Research on fish diversity in Xijiang Rare Fish Provincial Nature Reserve based on environmental DNA technology
-
摘要:
为更好地保护西江珍稀鱼类省级自然保护区的鱼类资源,利用基于COI和12S rRNA 2个基因标记的环境DNA技术 (Environmental DNA, eDNA),对保护区江段的左岸、中间和右岸共计18个采样站位开展了鱼类种类组成及河段不同横向断面的鱼类多样性分析。结果发现,COI和12S rRNA 2个基因共检测出53种鱼类,隶属于4目12科48属;12S rRNA基因检测出47种鱼类,COI基因检测出19种鱼类,2个基因同时检测出的鱼类有13种。基于序列丰度的Alpha多样性分析结果显示,2个基因的结果一致支持保护区江段左岸的鱼类物种数和Chao1丰富度最高,说明左岸具有较高的鱼类多样性。基于12S rRNA基因的Beta多样性结果发现,保护区的左岸、中间和右岸的鱼类组成存在显著性差异。研究结果可为保护区鱼类生物多样性的保护和动态监测提供基础资料与技术支持。
Abstract:To better protect the fish resources in the Xijiang Rare Fish Provincial Nature Reserve, we used the environmental DNA (eDNA) technology to analyze the fish species composition and fish diversity at different cross sections of 18 sampling stations on the left, middle and right banks of the river section. Two molecular markers, i.e. COI and 12S rRNA, were used in this study. The results show that the two genes of 12S rRNA and COI were detected in 53 fish species, belonging to 48 genera, 12 families and 4 orders. Forty-seven and nineteen fish species were examined based on 12S rRNA and COI, respectively. In addition, 13 shared fish species were discovered by using the two gene markers. Alpha diversity analysis based on sequence abundance shows that the two markers unanimously supported the highest number of fish species and the highest richness of Chao 1 index on the left bank of the river section, indicating that the left bank appears to have higher fish diversity than the middle and right banks. Beta diversity analysis based on 12S rRNA shows obvious differences in the fish composition on the left, middle and right banks. The research provides basic data and technical support for the protection and dynamic monitoring of fish biodiversity in this nature reserve.
-
Keywords:
- Environmental DNA /
- Fish diversity /
- Nature reserve /
- Xijiang rare fish
-
-
表 1 基于12S rRNA和COI基因检测的物种名录及序列数
Table 1 List of fish species and sequence number of detected based on 12S rRNA and COI genes
种类
Species12S rRNA COI 左岸
Left bank中间
Middle bank右岸
Right bank左岸
Left bank中间
Middle bank右岸
Right bank鲤形目 Cypriniformes 鲤科 Cyprinidae 宽鳍鱲 Zacco platypus 54 93 8 171 0 0 0 马口鱼 Opsariichthys bidens● 0 0 0 1 308 1 403 1 677 南方波鱼 Rasbora steineri 0 0 0 709 1 155 693 青鱼 Mylopharyngodon piceus 14 043 436 1 699 0 0 0 草鱼 Ctenopharyngodon idella 4 639 22 577 6 209 594 270 442 鳤 Ochetobius elongatus 6 521 78 12 0 0 0 鳡 Elopichthys bambusa 35 532 12 799 10128 1 699 1 437 498 赤眼鳟 Squaliobarbus curriculus 90 047 28 123 23 347 197 1 0 银飘鱼 Pseudolaubuca sinensis 2 781 20 893 275 0 0 0 鳊 Parabramis pekinensis 4 774 487 494 0 0 0 䱗 Hemiculter leucisculus 853 176 224 336 29 961 0 0 0 细鳊 Metzia formosae● 3 0 0 0 0 0 南方拟䱗 Pseudohemiculter dispar● 0 0 0 543 6 0 海南似鱎 Toxabramis houdemeri 4 0 0 0 0 0 广东鲂 Megalobrama terminalis 3 268 50 479 9 171 12 54 1 海南鲌 Chanodichthys erythropterus 0 0 1 0 0 0 黄尾鲴 Xenocypris davidi 953 229 383 550 20 524 4 070 1 059 95 圆吻鲴 Distoechodon tumirostris● 5 2 2 0 0 0 鲢 Hypophthalmichthys molitrix 36 452 379 14 407 74 406 46 鳙 Aristichthys nobilis 29 337 16 072 22 872 0 0 0 银鮈 Squalidus argentatus 1 6 433 4 0 100 0 福建小鳔鮈 Microphysogobio fukiensis● 1 1 866 0 0 0 0 兴凯鱊 Acanthorhodeus chankaensis● 3 260 0 0 0 0 0 越南鱊 Acheilognathus tonkinensis● 0 0 482 6 52 0 高体鳑鲏 Rhodeus ocellatus 5 521 78 071 1 760 0 25 0 倒刺鲃 Spinibarbus denticulatus 37 1 3 098 0 0 0 虹彩光唇鱼 Acrossocheilus iridescens● 0 23 6 0 0 0 鲮 Cirrhinus molitorella 60 257 55 395 26 860 0 0 0 纹唇鱼 Osteochilus salsburyi 0 18 581 0 0 0 0 鲤 Cyprinus carpio 62 807 63 992 53 396 145 13 158 鲫 Carassius cuvieri 12 1 0 0 0 0 平鳍鳅科 Homalopteridae 平舟原缨口鳅 Vanmanenia pingchowensis● 0 0 9 0 0 0 鲇形目 Siluriformes 鲇科 Siluridae 鲇 Silurus asotus 831 0 0 0 0 0 大口鲇 Silurus meridionalis● 565 0 0 0 0 0 胡子鲇科 Clariidae 革胡子鲇 Clarias gariepinus▲● 1 0 0 0 0 0 甲鲶科 Loricariidae 豹纹翼甲鲇 Pterygoplichthys pardalis▲● 4 853 8 315 0 0 0 长臀鮈科 Cranoglanididae 长臀鮈 Cranoglanis bouderius 0 0 191 0 0 0 鲿科 Bagridae 黄颡鱼 Pelteobagrus fulvidraco 0 0 905 0 0 0 瓦氏黄颡鱼 Pseudobagrus vachelli 0 0 0 1 000 388 376 粗唇鮈 Pseudobagrus crassilabris 947 0 1 303 25 0 0 条纹鮈 Tachysurus virgatus 863 0 0 0 0 0 斑鳠 Hemibagrus guttatus★ 178 4 233 49 0 0 0 鲈形目 Perciformes 鮨鲈科 Percichthyidae 斑鳜 Siniperca scherzeri 1 106 0 0 0 0 0 波纹鳜 Siniperca undulata● 626 2 0 0 0 0 大眼鳜 Siniperca knerii 0 0 0 2 0 0 花鲈 Lateolabrax japonicus 0 0 0 27 133 0 刺臀鱼科 Centrarchidae 大口黑鲈 Micropterus salmoides▲● 1 075 0 0 0 0 0 丽鱼科 Cichlidae 齐氏罗非鱼 Coptodon zillii▲● 8 762 6 784 5 0 530 0 尼罗罗非鱼 Oreochromis niloticus▲ 3 927 3 5 660 641 1 192 296 鰕虎鱼科 Gobiidae 金黄舌鰕虎 Glossogobius aureus● 356 2 291 4 0 0 0 粘皮鲻鰕虎 Mugilogobius myxodermus● 1 10 3 0 0 0 波氏吻鰕虎 Rhinogobius cliffordpopei● 6 11 266 82 0 0 0 鲀形目 Tetraodontiformes 鲀科 Tetraodontidae 弓斑东方鲀Takifugu ocellatus 2 013 27 400 10 454 0 0 0 注:▲. 外来物种;★. 国家重点保护水生野生动物;●. 与李捷等[21]2006—2008年保护区调查相比的新增种类。 Note: ▲. Alien species; ★. National key protected aquatic wildlife; ●. New species compared with the conservation area survey conducted by Li et al[21] from 2006 to 2008. 表 2 各区域Alpha多样性指数
Table 2 Alpha diversity index of each area
区域
Area物种数
Species indexChao1指数
Chao1 index香农指数
Shannon index辛普森指数
Gini-Simpson index覆盖度
Coverage12S rRNA COI 12S rRNA COI 12S rRNA COI 12S rRNA COI 12S rRNA COI L1 26 10 1.94 1.20 1.60 1.60 0.70 0.69 1.00 1.00 L2 28 8 2.11 0.98 1.67 0.34 0.72 0.13 1.00 1.00 L3 31 9 2.32 1.08 1.20 0.51 0.60 0.20 1.00 1.00 L4 27 3 2.02 0.46 1.66 0.41 0.71 0.21 1.00 1.00 L5 24 3 1.79 0.41 1.36 0.70 0.67 0.48 1.00 0.99 L6 32 8 2.41 1.01 1.65 1.17 0.72 0.64 1.00 0.99 M1 28 4 2.22 0.63 2.18 0.89 0.85 0.55 1.00 0.99 M2 27 5 2.16 0.70 2.17 1.15 0.86 0.61 1.00 1.00 M3 21 4 1.63 0.45 1.61 0.79 0.77 0.49 1.00 1.00 M4 24 3 1.86 0.28 1.53 0.55 0.66 0.34 1.00 1.00 M5 29 3 2.27 0.45 1.78 0.71 0.75 0.48 1.00 0.99 M6 23 3 1.81 0.37 1.83 0.71 0.75 0.50 1.00 0.99 R1 25 4 2.35 0.52 1.40 0.89 0.60 0.55 0.99 0.99 R2 29 5 2.54 0.92 1.83 0.88 0.76 0.45 1.00 0.98 R3 24 6 2.12 0.87 1.97 0.54 0.80 0.25 0.99 0.99 R4 24 5 2.11 0.91 1.66 1.11 0.67 0.60 0.99 0.99 R5 21 1 1.72 0 2.24 0 0.85 0 1.00 0.97 R6 17 2 1.39 0.91 1.55 0.64 0.73 0.67 1.00 0.98 注:L1—L6为左岸区域;M1—M6为中间区域;R1—R6为右岸区域。 Note: L1–L6 are the left bank area; M1–M6 are the middle area; R1–R6 are the right bank area. -
[1] 李淼, 许友伟, 孙铭帅, 等. 气候变化对海洋鱼类群落结构的影响研究进展[J]. 海洋科学, 2022, 46(7): 120-129. [2] HUANG M R, DING L Y, WANG J, et al. The impacts of climate change on fish growth: a summary of conducted studies and current knowledge[J]. Ecol Indic, 2020, 121: 106976.
[3] MCKENZIE D J, GEFFROY B, FARRELL A P. Effects of global warming on fishes and fisheries[J]. J Fish Biol, 2021, 98(6): 1489-1492.
[4] 中国野生动物保护协会水生野生动物保护分会. 中国水生野生动物保护蓝皮书[M]. 北京: 海洋出版社, 2021: 3-6. [5] 赵明, 赵梦迪, 马春艳, 等. 环境DNA在水域生态中的研究进展[J]. 中国水产科学, 2018, 25(4): 714-720. [6] 舒璐, 林佳艳, 徐源, 等. 基于环境DNA宏条形码的洱海鱼类多样性研究[J]. 水生生物学报, 2020, 44(5): 1080-1086. doi: 10.7541/2020.125 [7] 李苗, 陈小勇. 环境DNA技术在鱼类生态学中的应用研究进展[J]. 生态学报, 2023, 43(17): 6951-6967. [8] YAO M, ZHANG S, LU Q, et al. Fishing for fish environmental DNA: ecological applications, methodological considerations, surveying designs, and ways forward[J]. Mol Ecol, 2022, 31(2022): 5132-5164.
[9] DEINER K, WALSER J C, MÄCHLER E, et al. Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA[J]. Biol Conserv, 2015, 183(1): 53-63.
[10] RUPPERT K M, KLINE R J, RAHMAN M S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA[J]. Global Ecol Conserv, 2019, 17: e00547. doi: 10.1016/j.gecco.2019.e00547
[11] SHU L, LUDWIG A, PENG Z G. Standards for methods utilizing environmental DNA for detection of fish species[J]. Genes-Basel, 2020, 11(3): 296. doi: 10.3390/genes11030296
[12] 秦传新, 左涛, 于刚, 等. 环境DNA在水生生态系统生物量评估中的研究进展[J]. 南方水产科学, 2020, 16(5): 123-128. doi: 10.12131/20190256 [13] 金珂, 张丽娟, 张伟, 等. 基于环境DNA宏条形码的太湖流域底栖动物监测与生态健康评价[J]. 中国环境监测, 2022, 38(1): 175-188. [14] OGRAM A, SAYLER G S, BARKAY T. The extraction and purification of microbial DNA from sediments[J]. J Microbiol Methods, 1987, 7(3): 57-66.
[15] FICETOLA G F, MIAUD C, POMPANON F, et al. Species detection using environmental DNA from water samples[J]. Biol Lett, 2008, 4(4): 423-425. doi: 10.1098/rsbl.2008.0118
[16] SIGSGAARD E E, NIELSEN I B, CARL H, et al. Seawater environmental DNA reflects seasonality of a coastal fish community[J]. Mar Biol, 2017, 164(6): 128. doi: 10.1007/s00227-017-3147-4
[17] 程如丽, 罗杨, 张玉凤, 等. 基于环境DNA技术的乌江干流梯级水电库区的鱼类多样性[J]. 水产学报, 2025, 49(3): 039310. [18] 李萌, 尉婷婷, 史博洋, 等. 环境DNA技术在淡水底栖大型无脊椎动物多样性监测中的应用[J]. 生物多样性, 2019, 27(5): 480-490. doi: 10.17520/biods.2018227 [19] 周春花, 王蓉蓉, 王生, 等. 基于环境DNA宏条形码技术的赣江下游(南昌段)鱼类多样性[J]. 湖泊科学, 2023, 35(4): 1423-1440. doi: 10.18307/2023.0435 [20] 廖敏. 雅砻江锦屏一级库区鱼类夏秋季分布格局与环境因子关系初步研究[D]. 雅安: 四川农业大学, 2022: 76. [21] 李捷, 李新辉, 谭细畅, 等. 广东肇庆西江珍稀鱼类省级自然保护区鱼类多样性[J]. 湖泊科学, 2009, 21(4): 556-562. doi: 10.3321/j.issn:1003-5427.2009.04.015 [22] 谭细畅, 李新辉, 林建志, 等. 基于水声学探测的两个广东鲂产卵群体繁殖生态的差异性[J]. 生态学报, 2009, 29(4): 1756-1762. doi: 10.3321/j.issn:1000-0933.2009.04.016 [23] 刘亚秋, 李新辉, 李跃飞, 等. 西江广东鲂 (Megalobrama terminalis) 繁殖生物学及繁殖策略[J]. 湖泊科学, 2021, 33(1): 232-241. doi: 10.18307/2021.0117 [24] 李跃飞, 李策, 朱书礼, 等. 基于单位补充量模型的西江广东鲂种群资源利用现状评价[J]. 水生生物学报, 2018, 42(5): 975-983. [25] ZHANG S, ZHAO J D, YAO M. A comprehensive and comparative evaluation of primers for metabarcoding eDNA from fish[J]. Methods Ecol Evol, 2020, 11(12): 1609-1625. doi: 10.1111/2041-210X.13485
[26] OWEN S W, CREU P, MAGDALENA G, et al. DNA metabarcoding of littoral hard-bottom communities: high diversity and database gaps revealed by two molecular markers[J]. PeerJ, 2018, 6: e4705. doi: 10.7717/peerj.4705
[27] 郑慈英. 珠江鱼类志[M]. 北京: 科学出版社, 1989: 77-367. [28] 张春光, 赵亚辉. 中国内陆鱼类物种与分布[M]. 北京: 科学出版社, 2016: 210-213. [29] CHAO A. Nonparametric estimation of the number of classes in a population[J]. Scand J Stat, 1984, 11(4): 265-270.
[30] SHANNON C E. A mathematical theory of communication[J]. Bell Sys Tech J, 1948, 27(3): 379-423. doi: 10.1002/j.1538-7305.1948.tb01338.x
[31] SIMPSON E H. Measurement of diversity[J]. Nature, 1949, 163(4148): 688. doi: 10.1038/163688a0
[32] DIXON P. VEGAN, a package of R functions for community ecology[J]. J Veg Sci, 2003, 14(6): 927-930. doi: 10.1111/j.1654-1103.2003.tb02228.x
[33] CHEN Y S, QU X, XIONG F, et al. Challenges to saving China's freshwater biodiversity: fishery exploitation and landscape pressures[J]. Ambio, 2020, 49: 926-938. doi: 10.1007/s13280-019-01246-2
[34] REID A J, CARLSON A K, CREED I F, et al. Emerging threats and persistent conservation challenges for freshwater biodiversity[J]. Biol Rev, 2019, 94(3): 849-873. doi: 10.1111/brv.12480
[35] COULTHARD S, JOHNSON D, MCGREGOR J A. Poverty, sustainability and human wellbeing: a social wellbeing approach to the global fisheries crisis[J]. Global Environ Change, 2011, 21(2): 453-463. doi: 10.1016/j.gloenvcha.2011.01.003
[36] DUDGEON D. Multiple threats imperil freshwater biodiversity in the Anthropocene[J]. Curr Biol, 2019, 29(19): R960-R967. doi: 10.1016/j.cub.2019.08.002
[37] 张改, 武智, 朱书礼, 等. 清远水利枢纽建设对库区鱼类群落结构影响[J]. 生态科学, 2021, 40(2): 175-185. [38] 帅方敏, 李新辉, 刘乾甫, 等. 珠江水系鱼类群落多样性空间分布格局[J]. 生态学报, 2017, 37(9): 3182-3192. [39] 吴倩, 李潮, 高天扬, 等. 流溪河保护区鱼类群落结构及其时空变动[J]. 水产科学, 2020, 39(2): 234-244. [40] 顾党恩, 牟希东, 罗渡, 等. 广东省主要水系罗非鱼的建群状况[J]. 生物安全学报, 2012, 21(4): 277-282. [41] 李德越, 李荣辉, 吴志强, 等. 广西南宁大王滩水库鱼类物种组成及多样性分析[J]. 南方水产科学, 2018, 14(2): 110-117. doi: 10.3969/j.issn.2095-0780.2018.02.015 [42] 吴映明, 唐以杰, 黄更生. 广东饶平海山河口区红树林潮沟鱼类时空生态位[J]. 中山大学学报 (自然科学版) (中英文), 2024, 63(3): 71-79. [43] 巴家文, 陈大庆. 三峡库区的入侵鱼类及库区蓄水对外来鱼类入侵的影响初探[J]. 湖泊科学, 2012, 24(2): 185-189. doi: 10.3969/j.issn.1003-5427.2012.02.003 [44] 朱书礼, 陈蔚涛, 武智, 等. 基于环境DNA技术的珠江中下游鱼类多样性初步研究[J]. 南方水产科学, 2024, 20(1): 120-129. doi: 10.12131/20230111 [45] BYLEMANS J, GLEESON D M, LINTERMANS M, et al. Monitoring riverine fish communities through eDNA metabarcoding: determining optimal sampling strategies along an altitudinal and biodiversity gradient[J]. Metabarc Metagenome, 2018, 2: 1-12.
[46] OKA S, DOI H, MIYAMOTO K, et al. Environmental DNA metabarcoding for biodiversity monitoring of a highly diverse tropical fish community in a coral reef lagoon: estimation of species richness and detection of habitat segregation[J]. Environ DNA, 2021, 3(1): 55-69.
[47] 陈治, 蔡杏伟, 张清凤, 等. 海南岛淡水鱼类环境DNA宏条形码参考数据库的初步构建及比较分析[J]. 南方水产科学, 2022, 18(3): 1-12. doi: 10.12131/20210339 [48] COLLINS R A, BAKKER J, WANGENSTEEN O S, et al. Non-specific amplification compromises environmental DNA metabarcoding with COI[J]. Methods Ecol Evol, 2019, 10(11): 1985-2001. doi: 10.1111/2041-210X.13276
[49] 刘军, 赵良杰, 凡迎春, 等. 鱼类环境DNA研究中通用引物的筛选验证[J]. 淡水渔业, 2016, 46(1): 9-17. doi: 10.3969/j.issn.1000-6907.2016.01.002 [50] 蒋佩文, 李敏, 张帅, 等. 基于环境DNA宏条码和底拖网的珠江河口鱼类多样性[J]. 水生生物学报, 2022, 46(11): 1701-1711. doi: 10.7541/2022.2021.0265 [51] DJURHUUS A, CLOSEK C J, KELLY R P, et al. Environmental DNA reveals seasonal shifts and potential interactions in a marine community[J]. Nature Commun, 2020, 11(1): 254. doi: 10.1038/s41467-019-14105-1
[52] 冯启新, 王金潮, 尤炳赞, 等. 广东鲂产卵场调查报告[J]. 淡水渔业, 1986(6): 1-5. [53] SANSOM B J, SASSOUBRE L M. Environmental DNA (eDNA) shedding and decay rates to model freshwater mussel eDNA transport in a river[J]. Environ Sci Technol, 2017, 51(24): 14244-14253. doi: 10.1021/acs.est.7b05199
[54] PILLIOD D S, GOLDBERG C S, ARKLE R S, et al. Factors influencing detection of eDNA from a stream-dwelling amphibian[J]. Mol Ecol Resour, 2014, 14(1): 109-116. doi: 10.1111/1755-0998.12159
[55] DEJEAN T, VALENTINI A, DUPARC A, et al. Persistence of environmental DNA in freshwater ecosystems[J]. PLoS One, 2011, 6(8): e23398. doi: 10.1371/journal.pone.0023398
[56] STEWART K A. Understanding the effects of biotic and abiotic factors on sources of aquatic environmental DNA[J]. Biodivers Conserv, 2019, 28(5): 983-1001. doi: 10.1007/s10531-019-01709-8
[57] BARNES M A, CHADDERTON W L, JERDE C L, et al. Environmental conditions influence eDNA particle size distribution in aquatic systems[J]. Environ DNA, 2021, 3(3): 643-653. doi: 10.1002/edn3.160
[58] SAITO T, DOI H. Effect of salinity and water dilution on environmental DNA degradation in freshwater environments[J]. bioRxiv, 2021, 5(24): 445344.
[59] STRICKLER K, FREMIER A K, GOLDBERG C S. Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms[J]. Biol Conserv, 2015, 183: 85-92. doi: 10.1016/j.biocon.2014.11.038
[60] ELBRECHT V, VAMOS E E, MEISSNER K, et al. Assessing strengths and weaknesses of DNA metabarcoding-based macroinvertebrate identification for routine stream monitoring[J]. Methods Ecol Evol, 2017, 8(10): 1265-1275. doi: 10.1111/2041-210X.12789