红鳍笛鲷幼鱼对不同开孔形状和尺寸人工鱼礁模型的行为偏好探究

Investigation on behavioral preferences of Lutjanus erythropterus juvenile towards artificial reef models with different pore shapes and sizes

  • 摘要: 人工鱼礁构建对维护海洋生态和保护渔业资源至关重要。在人工鱼礁设计中,开孔形状和尺寸是关键要素,对鱼类的聚集行为有着显著性影响。针对人工鱼礁区常见的礁栖鱼类红鳍笛鲷 (Lutjanus erythropterus),设计制作了不同开孔形状 (圆形、正方形、菱形) 和尺寸 (1.0、2.0、3.0、4.0 cm) 的人工鱼礁模型,观察了在室内实验池中其对幼鱼的吸引作用及其行为变化。结果显示,在未设置人工鱼礁模型的情况下,幼鱼主要聚集在实验池的边缘区域;而放入鱼礁模型后,幼鱼在鱼礁区的平均分布比例显著上升 (p<0.05)。在开孔形状的研究中,3种不同形状组的幼鱼在人工鱼礁放置区 (VI区) 的平均分布率无显著性差异 (p>0.05),但菱形处理组的比例最高 (19.84±6.08)%。在开孔尺寸的研究中,3个处理组的平均分布率存在显著性差异 (p<0.05),4.0 cm尺寸组 (约为幼鱼体高的2.0倍) 最高 (25.36±5.04)%,1.0 cm尺寸组 (约为幼鱼体高的0.5倍) 最低 (14.54±3.09)%。在活动能力方面,人工鱼礁模型实验组与空白对照组有明显差异。幼鱼在人工鱼礁模型中的平均速度从对照组的 (13.36±5.21) cm·s−1降至 (4.29±1.59) cm·s−1,平均加速度从 (106.93±69.17) cm·s−2降至 (54.45±21.47) cm·s−2,活动时间百分比从 (68.01±8.61)%减至 (40.29±11.85)%,且在圆形、正方形和菱形4.0 cm组中均为最低。研究表明,这一阶段的红鳍笛鲷幼鱼对开孔为圆形、尺寸为4.0 cm组的人工鱼礁模型有最强的趋向性,同时其活跃程度相对较低,诱集效果最为显著。

     

    Abstract: The construction of artificial reefs is crucial for maintaining marine ecology and protecting fishery resources. The pore shape and size are the key elements for the structural design with a significant impact on the aggregation of fish. We designed and made the artificial reef models with different pore shapes (Round, square, diamond) and different sizes (1.0, 2.0, 3.0, 4.0 cm) for Lutjanus erythropterus, a common reef-dwelling fish in the artificial reef area. Then we observed the attractive effect on the juveniles and observed their behavioral changes in an indoor experimental pool. The results show that without the artificial reef model, the juveniles mainly concentrated in the peripheral area of experimental pool. But when the reef model was placed, the average distribution ratio of the juveniles in the reef area increased significantly (p<0.05). For the pore shape study, there was no significant difference in the average distribution rate of the juveniles in the artificial reef placement area (VI area) among the three treatment groups (p>0.05), with the proportion of the diamond treatment group being the highest (19.84±6.08)%. However, for the pore size study, there were significant differences among the three treatment groups (p<0.05), 4.0 cm size group (About 2.0 times the body height of juvenile) being the highest (25.36±5.04)%, while 1.0 cm size group (About 0.5 times the body height of juvenile) being the lowest (14.54±3.09)%. In terms of activity ability, there were obvious differences between the artificial reef model experimental group and the blank control group. The average speed of juveniles decreased from (13.36±5.21) cm·s−1 in the control group to (4.29±1.59) cm·s−1 in the reef group, the average acceleration decreased from (106.93±69.17) cm·s−2 to (54.45±21.47) cm·s−2, and the percentage of activity time decreased from (68.01±8.61)% to (40.29±11.85)%, and all were the lowest in the circular 4.0 cm group, the square 4.0 cm group and the diamond 4.0 cm group. It is showed that at this stage, L. erythropterus juvenile has the strongest tropism to the artificial reef model with a circular pore shape and the size group of 4.0 cm, but the activity level is relatively low, showing the most significant attractive effect.

     

/

返回文章
返回