Study on disturbance of oyster culture on environmental factors and bacterioplankton in Dapeng Cove
-
摘要:
为评估牡蛎养殖对典型半封闭海湾环境及其生态系统的影响,深入理解其在海洋环境治理和修复中的地位和作用,采用高通量测序技术,对位于典型城市半封闭海湾——大鹏澳的牡蛎养殖区4个季节的水体菌落结构和功能变化进行了分析,并对比了养殖区与对照区在水体和沉积物环境因子的差异特征。结果表明,牡蛎养殖对大鹏澳水体营养盐等环境因子的扰动相对较小,但其生物沉积作用却增强了海区总有机碳 (Total organic carbon, TOC)、硫化物 (Sulfide, Sul) 和部分重金属的富集。高通量测序结果显示,冬季牡蛎养殖区中的绿弯菌门、脱硫杆菌门和放线菌门等菌落的相对丰度显著高于对照区 (p<0.05)。冗余分析 (Redundancy analysis, RDA) 结果揭示了硅酸盐 (${\mathrm{SiO}}_3^{2-} $)、海水表面温度 (Sea surface temperature, SST) 和盐度是影响冬季牡蛎养殖区与对照区水体菌落结构差异的主要环境因子。此外,基于FAPROTAX模型预测的水体菌落生物地球化学功能分析表明,冬季牡蛎养殖区细菌介导的氮 (N) 和硫 (S) 元素的生物地球化学作用显著高于对照区 (p<0.05)。综上,牡蛎养殖对大鹏澳海水菌落结构组成有一定的扰动,但其影响程度和范围受到了理化因子的季节性变化和水文条件等综合因素的制约。同时,牡蛎养殖也促进了N和S的生物地球化学循环。
Abstract:In order to assess the environmental and ecological effects of oyster culture in typical semi-enclosed bays, as well as to elucidate the role and significance of oysters in the management and restoration of marine environments. Based on high-throughput sequencing technology, we explored the characteristics of the changes in the structure and function of water body colonies in the oyster culture area within a typical urban semi-enclosed bay (Dapeng Cove) in four seasons, and compared the characteristics of the differences in environmental factors in the water body and sediment between the culture area and the control area in the four seasons. The results indicate that oyster culture caused relatively little disturbance to environmental factors such as nutrients in the water of Dapeng Cove, but its biological sedimentation enhanced the enrichment of total organic carbon (TOC), sulfides (Sul), and some heavy metals in the sea area. The high-throughput sequencing results show that the relative abundance of colonies such as Chloroflexi, Desulfobacteraceae and Actinobacteria in the winter oyster culture area was significantly higher than that in the control area (p<0.05). The redundancy analysis (RDA) reveals that the main environmental factors affecting bacterioplankton structure between the oyster culture area and the control area in winter were ${\mathrm{SiO}}_3^{2-} $, sea surface temperature (SST) and salinity. The results of biogeochemical function of water colonies predicted based on the FAPROTAX model show that the biogeochemical effects of nitrogen (N) and sulfur (S) mediated by bacteria in the oyster culture area in winter were significantly higher than those in the control area (p<0.05). In conclusion, oyster culture causes certain disturbances to the bacterial structure and composition of seawater in Dapeng Cove, but its degree and scope of influence are constrained by a combination of factors such as seasonal changes in physical and chemical factors and hydrological conditions. Furthermore, oysters culture facilitates the biogeochemical cycling of elements such as nitrogen and sulfur.
-
Keywords:
- Oyster culture /
- Environmental factors /
- Bacterioplankton /
- Dapeng Cove
-
自然界由于食物存在空间上的分布不均匀、季节的更替、环境条件的剧变等原因,水产动物在生活周期的一定阶段将面临食物资源的缺乏而受到饥饿胁迫。很多水产动物都具备能够忍受较长时间饥饿的生理功能,为维持自身生命,它们将减少代谢率甚至通过消耗自身组织的贮存物质等行为来适应短期的食物不足问题[1]。
水产动物在胚胎期可以依靠卵黄或母体提供营养,但在生长繁殖期所需的食物和能量必须从外界环境中获得。食物短缺将严重制约水产动物的成活、生长、发育和繁殖等生命活动[2]。谢小军等[3]及胡麟和吴天星[4]综述了饥饿对鱼类代谢、身体组成、形态结构、行为、繁殖习性和成活的影响,并指出研究饥饿对鱼类生理学状况的影响有助于了解鱼类适应饥饿胁迫的生态对策,对水产动物自然资源的保护、苗种培育及人工养殖等方面具有重要的指导意义。研究饥饿对海产经济动物生理生态学的影响,不仅可以揭示其适应饥饿胁迫的生理学对策,也可以为研发高效投喂技术提供理论依据[5]。
近年来,国内外学者对乌贼类的种群变动、资源状况、洄游分布、环境耐受性、摄食、生长、营养价值、乌贼墨及其养殖等方面的研究已有报道[6-10],但对曾是中国四大渔业之一的曼氏无针乌贼(Sepiella maindrona)生理方面研究报道还较少。元冬娟等[11]指出脂肪酸在贝类的天然免疫反应、寒冷的适应性、繁殖和胚胎发育等生理过程中都起着关键的作用。文章研究了饥饿胁迫下曼氏无针乌贼肝脏与卵巢中的脂肪酸组成变化,以期了解饥饿这一特殊条件对曼氏无针乌贼生长、繁殖的影响,为曼氏无针乌贼营养需求、能量代谢及生理学研究提供理论资料。
1. 材料与方法
1.1 试验设计
试验于2007年4~5月在宁海双盘涂水产养殖基地进行。试验曼氏无针乌贼选自奉化市乌贼育苗养殖基地,初始平均胴长为(10.27±1.81)cm,平均体质量为(115.8±12.6)g且为卵巢成熟的雌性乌贼。暂养于设有遮阳布的网箱(4 m×2 m×2 m)中,每天早、晚测定水质指标,投喂鲜活小杂鱼并及时清除网箱内残饵,观察乌贼的活动情况。水温(18±1.5) ℃、盐度22.5±0.3、pH 8.2±0.1、溶氧(5.3±0.4)mg · L-1。适应15 d后,挑选规格整齐、体色正常的健康曼氏无针乌贼30只分3个网箱放养。将3组乌贼分别设计不同的禁食处理后同一天取样,即空腹处理组(禁食1 d)、饥饿12 d(禁食13 d)、饥饿24 d(禁食25 d),每个网箱内各取5只乌贼活体运至实验室并及时取其组织。曼氏无针乌贼的体质量和胴体长在运到双盘涂开始暂养前测定。由于曼氏无针乌贼离水后极容易喷墨而影响活力,因此,该试验的称量过程是先在烧杯中放入少量自然海水,在精确度为0.1 g的电子天平上去皮质量后再将曼氏无针乌贼移入该烧杯称量,记录湿质量即为体质量,用普通直尺测量乌贼胴体长,精确度为0.1 cm。
1.2 样本制备及测定
将饥饿处理的活体乌贼用吸水纸吸干体表水分,测定体质量及胴体长后迅速在冰盘上解剖,取出其肝脏、卵巢,用预冷生理盐水快速冲洗,并用脱脂棉小心揩干,称量,低温冷冻干燥后用于脂肪酸测定。测定工具同1.1。
脂肪酸(GC-MS)分析具体参数设定。1)气相色谱条件:进样口温度250 ℃,载气氦(He),柱流速0.81 mL · min-1,柱前压73.0 kPa,柱起始温度150 ℃,保持3.5 min,以20 ℃ · min-1升至200 ℃,保持5 min,再以5 ℃ · min-1升至280 ℃,保持15 min。分流进样1 μL,分流比50 : 1;2)质谱条件:电子轰击源(EI),电子能量70 eV,离子源温度200 ℃,接口温度250 ℃,全程离子碎片扫描(SCAN)模式,质量扫描范围40~650,溶剂延迟3.5 min。测定仪器及柱子:QP 2010GC-MS仪(日本SHIMADZU公司出品),30 m×0.25 mm×0.25 μm SPB-50色谱柱(美国SUPELCO公司出品)。
1.3 数据统计分析
所有数据均以平均值±标准差(Mean±SD)表示,用Excel进行整理统计,采用SPSS 13.0软件进行单因素方差分析(One-Way ANOVA),达显著差异后(P < 0.05),则采用Duncan检验进行组间差异的多重比较。
2. 结果
空腹处理组、饥饿12和24 d处理组的曼氏无针乌贼个体大小出现显著差异(P < 0.05),空腹处理组曼氏无针乌贼个体大,活力好,其生殖腔内可见大量分散、透明的成熟卵子;饥饿12 d组的乌贼个体较空腹处理组小,卵巢中的卵子颗粒也不饱满;饥饿24 d组的乌贼身体明显消瘦、弱小、反应迟钝,其卵巢严重萎缩,发育不良,具体形态学指标见表 1。曼氏无针乌贼在饥饿12和24 d后的体质量、胴体长、肝脏质量及卵巢质量均有显著下降(P < 0.05)。
表 1 饥饿对曼氏无针乌贼形态学的影响Table 1 Effects of starvation on morphology of S.maindroni处理组group 体质量/g body weight 胴体长/cm carcass length 肝脏质量/g liver weight 卵巢质量/g ovary weight 空腹组fasting group 159.8±17.4a 11.14±2.31a 3.1±0.6a 14.5±2.9a 饥饿12 d starvation 123.4±25.9b 9.56±1.97b 2.5±0.7b 10.1±1.6b 饥饿24 d starvation 87.1±12.8c 7.42±1.75c 1.3±0.4c 5.6±2.1c 注:不同字母表示处理间差异显著(P < 0.05),下同
Note:Different letters represent significant difference (P < 0.05).The same below.2.1 饥饿前后曼氏无针乌贼肝脏脂肪酸变化
空腹处理组、饥饿12和24 d处理组的肝脏脂肪酸含量测定结果见表 2。饥饿12 d时乌贼肝脏中的饱和脂肪酸(saturated fatty acids,SFA)和单不饱和脂肪酸(monounsaturated fatty acid,MUFA)比率较空腹处理组显著下降(P < 0.05),而多不饱和脂肪酸(polyunsaturated fatty acid,PUFA)和高不饱和脂肪酸(highly-unsaturated fatty acid,HUFA)比率均有显著提高(P < 0.05);饥饿24 d时未检测到其肝脏中的C12:0,∑SFA、∑MUFA和∑n-3/n-6 PUFA的比率较空腹处理组显著下降(P < 0.05),而∑PUFA+∑HUFA、DHA/EPA比率较空腹处理组有显著上升(P < 0.05)。
表 2 饥饿对曼氏无针乌贼肝脏脂肪酸组成的影响Table 2 Effect of starvation on fatty acid composition of liver in S.maindroni脂肪酸fatty acids 空腹组fasting group 饥饿时间/d starvation time 12 24 12:0 0.042±0.002a 0.033±0.006b - 14:0 1.231±0.010b 3.533±0.012a 0.853±0.015c 15:0 1.860±0.009a 0.663±0.040b 0.373±0.025c 16:0 27.636±0.014a 24.373±0.021b 12.757±0.051c 17:0 3.344±0.017a 1.467±0.006b 1.780±0.010b 18:0 19.130±0.010a 12.457±0.049b 18.500±0.026a 19:0 0.308±0.008a 0.193±0.006b 0.357±0.006a 20:0 2.953±0.015a 0.663±0.006c 2.123±0.025b 21:0 - - 0.053±0.006 22:0 0.241±0.012b 0.063±0.006c 0.323±0.006a 23:0 0.099±0.009 - - ∑SFA 56.844±0.011a 43.445±0.025b 37.119±0.029c 16:1(n-7) 4.963±0.025a 0.510±0.010b 0.417±0.021b 18:1(n-9) 4.087±0.021a 3.530±0.017b 1.030±0.017c 18:1(n-7) 6.488±0.033a 1.767±0.012b 1.287±0.006b 20:1(n-9) 1.532±0.010a 0.290±0.010c 0.470±0.020b ∑MUFA 17.790±0.027a 6.097±0.014b 3.204±0.016c 18:3(n-3) - 0.070±0.010b 0.233±0.006a 20:5(n-3)EPA 8.886±0.044b 15.047±0.045a 16.827±0.025a 22:5(n-3) 0.765±0.004c 0.883±0.012b 1.810±0.010a 22:6(n-3)DHA 7.015±0.018c 24.440±0.072a 17.220±0.026b 20:4(n-6) 3.619±0.018b 3.747±0.021b 9.363±0.038a 22:4(n-6) - - 1.330±0.026 ∑PUFA+HUFA 20.285±0.015b 44.187±0.039a 46.783±0.029a DHA/EPA 0.789±0.002c 1.624±0.001a 1.023±0.002b ∑n-3 PUFA 16.666±1.228c 40.440±3.074a 36.090±2.419b ∑n-6 PUFA 3.619±0.010b 3.747±0.012b 10.693±1.796a ∑n-3/n-6 PUFA 4.603±0.002b 10.794±0.049a 3.375±0.001c 注:∑SFA. 饱和脂肪酸总百分比;∑MUFA. 单不饱和脂肪酸总百分比;∑PUFA. 多不饱和脂肪酸总百分比;∑HUFA. 高不饱和脂肪酸总百分比;下同
Note:∑SFA. total percentage of saturated fatty acid;∑MUFA. total percentage of monounsaturated fatty acid;∑PUFA. total percentage of polyunsaturated fatty acid;∑HUFA. total percentage of highly-unsaturated fatty acid. The same below.2.2 饥饿前后曼氏无针乌贼卵巢脂肪酸变化
空腹处理组、饥饿12和24 d处理组的卵巢脂肪酸含量测定结果见表 3。与肝脏相比,乌贼卵巢中的各脂肪酸含量在饥饿12 d时与空腹处理组相比变化程度较小,其中∑SFA、∑MUFA、∑n-3/n-6 PUFA比率及组成在饥饿12 d时与空腹处理组无显著变化(P > 0.05),但∑PUFA+∑HUFA、∑n-3/n-6 PUFA和∑n-6 PUFA比率较空腹处理组有显著下降(P < 0.05),且未检测到EPA;饥饿24 d卵巢中的∑SFA、DHA/EPA、∑n-3/n-6 PUFA比率较空腹处理组有极显著下降(P < 0.01),而∑MUFA、∑PUFA+∑HUFA和∑n-6 PUFA比率显著高于空腹处理组(P < 0.05)。可见饥饿12 d时,曼氏无针乌贼卵巢内的各脂肪酸比率变化程度较小,而饥饿24 d时,曼氏无针乌贼卵巢内的脂肪酸比率变化趋势跟肝脏内的变化趋势一致。
表 3 饥饿对曼氏无针乌贼卵巢脂肪酸组成的影响Table 3 Effect of starvation on fatty acid composition of ovary in S.maindroni脂肪酸fatty acids 空腹组fasting group 饥饿时间/d starvation time 12 24 12:0 0.053±0.003a 0.023±0.006 0.043±0.006b 14:0 3.067±0.015a 3.600±0.046a 1.317±0.021b 15:0 0.294±0.005b - 0.477±0.025a 16:0 28.156±0.014a 25.547±0.050a 1.213±0.015b 17:0 0.997±0.006b 1.837±0.015a 0.257±0.006 18:0 11.737±0.006a 13.153±0.050a 0.090±0.010b 19:0 0.105±0.005b 0.273±0.006a 0.293±0.006a 20:0 0.856±0.005a 0.787±0.012a 0.123±0.006b 22:0 0.076±0.005c 0.103±0.015b 0.163±0.006a ∑SFA 45.341±0.009a 45.323±0.027a 3.976±0.012b 16:1(n-7) - 0.420±0.017b 1.130±0.026a 18:1(n-9) 3.806±0.020b 2.837±0.032b 18.047±0.047a 18:1(n-7) 1.191±0.010b 1.733±0.023a 1.203±0.006b 20:1(n-9) 0.197±0.011b 0.393±0.006a 0.323±0.006a ∑MUFA 5.194±0.013b 5.776±0.021b 20.703±0.019a 18:3(n-3) 0.176±0.005b 0.063±0.006c 6.067±0.042a 20:5(n-3) 10.652±0.053b - 14.153±0.046a 22:5(n-3) 0.584±0.003b 0.950±0.010a 0.836±0.006a 22:6(n-3) 28.441±0.079a 26.210±0.010a 18.653±0.137b 20:4(n-6) 4.461±0.022b 3.070±0.044b 10.580±0.069a 22:4(n-6) - - 0.657±0.025 ∑PUFA+HUFA 44.314±0.035b 30.293±0.017c 50.946.±0.074a DHA/EPA 2.670±0.007a - 1.318±0.007b ∑n-3 PUFA 39.853±3.456a 27.223±4.286b 39.710±2.087a ∑n-6 PUFA 4.461±0.013b 3.070±0.025c 11.237±2.219a ∑n-3/n-6 PUFA 8.924±0.005a 8.869±0.129a 3.534±0.011b 3. 讨论
面对食物缺乏,动物将调整自身的代谢过程以适应饥饿胁迫,许多水产动物都能忍受较长时间的饥饿。饥饿状态下水产动物的一些外部形态特征和内部解剖性状产生某些特定的变化,如动物体逐渐消瘦、头大体小、背薄尾尖、肠管变细、肝胰脏缩小和卵巢发育不良等[12-13]。该试验中,饥饿24 d后的曼氏无针乌贼在形态上就发生了明显变化,个体明显小于空腹组,体质量显著下降(P < 0.05),解剖内脏也发现其肝脏组织明显萎缩和卵巢组织严重发育不良,这与很多学者研究的结果相似[14-15]。说明曼氏无针乌贼至少能够忍受24 d内的饥饿胁迫,但在饥饿胁迫情况下,曼氏无针乌贼必须动用体内的储存物质来维持自身生命,已不能保证其生长发育。关于饥饿胁迫下曼氏无针乌贼各组织的组织学研究将有待于进一步深入。
饥饿胁迫时,水产动物代谢发生适应性生理变化,多数水产动物以脂肪和糖元作为能源物质,调节身体各种酶活性,以达到积极利用体内的贮存物质,得以维持生命[16]。一般情况下,作为主要贮能物质的糖元、脂肪和蛋白质在饥饿过程中将会不同程度地被消耗。通过对性腺发育成熟的曼氏无针乌贼作不同程度的饥饿处理,测定其肝脏和卵巢中各脂肪酸含量比率,可以分析其相应的生化组成,获得饥饿期间动物使用身体贮能物质的变化资料。
饥饿期间动物体动用机体内能源物质有先有后,而对不同器官,动用贮能物质也有先后次序。该试验结果发现,饥饿过程中曼氏无针乌贼肝脏中的∑SFA和∑MUFA作为维持生命的能源物质首先被利用,并且肝脏中的∑SFA和∑MUFA其中一部分也可能被转移到卵巢中,致使其比率在饥饿12 d时明显降低(P < 0.05)。此外,卵巢的营养由于无法完成繁殖活动而逐步被吸收,其∑n-3 PUFA和∑n-6 PUFA可能是首先被转移的对象,同时从肝脏中获得了∑SFA和∑MUFA来保证卵巢的正常发育,因而导致卵巢中∑n-3 PUFA和∑n-6 PUFA比率有所下降,而∑SFA和∑MUFA组成在饥饿12 d时受饥饿胁迫的影响较小,其比率及组成没有明显变化(P > 0.05)。这一结果同时表明,曼氏无针乌贼各器官组织的功能不同,肝脏组织起贮存能源物质的作用,对饥饿等外界条件敏感,饥饿时优先动用其中的能源物质,而性腺(卵巢)在饥饿等恶劣的条件下,首先会得到保护,也有可能是肝脏储存的脂肪一部分用于能量被消耗,而另一部分被用于卵巢的发育,即卵巢的脂肪积累在没有外界食物来源时主要来源于肝脏中储存脂肪的转运。但随着饥饿胁迫时间的延长,因肝脏中的脂肪将不足以提供给卵巢,为达到维持自身生命的目的,当饥饿24 d后曼氏无针乌贼只能动用卵巢中的∑SFA来保护自己,故∑SFA比率明显降低,这可能是因为曼氏无针乌贼肝脏中所贮存的能量已经提供到了极限,卵巢的营养由于无法完成繁殖活动,逐步被吸收来维持自身的生命活动。JEZIERSKA等[17]研究虹鳟(Salmo gairdneri)指出,饥饿胁迫降低了单不饱和脂肪酸的含量,从而导致了饱和脂肪酸含量的升高。
谢小军等[3]研究报道了饥饿过程中鱼类对其体内不同种类脂肪酸的利用顺序有一定的规律,即首先利用SFA,然后MUFA,最后才动用HUFA。FALK等[18]和MOURENTE[19]研究也发现,n-6 PUFA和n-3 PUFA在各自组织中被优先保存下来,而SFA和MUFA作为仔鱼吸收卵黄内源营养发育阶段的重要能源被首先利用。KOVEN等[20]发现金鲷(Sparus aurata)仔鱼在饥饿过程中脂肪酸损失速率的排列顺序为∑n-6 PUFA>∑n-9 PUFA>∑n-3 PUFA。SATOH等[21]对饥饿胁迫下尼罗罗非鱼(Tilapia nilotica)脂肪酸含量变化的研究中也发现各种类脂肪酸损失速率有类似排列顺序。DESLIVA等[22]提出饥饿影响鱼体组织特别是肝脏和肌肉的脂肪酸组成及内脏的脂肪积累,且不同鱼类脂肪酸的动用也存在着差异。该试验结果也证明以上学者的观点,即饥饿过程中曼氏无针乌贼肝脏中∑SFA和∑MUFA的比率在饥饿12 d时含量降低明显,而∑PUFA+∑HUFA在饥饿12 d时的比率显著升高。当肝脏中的∑SFA和∑MUFA被利用到一定程度后(饥饿24 h),卵巢中的∑SFA和∑MUFA比率也出现极显著下降(P < 0.01)。至于曼氏无针乌贼若继续长时间饥饿,其组织内的∑MUFA的比率是否将相应下降还有待于作进一步深入研究。
饥饿或限食对于控制因投饵不当引起的自身污染具有十分现实的意义。随着养殖规模的扩大,养殖水体富营养化日趋严重,导致水质恶化,溶氧减少,病害频发,对养殖产业构成了严重威胁。而在养殖过程中因投喂不合理导致残饵、动物粪便和排泄物等产生的自身污染是产生养殖水体恶化的主要原因之一。如果能够利用补偿生长现象进行科学投喂,减少饥饿期间排泄量及增加恢复生长期间食欲来减少养殖过程中的残饵量,从源头控制自身污染,就能促进水产养殖业的可持续健康发展。该试验为进一步研究曼氏无针乌贼的补偿生长奠定了基础,也为曼氏无针乌贼的高效投喂模式提供了技术支持。
-
图 5 冬季牡蛎养殖区与对照区水体浮游菌落差异检验柱状图 (门水平)
注:* 代表存在显著性差异 (*. p<0.05; **. p<0.01; ***. p<0.001)。
Figure 5. Wilcoxon rank-sum test bar plot for bacterioplankton in water body between oyster culture area and control area in winter (Phylum level)
Note: * represents significant differences (*. p<0.05; **. p<0.01; ***. p<0.001).
图 6 冬季牡蛎养殖区与对照区水体浮游菌落与环境因子RDA分析 (OTU水平)
注:椭圆为95%的置信区间;SST. 海水表面温度;DO. 溶解氧;Chl a. 叶绿素a;NH4 +. 铵态氮;NO3 −. 硝态氮;SiO3 2−. 硅酸盐;COD. 化学需氧量;SRP. 可溶性活性磷酸盐。
Figure 6. RDA analysis of bacterioplankton and environmental factors in water body between oyster culture area and control area in winter (OTU level)
Note: Ellipse represents 95% confidence interval; SST. Sea surface temperature; DO. Dissolved oxygen; Chl a. Chlorophyll a; NH4 +. Ammonium nitrogen; NO3 −. Nitrate nitrogen; SiO3 2−. Silicate; COD. Chemical oxygen demand; SRP. Soluble reactive phosphate.
图 7 冬季牡蛎养殖区与对照区水体中菌落潜在生物地球化学功能差异
注:* 代表存在显著性差异 (*. p<0.05; **. p<0.01; ***. p<0.001)。
Figure 7. Analysis of potential biogeochemical functional differences of bacterioplankton in water body between oyster culture area and control area in winter
Note: * represents significant differences (*. p<0.05; **. p<0.01; ***. P<0.001).
表 1 大鹏澳牡蛎养殖区与对照区水体与沉积物水环境因子t检验分析
Table 1 Analysis of water environment factors by t-test between oyster culture area and control area in Dapeng Cove
水环境因子
Water environment factor牡蛎养殖区
Oyster culture area对照区
Control areap值 p-value 年均
Annual mean春
Spring夏
Summer秋
Autumn冬
Winter海水表面温度 SST/℃ 25.94±3.34 26.04±3.45 0.900 0.005** 0.444 0.166 0.009** 盐度 Salinity/‰ 32.96±1.00 33.03±0.97 0.749 0.036* 0.510 0.738 0.003** 铵态氮 ${\mathrm{NH}}_4^{\mathrm{+}} $/(mg∙L−1) 0.10±0.04 0.10±0.04 0.813 0.720 0.113 0.555 0.650 硝态氮 ${\mathrm{NO}}_3^{\text{−}}$/(mg∙L−1) 0.09±0.02 0.09±0.02 0.871 0.523 0.609 0.248 0.330 可溶性无机氮 DIN/(mg∙L−1) 0.19±0.04 0.18±0.04 0.764 0.927 0.25 0.89 0.830 可溶性活性磷酸盐SPR/(μg∙L−1) 6.13±2.34 6.53±2.85 0.521 0.159 0.006** 0.168 0.338 硅酸盐 ${\mathrm{SiO}}_3^{2{\text{−}}} $/(mg∙L−1) 0.12±0.06 0.11±0.06 0.664 0.288 0.313 0.054 0.555 硅磷比 Si/P 25.29±16.89 25.73±18.83 0.916 0.105 0.032* 0.030* 0.478 化学需氧量COD/(mg∙L−1) 0.95±0.43 0.98±0.45 0.827 0.742 0.773 0.520 0.678 叶绿素a Chl a/(μg∙L−1) 0.87±0.55 0.78±0.62 0.529 0.001** 0.826 0.653 0.329 溶解氧DO/(mg∙L−1) 7.51±0.76 7.63±0.57 0.418 0.037* 0.618 0.682 0.914 浊度 Turbitity/NTU 5.37±2.12 4.44±1.65 0.021* 0.066 0.224 0.122 0.040* 注:* 代表存在显著性差异 (*. p<0.05; ** . p<0.01; *** . p<0.001);n=36。 Note: * represents significant differences (*. p<0.05; ** . p<0.01; *** . p<0.001); n=36. 表 2 大鹏澳牡蛎养殖区与对照区沉积物环境因子t检验分析
Table 2 Analysis of sediment environment factors by t-test between oyster culture area and control area in Dapeng Cove
沉积物环境因子
Sediment environment factor牡蛎养殖区
Oyster culture area对照区
Control areap值 p-value 年均
Annual mean春
Spring夏
Summer秋
Autumn冬
Winter总有机碳 TOC/% 1.15±0.44 0.56±0.25 <0.001*** 0.003** 0.003** 0.006** 0.007** 总氮TN/% 0.13±0.06 0.11±0.05 0.0550 0.413 0.201 0.284 0.073 总磷TP/% 0.21±0.06 0.19±0.08 0.257 0.413 0.08 0.047* 0.983 碳氮比 C/N 12.33±12.33 8.43±9.15 0.133 0.258 0.546 0.007** 0.007** 硫化物Sulfide/(mg∙kg−1) 67.72±70.03 24.99±20.65 <0.001*** 0.220 0.052 0.092 0.109 镉Cd/(mg∙kg−1) 0.04±0.04 0.03±0.02 0.022* 0.213 0.179 0.430 0.100 铅Pb/(mg∙kg−1) 44.54±18.05 19.64±9.08 <0.001*** 0.021* <0.001*** <0.001*** <0.001*** 铜Cu/(mg∙kg−1) 34.81±15.54 8.16±4.98 <0.001*** 0.005** <0.001*** 0.001** <0.001*** 锌Zn/(mg∙kg−1) 83.32±34.79 38.66±20.08 <0.001*** 0.003** 0.001** 0.002** 0.012* 铬Cr/(mg∙kg−1) 63.54±21.41 40.79±21.95 <0.001*** 0.013* 0.633 <0.001*** <0.001*** 沉积物粒径
Sediment grain size/mm0.01±0.01 0.02±0.02 <0.001*** 0.064 0.734 0.104 0.190 注:* 代表存在显著性差异 (*. p<0.05; **. p<0.01; ***. p<0.001);n=36。 Note: * represents significant differences (*. p<0.05; **. p<0.01; ***. p<0.001); n=36. 表 3 冬季牡蛎与对照区水体浮游菌落α多样性
Table 3 Alpha diversity of bacterioplankton in water body between oyster culture area and control area in winter
多样性指数
Diversity index牡蛎养殖区
Oyster culture area对照区
Control areap值
p-valueShannon 3.14±0.15 2.91±0.12 0.01 Chao 458.65±101.09 344±43.01 0.01 Invsimpson 11.11±1.67 9.77±1.65 0.13 Shannoneven 0.55±0.01 0.53±0.02 0.13 -
[1] MARTÍNEZ-BAENA F, LANHAM B S, MCLEOD I M, et al. Remnant oyster reefs as fish habitat within the estuarine seascape[J]. Mar Environ Res, 2022, 179: 105675. doi: 10.1016/j.marenvres.2022.105675
[2] 邓云龙, 曹煜成, 徐煜, 等. 贝、藻耦合对集约化养殖尾水的净化效果研究[J]. 南方水产科学, 2023, 19(5): 113-122. [3] 杨小彤, 叶灵通, 卢洁, 等. 广东近岸海域贝类寄生派琴虫流行病学调查研究[J]. 南方水产科学, 2022, 18(1): 128-134. [4] RAY N E, FULWEILER R W. Meta-analysis of oyster impacts on coastal biogeochemistry[J]. Nat Sustain, 2021, 4(3): 261-269.
[5] LABRIE M S, SUNDERMEYER M A, HOWES B L. Quantifying the effects of floating oyster aquaculture on nitrogen cycling in a temperate coastal embayment[J]. Estuar Coast, 2023, 46(2): 494-511. doi: 10.1007/s12237-022-01133-2
[6] PAN K, LAN W L, LI T S, et al. Control of phytoplankton by oysters and the consequent impact on nitrogen cycling in a subtropical bay[J]. Sci Total Environ, 2021, 796: 149007. doi: 10.1016/j.scitotenv.2021.149007
[7] CLEMENTS J C, COMEAU L A. Nitrogen removal potential of shellfish aquaculture harvests in eastern Canada: a comparison of culture methods[J]. Aquac Rep, 2019, 13: 100183. doi: 10.1016/j.aqrep.2019.100183
[8] CERCO C, NOEL M. Can oyster restoration reverse cultural eutrophication in Chesapeake Bay?[J]. Estuaries Coasts, 2007, 30(2): 331-343. doi: 10.1007/BF02700175
[9] OKUMURA Y, MASUDA Y, MATSUTANI M, et al. Influence of oyster and seaweed cultivation facilities on coastal environment and eukaryote assemblages in Matsushima Bay, northeastern Honshu, Japan[J]. Front Mar Sci, 2023, 9: 1022168. doi: 10.3389/fmars.2022.1022168
[10] HOSACK G R, DUMBAULD B R, RUESINK J L, et al. Habitat associations of estuarine species: comparisons of intertidal mudflat, seagrass (Zostera marina), and oyster (Crassostrea gigas) habitats[J]. Estuar Coast, 2006, 29(6): 1150-1160. doi: 10.1007/BF02781816
[11] GAURIER B, GERMAIN G, KERVELLA Y, et al. Experimental and numerical characterization of an oyster farm impact on the flow[J]. Eur J Mech B-FLUIDS, 2011, 30(5): 513-525. doi: 10.1016/j.euromechflu.2011.05.001
[12] COMEAU L A, MALLET A L, CARVER C E, et al. Impact of high-density suspended oyster culture on benthic sediment characteristics[J]. Aquac Eng, 2014, 58: 95-102. doi: 10.1016/j.aquaeng.2013.12.004
[13] USHIJIMA B, RICHARDS G P, WATSON M A, et al. Factors affecting infection of corals and larval oysters by Vibrio coralliilyti cus[J]. PLoS One, 2018, 13(6): e0199475. doi: 10.1371/journal.pone.0199475
[14] NEWELL R I E, KEMP W M, III J D H, et al. Top-down control of phytoplankton by oysters in Chesapeake Bay, USA: comment on Pomeroy et al. (2006)[J]. Mar Ecol Prog Ser, 2007, 341: 293-298. doi: 10.3354/meps341293
[15] PERNET F, DUPONT S, GATTUSO J P, et al. Cracking the myth: bivalve farming is not a CO2 sink[J/OL]. Rev Aquac, [2024-08-31]. https://onlinelibrary.wiley.com/doi/full/10.1111/raq.12954.
[16] 张卓, 李政菊, 江天久. 大鹏澳海域麻痹性贝类毒素时空动态变化特征[J]. 海洋环境科学, 2018, 37(6): 808-812. [17] ROSE J M, BRICKER S B, TEDESCO M A, et al. A role for shellfish aquaculture in coastal nitrogen management[J]. Environ Sci Technol, 2014, 48(5): 2519-2525. doi: 10.1021/es4041336
[18] RAO Y Y, CAI L Z, CHEN B W, et al. How do spatial and environmental factors shape the structure of a coastal macrobenthic community and meroplanktonic larvae cohort? Evidence from Daya Bay[J]. Mar Pollut Bull, 2020, 157: 111242. doi: 10.1016/j.marpolbul.2020.111242
[19] 郑利涛. 深圳大亚湾水质模拟与风险扩散预测研究[D]. 天津: 天津大学, 2022: 25-51. [20] PIERANGELI G M F, DOMINGUES M R, CHOUERI R B, et al. Spatial variation and environmental parameters affecting the abundant and rare communities of bacteria and archaea in the sediments of tropical urban reservoirs[J]. Microb Ecol, 2022, 86: 297-310.
[21] FANG G J, YU H L, SHENG H X, et al. Comparative analysis of microbial communities between water and sediment in Laoshan Bay marine ranching with varied aquaculture activities[J]. Mar Pollut Bull, 2021, 173: 112990. doi: 10.1016/j.marpolbul.2021.112990
[22] RAJEEV M, SUSHMITHA T J, TOLETI S R, et al. Sediment-associated bacterial community and predictive functionalities are influenced by choice of 16S ribosomal RNA hypervariable region(s): an amplicon-based diversity study[J]. Genomics, 2020, 112(6): 4968-4979. doi: 10.1016/j.ygeno.2020.09.006
[23] 崔毅, 陈碧鹃, 陈聚法. 黄渤海海水养殖自身污染的评估[J]. 应用生态学报, 2005, 16(1): 180-185. [24] RODHOUSE P G, RODEN C M, HENSEY M P, et al. Production of mussels, mytilus edulis, in suspended culture and estimates of carbon and nitrogen flow: Killary Harbour, Ireland[J]. J Mar Biol Assoc U K, 1985, 65(1): 55-68. doi: 10.1017/S0025315400060793
[25] 沈雨欣, 李书杰, 李希磊, 等. 海湾扇贝养殖自身污染对养殖海区生态环境的影响[J]. 渔业研究, 2018, 40(4): 324-328. [26] 孙丽华, 陈浩如, 彭云辉, 等. 大亚湾大鹏澳周边河流中营养盐的分布及入海通量的估算[J]. 台湾海峡, 2003, 22(2): 211-217. [27] 任秀文, 姜国强, 刘爱萍, 等. 大亚湾主要入海河流污染物通量估算研究[C]//2013中国环境科学学会学术年会论文集 (第四卷). 昆明: 中国环境科学学会, 2013: 1055-1064. [28] 孙振宇, 陈照章, 杨龙奇, 等. 大亚湾及周边海区潮流和余流的季节变化特征[J]. 厦门大学学报(自然科学版), 2020, 59(2): 278-286. [29] CAMPBELL M D, HALL S G. Hydrodynamic effects on oyster aquaculture systems: a review[J]. Rev Aquac, 2019, 11(3): 896-906. doi: 10.1111/raq.12271
[30] XU C, YANG B, DAN S F, et al. Spatiotemporal variations of biogenic elements and sources of sedimentary organic matter in the largest oyster mariculture bay (Maowei Sea), Southwest China[J]. Sci Total Environ, 2020, 730: 139056. doi: 10.1016/j.scitotenv.2020.139056
[31] LACOSTE É, GAERTNER-MAZOUNI N. Nutrient regeneration in the water column and at the sediment-water interface in pearl oyster culture (Pinctada margaritifera) in a deep atoll lagoon (Ahe, French Polynesia)[J]. Estuar Coast Shelf Sci, 2016, 182: 304-309. doi: 10.1016/j.ecss.2016.01.037
[32] ERLER D V, WELSH D T, BENNET W W, et al. The impact of suspended oyster farming on nitrogen cycling and nitrous oxide production in a sub-tropical Australian estuary[J]. Estuar Coast Shelf Sci, 2017, 192: 117-127. doi: 10.1016/j.ecss.2017.05.007
[33] AZANDÉGBÉ A, POLY F, ANDRIEUX-LOYER F, et al. Influence of oyster culture on biogeochemistry and bacterial community structure at the sediment-water interface[J]. FEMS Microbiol Ecol, 2012, 82(1): 102-117. doi: 10.1111/j.1574-6941.2012.01410.x
[34] SIM B R, KIM H C, KANG S, et al. Geochemical indicators for the recovery of sediment quality after the abandonment of oyster Crassostrea gigas farming in South Korea[J]. Korean J Fish Aquat Sci, 2020, 53(5): 773-783.
[35] YAN Q, SONG J T, ZHOU J, et al. Biodeposition of oysters in an urbanized bay area alleviates the black-malodorous compounds in sediments by altering microbial sulfur and iron metabolism[J]. Sci Total Environ, 2022, 817: 152891. doi: 10.1016/j.scitotenv.2021.152891
[36] LIU Q, LIAO Y B, ZHU J H, et al. Influence of biodeposition by suspended cultured oyster on the distributions of trace elements in multiple media in a semi-enclosed bay of China[J]. J Hazard Mater, 2023, 443: 130347. doi: 10.1016/j.jhazmat.2022.130347
[37] SHULKIN V M, PRESLEY B J, KAVUN V. Metal concentrations in mussel Crenomytilus grayanus and oyster Crassostrea gigas in relation to contamination of ambient sediments[J]. Environ Int, 2003, 29(4): 493-502. doi: 10.1016/S0160-4120(03)00004-7
[38] LIANG J, LIU J, XU G, et al. Distribution and transport of heavy metals in surface sediments of the Zhejiang nearshore area, East China Sea: sedimentary environmental effects[J]. Mar Pollut Bull, 2019, 146: 542-551. doi: 10.1016/j.marpolbul.2019.07.001
[39] PING X Y, ZHANG H, JIANG Y Z, et al. Sediment properties and benthic fauna associated with stock enhancement and farming of marine bivalve populations in Xiangshan Bay, China[J]. Aquac Res, 2023, 2023: e4729267.
[40] YAN Q, JIA Z P, SONG J T, et al. Oyster culture changed the phosphorus speciation in sediments through biodeposition[J]. Environ Res, 2023, 216: 114586. doi: 10.1016/j.envres.2022.114586
[41] LIAO Y B, LIU Q, SHOU L, et al. The impact of suspended oyster farming on macrobenthic community in a eutrophic, semi-enclosed bay: implications for recovery potential[J]. Aquaculture, 2022, 548: 737585. doi: 10.1016/j.aquaculture.2021.737585
[42] LAVRENTYEV P J, GARDNER W S, YANG L. Effects of the zebra mussel on nitrogen dynamics and the microbial community at the sediment-water interface[J]. Aquat Microb Ecol, 2000, 21(2): 187-194.
[43] LIU W, BAO Y L, LI K J, et al. The diversity of planktonic bacteria driven by environmental factors in different mariculture areas in the East China Sea[J]. Mar Pollut Bull, 2024, 201: 116136. doi: 10.1016/j.marpolbul.2024.116136
[44] AULADELL A, BARBERÁN A, LOGARES R, et al. Seasonal niche differentiation among closely related marine bacteria[J]. ISME J, 2022, 16(1): 178-189. doi: 10.1038/s41396-021-01053-2
[45] VEZZULLI L, STAGNARO L, GRANDE C, et al. Comparative 16S rDNA gene-based microbiota profiles of the Pacific oyster (Crassos trea gigas) and the Mediterranean mussel (Mytilus galloprovincia lis) from a shellfish farm (Ligurian Sea, Italy)[J]. Microb Ecol, 2018, 75(2): 495-504. doi: 10.1007/s00248-017-1051-6
[46] FANG G J, YU H L, SHENG H X, et al. Seasonal variations and co-occurrence networks of bacterial communities in the water and sediment of artificial habitat in Laoshan Bay, China[J]. PeerJ, 2022, 10: e12705.
[47] ASHLEY R S, MICHAEL F P, JONATHAN H G. Habitat context influences nitrogen removal by restored oyster reefs[J]. J Appl Ecol, 2015, 52(3): 716-725. doi: 10.1111/1365-2664.12435
[48] AYVAZIAN S, MULVANEY K, ZARNOCH C, et al. Beyond bioextraction: the role of oyster-mediated denitrification in nutrient management[J]. Environ Sci Technol, 2021, 55(21): 14457-14465. doi: 10.1021/acs.est.1c01901
-
期刊类型引用(7)
1. LI Shuang,HAO Qing,QIU Jiayin,ZHOU Xu,CHI Changfeng,ZHENG Libing. The First Non-Chordates QRFP-Like Peptide Receptor Gene in the Cephalopod Sepiella japonica: Identification, Characterization and Possible Role in Food Intake. Journal of Ocean University of China. 2025(01): 195-208 . 必应学术
2. 尉小强,王江,周爱民,王鸿泽,罗晓林,安添午,官久强,王之盛. 饥饿对牦牛生理生化指标的影响. 中国奶牛. 2023(11): 16-22 . 百度学术
3. 戴远棠,谢晓晖,黄国光,梁伟峰,沈南南,赵会宏. 虎斑乌贼幼体对盐度及pH值耐受力的研究. 河北渔业. 2012(10): 8-11+16 . 百度学术
4. 吴常文,周超,郭宝英,张建设. 浙江近海曼氏无针乌贼(Sepiella maindroni)繁殖生物学特性变化研究. 海洋与湖沼. 2012(04): 689-694 . 百度学术
5. 张建设,夏灵敏,迟长凤,吴常文. 人工养殖曼氏无针乌贼(Sepiella maindroni)繁殖生物学特性研究. 海洋与湖沼. 2011(01): 55-59 . 百度学术
6. 张建设,迟长凤,吴常文. 曼氏无针乌贼胚胎发育生物学零度和有效积温的研究. 南方水产科学. 2011(03): 45-49 . 本站查看
7. 范帆,尹飞,王建,范帆,李杰. 曼氏无针乌贼(Sepiella maindroni)生物学研究现状及展望. 现代渔业信息. 2011(06): 6-9+19 . 百度学术
其他类型引用(7)