其他类型引用(2)