Chromosome-level genome and characteristic analysis of Platax teira
-
摘要:
尖翅燕鱼 (Platax teira) 具有生长速度快、肉质鲜美、营养价值高等特点,其外形奇特,尤其幼鱼更为特殊,可作为观赏鱼,是南海发展网箱养殖的重要潜力鱼类之一。由于目前缺乏尖翅燕鱼的基因组信息,其多数功能基因未被挖掘,已成为制约其遗传育种的重要因素。运用三代测序技术和组装获得染色体水平的尖翅燕鱼高质量基因组图谱,通过基因组注释获得尖翅燕鱼基因组序列的基本生物学信息。结果显示,尖翅燕鱼基因组大小为697.98 Mb,Hi-C挂载至24条染色体,挂载率为99.26%,含重复序列177.79 Mb,占整个基因组的25.47%,注释到22 851个蛋白编码基因。系统进化分析显示尖翅燕鱼与波纹唇鱼 (Cheilinus undulatus) 亲缘关系最近,分化时间距今约82.89 Ma。正选择基因主要富集在与离子通道和心脏功能有关的通路中,扩张的基因家族主要富集在嗅觉传导和氮代谢通路上,揭示了其在特定环境中的生存、适应依据和生态适应策略。
Abstract:Platax teira has the characteristics of fast growth rate, delicious meat and high nutritional content, and its strange appearance, especially for young fish, makes it an ornamental fish, being one of the important potential fishes for the cage culture development in the South China Sea. Due to the lack of genomic information, most of the functional genes of P. teira have not been explored, which has become an important factor of restricting its genetic breeding. We utilized triple sequencing technology and assembly to obtain a high-quality genome map of P. teira on chromosome level, and obtained the basic biological information of P. teira genome sequence through genome annotation. The results show that the genome size of P. teira was 697.98 Mb, assembling into 24 chromosomes with an assembly rate of 99.26%. P. teira genome contained 177.79 Mb of repetitive sequences, accounting for 25.47% of the total genome and encoding 22 851 genes. Comparative genomic analysis with 11 other fish species reveals that P. teira shared the closest relationship with Cheilinus undulatus, and the differentiation time was about 82.89 Ma. Genes under positive selection in P. teira were enriched in pathways related to ion channels and cardiac function, while the expanded gene families were enriched in pathways related to olfactory transmission and nitrogen metabolism, which reveals its survival, adaptation basis and ecological adaptation strategies in specific environment.
-
Keywords:
- Platax teira /
- Chromosome /
- Genome /
- Comparative genomics /
- Ephippidae
-
近年来,由于持续的过度捕捞和环境污染使得澄海莱芜海域渔业资源衰退、海洋环境恶化。人工鱼礁是人为设置在海中的构造物,可为海底生物提供一个人工的栖息场所,为鱼类等水生生物的生长、繁育营造适宜的环境,达到修复海洋生态环境、增殖和养护渔业资源的目的。建设人工鱼礁是修复海洋生态环境和恢复渔业资源的重要措施之一。
澄海莱芜人工鱼礁区位于广东省汕头市东部莱芜半岛东南约2 n mile的海域,礁区东南方面向广阔的南海,东北方毗连南澳岛,西南方为达濠岛和汕头港。礁区底质坚实,以沙、沙泥为主。礁区水深在6~9 m之间,礁区内有水深小于5 m的浅滩,礁区的西南方至正北方,分布有多个港口和多条入海河流。该礁区于2004年完成了人工鱼礁建设。
2003年5月和2007年8月分别进行了澄海莱芜人工鱼礁区投礁前的本底调查和投礁后的跟踪调查,文章根据2次调查结果初步评估了人工鱼礁建设的集鱼效果,以期为该礁区的科学管理和进一步建设提供依据,为广东省乃至全国人工鱼礁的建设和研究提供参考资料。
1. 材料与方法
1.1 调查时间和调查站位
本底调查和跟踪调查均设礁区站和对比站2个调查站位。投礁前的本底调查于2003年5月6日进行,在礁区的中心位置设置礁区站,在距礁区边缘2~3 n mile的海域设置对比区站。投礁后的跟踪调查于2007年8月24日进行,由于投礁后礁区中心不能拖网,紧贴礁区边设一站位作为礁区站,对比区站的位置同本底调查。
1.2 调查网具和调查方法
本底调查租用主机功率为36 kW的“粤澄海91202”虾拖船进行,调查使用的网具为虾拖网,网口宽度为12 m,网全长20 m,袖网网目为60 mm,网囊网目为20 mm。跟踪调查租用主机功率为48 kW的“粤澄海91204”虾拖船进行,调查使用的网具为虾拖网,网口宽度为8 m,网全长35 m,袖网网目为60 mm,网囊网目为20 mm。
本底调查和跟踪调查,均在礁区站和对比区站进行拖网试捕,每站拖15 min,拖速约为3 kn。
1.3 渔获处理和结果统计方法
游泳生物的采样和分析均按《海洋监测规范》(GB17378-1998)和《海洋调查规范-海洋生物调查》(GB12763.6-91)中规定的方法进行。现场对全部渔获物进行种类鉴定和计量。
采用资源密度指数(D)[1]、Margalef种类丰度指数(R)和Shannon-Winener多样性指数(H′)来研究生物群落多样性[2-6]。
游泳生物资源密度指数(D)采用底拖网扫海面积法[7-9]估算。计算公式为:
$$ D=\frac{y}{v l} \cdot \frac{1}{(1-E)} $$ (1) 式中y为拖网渔获率;v为平均拖速;l为网口宽度;E为逃逸率(取0.5)。
Margalef种类丰富度指数计算公式为:
$$ R=(S-1) / \ln N $$ (2) Shannon-Winener多样性指数计算公式为:
$$ H^{\prime}=-\sum\limits_{i=1}^S P_i \ln P_i $$ (3) 生产效益估算公式为:
$$ Y_v=\sum\limits_{i=1}^S V_i D $$ (4) (2) ~ (4)式中,S为各站的总渔获种数,N为各站总渔获尾数,Pi为第i种渔获尾数占该站总渔获尾数的比例,Vi为第i种种类在跟踪调查时的市场价格。
2. 结果
2.1 资源密度变动情况
调查结果显示,投礁后礁区海域各类资源的资源密度都显著比投礁前高,总资源密度由111.16 kg · km-2增加到2 960.359 kg · km-2(表 1),增加了25.63倍。其中,蟹类、虾类、鱼类、虾蛄类和头足类分别比投礁前增加了77.09、44.88、16.75、5.42和4.70倍。在跟踪调查中,蟹类资源密度增加最显著,并且多数蟹种在本底调查中未曾出现。在本底调查和跟踪调查中,同时出现的游泳生物种类为9种,其资源密度在跟踪调查时均有较大增幅,其中口虾蛄增幅最大,比投礁前约增加了144倍。
表 1 礁区及对比区游泳生物各类群渔获资源密度Table 1 Biomass density of nekton groups in artificial reefs area and control area in background and tracking survey调查时间
survey time调查站位
survey stations资源密度/kg·km-2 biomass density 鱼类
fish蟹类
crab虾蛄类
squilla头足类
cephalopod虾类
shrimp合计
total本底调查
background survey礁区 artificial reefs area 51.160 20.944 19.744 14.835 4.472 111.155 对比区 control area 51.093 41.919 51.441 11.844 2.206 158.503 跟踪调查
tracking survey礁区 artificial reefs area 908.327 1 635.469 126.790 84.593 205.180 2 960.359 对比区 control area 940.507 343.609 289.286 36.652 141.700 1 751.754 投礁后对比区海域各类游泳生物的资源密度同样都比投礁前有显著增加,但增加的幅度不如礁区海域,总资源密度由158.503 kg · km-2增加到1 751.754 kg · km-2,增加了10.05倍。其中虾类资源密度增加最显著,由2.206 kg · km-2增加到141.700 kg · km-2,增加了63.23倍。
投礁前礁区海域游泳生物资源密度低于对比区,投礁后礁区海域游泳生物资源密度为2 960.359 kg · km-2,比同期对比区增加了0.69倍。
综上所述,投礁后该礁区海域各生物种类资源密度增加显著,显示出明显的集鱼效果。
2.2 总渔获种类变动情况
2003年本底调查,整个调查海域出现游泳生物10目26科50种。其中鱼类6目17科26种,虾类1目2科7种,蟹类4科10种,虾蛄类1目1科4种,头足类2目2科3种。
2007年跟踪调查,整个调查海域出现游泳生物14目34科63种。其中鱼类8目21科29种,虾类2目4科16种,蟹类5科12种,虾蛄类1目1科3种,头足类3目3科3种。
在礁区海域,投礁后各类资源种类均比投礁前丰富,总种类数由投礁前的23种增加至41种,比投礁前本底调查增加了0.78倍。其中,蟹类增加最多,由投礁前的4种增加至11种,增加了1.75倍;虾类由投礁前的3种增加至8种,增加了1.67倍;虾蛄类和头足类增幅较小。
对比区海域,投礁后游泳生物的总种类也比投礁前丰富,但增幅不如礁区海域明显。总种类数由投礁前的23种增加至32种,比投礁前本底调查增加了0.39倍。其中虾类增加明显,由投礁前的3种增加至10种,增加了2.33倍;鱼类由8种增加至13种,增加了0.63倍。
投礁前,礁区和对比区总种类数相同,投礁后,礁区种类比对比区丰富,增加了0.28倍(表 2)。尤其是蟹类种类丰富多样,比同期调查对比区增加了0.83倍。
表 2 本底调查和跟踪调查时礁区及对比区游泳生物各类群渔获种数Table 2 Number of species caught in artificial reefs area and control area in background and tracking survey调查时间
survey time调查站位
survey stations渔获种数 species number 鱼类
fish蟹类
crab虾蛄类
squilla头足类
cephalopod虾类
shrimp合计
total本底调查
background survey礁区 artificial reefs area 12 4 2 2 3 23 对比区 control area 8 6 3 3 3 23 跟踪调查
tracking survey礁区 artificial reefs area 17 11 2 3 8 41 对比区 control area 13 6 2 1 10 32 在礁区海域,投礁前和投礁后出现的相同种类数为9种(表 3),投礁后新出现的种类数为32种,其中鱼类和蟹类的种类数增加明显,分别增加了14种和8种。
表 3 投礁后礁区游泳生物各类群种数增加情况Table 3 Increment of species number caught in artificial reefs area in tracking survey项目
item渔获种数 species number 鱼类
fish蟹类
crab虾蛄类
squilla头足类
cephalopod虾类
shrimp合计
total跟踪调查时新增的种类
new species occured in tracking survey14 8 1 2 7 32 本底调查和跟踪调查出现的相同种类
the species occurred in both background and tracking survey3 3 1 1 1 9 仅在本底调查时出现的种类
species only occurred in tracking survey9 1 1 1 2 14 莱芜礁区及邻近海域游泳生物种类分布的上述变化情况表明,礁体投放后,礁区海域新型的人工生境已初步形成,对游泳生物(特别是鱼类和虾蟹类)显示出了明显的诱集效果。
2.3 优势种变动情况
投礁前和投礁后,礁区和对比区游泳生物的优势类群和主要优势种都发生了明显的变化,投礁前礁区主要优势类群为虾蛄类、鱼类、蟹类和头足类,断脊口虾蛄Oratosquilla interrupa的资源密度为19.089 kg · km-2(表 4),为第一优势种,对比区主要优势类群为虾蛄类、鱼类和蟹类,口虾蛄的资源密度为27.869 kg · km-2,为第一优势种。
表 4 本底调查和跟踪调查时礁区及对比区游泳生物主要优势种及资源密度Table 4 The dominant species and biomass density in artificial reefs area and control area in background and tracking survey调查时间
survey time调查站位
survey stations主要优势种及资源密度/kg·km-2
dominant species and biomass density本底调查background survey 礁区
artificial reefs area断脊口虾蛄
Oratosquilla interrupa鹿斑鲾
Leiognathus ruconius三疣梭子蟹
Portunus trituberculatus杜氏枪乌贼
Loligo duvaucelii Orbigny短吻鲾
Leiognathus brevirostris19.089 16.580 13.090 11.999 8.945 对比区
control area口虾蛄
O.oratoria银牙NFDAB
Otolithes argenteus断脊口虾蛄
O.interrupa阿氏强蟹
Eucrate alcocki Serene银鲳
Pampus argenteus27.869 26.708 17.418 14.515 10.683 跟踪调查
tracking survey礁区
artificial reefs area鳞斑蟹
Demania scaberrima龙头鱼
Harpodon nehereus红星梭子蟹
P.sanguinolentus疣面关公蟹
Dorippe frascone纤手梭子蟹
P.gracilimanus459.963 345.172 344.372 255.980 201.584 对比区control area 白姑鱼
Argyrosomus argentatus叫姑鱼
Johnius dussumieri口虾蛄
O.oratoria疣面关公蟹
D.frascone龙头鱼
H.nehereus379.606 261.797 248.707 163.623 128.281 投礁后,礁区主要优势类群为蟹类和鱼类,5个优势种中有4个种是蟹类,蟹类成为绝对优势种。鳞斑蟹Demania scaberrima、龙头鱼Harpodon nehereus和红星梭子蟹Portunus sanguinolentus为礁区新增优势种,在本底调查中未曾出现,这说明礁体可以把礁区邻近海域的游泳生物聚集到礁区内,初步表明礁体的投放对聚集鱼类和蟹类非常有效。经济种类资源密度的增加,也一定程度说明鱼礁的投放产生良好的生态效益和经济效益。
2.4 生物多样性
为进一步评估人工鱼礁投放后的生态效果,对2次调查的物种多样性指数进行了计算分析。结果表明,投礁前对比区资源种类丰富度高于礁区,投礁后礁区海域游泳生物的丰富度明显高于投礁前,比投礁前增加了0.22倍(表 5),并且高于同期调查的对比区,投礁后Shannon-Wienver多样性指数(H′)在礁区和对比区均比投礁前有所增加,且在礁区增加较多。这说明投礁后鱼礁区游泳生物丰富度有所改善,群落结构优于投礁前和对比区。
表 5 礁区及对比区种类数和多样性指数Table 5 Species and diversity index in artificial reefs and control area in background survey and tracking survey调查时间
survey time调查站位
survey stations总渔获种数
species number种类丰富度指数(R)
species abundance index多样性指数(H′)
diversity index本底调查
background survey礁区 artificial reefs area 23 4.39 2.30 对比区 control area 23 4.63 2.71 跟踪调查
tracking survey礁区 artificial reefs area 41 5.38 2.53 对比区 control area 32 4.50 2.86 2.5 投礁后礁区生产效益估算
为评价投放人工鱼礁所产生的经济价值,笔者把水产市场上出售的鱼种定义为经济鱼种,投礁后,经济鱼种的种类数为29种(表 6),比投礁前增加了9种;经济鱼种的渔获尾数比投礁前约增加了7.9倍,经济鱼种的总资源密度比投礁前约增长17倍。笔者于2007年8月通过询问调查的方法,统计当地经济鱼种的市场价格,以此价格作为基础,用生产效益评估公式,计算投礁前后礁区经济鱼种的总生产效益。结果表明,投礁后经济鱼种的总生产效益比投礁前增加了15倍。说明了人工鱼礁的投放能够丰富礁区海域经济鱼种的种类、数量以及资源密度。投礁后经济鱼种资源量的显著增加,使总生产效益明显增加,表明投放人工鱼礁所产生的经济效益明显。
表 6 投礁后礁区生产效益估算Table 6 Estimation of the production profit in artificial reefs area in tracking survey调查时间
survey time经济种类数/种
the species number of commercial species经济种总渔获尾数/尾
the individual quantity of commercial species经济种总资源密度/kg·km-2
the biomass densityof total commercial species经济种总生产效益/元·km-2
the production profit of commercial species本底调查
background survey20 138 103.30 1 448.24 跟踪调查
tracking survey29 1 228 1 870.85 23 778.30 3. 讨论
国内外学者对人工鱼礁的许多研究[10-15]表明,投放人工鱼礁可使大量生物聚集在鱼礁区,起到聚集、养护和增殖渔业资源的效果。对澄海莱芜人工鱼礁区的调查也得到相似的结果,投礁后礁区内生物种类(特别是蟹类)增加明显,总种类数比投礁前本底调查增加了0.78倍,对比区总种类数比投礁前本底调查增加了0.39倍。无论在礁区还是对比区,投礁后各类生物的资源密度明显比投礁前高,总资源密度比投礁前分别增加了25.63和10.05倍。这说明莱芜人工鱼礁建设使礁区和对比区总种类数和总资源密度均显著增加,确实起到了资源养护的效果。
人工鱼礁区海域生物多样性指数的分析显示,Margalef种类丰度指数(R)和多样性指数(H′)在2次调查中变化较大,投礁后礁区海域的游泳生物丰富度明显高于投礁前,比投礁前增加了0.22倍;Shannon-Wienver多样性指数(H′)也高于投礁前,生物群落多样性指数的变化反映了生物群落种类组成和结构的改善。以上调查结果在一定程度上说明投礁以后人工鱼礁区的渔业资源丰富度有所改善,群落结构变得复杂和多样,资源状况优于投礁前。
投礁后礁区优势种类群变动明显,蟹类逐渐成为绝对优势种类,且其资源量远大于投礁前。人工鱼礁为蟹类提供了良好的栖息和生长环境,有利于蟹类的聚集和生长。在本底调查中没有出现的经济种类龙头鱼在跟踪调查中也成为主要优势种,说明人工鱼礁作为优良的聚集地和产卵地对聚集鱼类等经济种类非常有效。
依据当地水产市场上出售的经济鱼类价格,对投礁前后在礁区海域捕获的经济鱼类进行了总生产价值的估算,计算得出投礁后经济鱼种的总生产效益比投礁前增加了15倍,每平方千米约增值2.23万元。表明投放人工鱼礁所产生的经济效益明显。
跟踪调查结果表明,投礁后礁区海域各类群资源总量显著增加,人工鱼礁表现出显著的集鱼效果。但由于跟踪调查是在休渔期过后的8月份进行,与5月份本底调查的调查时间不同。通常每年5月份是南海北部渔业资源种类的主要产卵期和索饵期,而休渔期限制捕捞,资源密度通常会有所增加,今后应开展人工鱼礁区不同季节资源状况的系统调查和分析,了解在不同时间调查时季节因素对聚鱼效果的影响,以期更准确地评价人工鱼礁的增殖效果。
人工鱼礁的聚鱼、养护和增殖效果受到礁区的水深、底质[16-17]、流场、资源环境状况以及布局、礁体设计[18]、投放时间[16]、投放规模[19]和礁区管理等诸多因素的影响。国内外的研究表明,鱼礁投放后的优良生态效应要经过长时间才能明显体现。此次调查采样次数有限,只能得出一个初步结果。但就此有限的资料已可看到,鱼礁聚集生物、改善局部区域群落结构和增加生物多样性的作用是显而易见的,人工鱼礁在恢复渔业资源方面已发挥了显著作用。随着礁区规模进一步扩大,加强礁区管理,将会使该礁区更好地发挥其改善海洋生态环境和恢复近海渔业资源的功能。今后的人工鱼礁研究课题应该围绕提高鱼礁区渔获质量、生物多样性、生态系统稳定性和摸清鱼礁水动力机制与集鱼之间的关系等方面作进一步的研究。
-
表 1 尖翅燕鱼基因组组装和校正后组装结果统计
Table 1 Statistical analysis of genome assembly and corrected assembly results of P. teira
类型
TypeNextDenovo软件 NextPolish软件 长度
Length/bp数量
Count长度
Length/bp数量
CountN50 26 172 673 12 26 178 423 12 N90 8 653 897 29 8 656 320 29 最小长度
Min. length11 814 11 779 最大长度
Max. length33 665 020 33 669 695 平均长度
Ave. length5 207 983 5 208 839 总长度
Total length697 869 769 134 697 984 514 134 表 2 尖翅燕鱼BWA比对结果
Table 2 Results of BWA comparison of P. teira
总读长
Total reads匹配读长
Map reads匹配率
Map rate/%双端读长
Paired reads双端比对读长
Paired map reads真正的读长
Proper paired reads正确匹配率
Properly map rate/%758 790 194 755 705 560 99.59 701 824 260 698 739 626 671 793 148 95.72 表 3 尖翅燕鱼基因组BUSCO评估
Table 3 Genome BUSCO evaluation of P. teira
类型
Type数量
Number百分比
Percentage/%完整的BUSCOs
Complete BUSCOs3 595 98.8 完整的单拷贝BUSCOs
Complete and single-copy BUSCOs3 571 98.1 完整的重复序列BUSCOs
Complete and duplicated BUSCOs24 0.7 碎片BUSCOs
Fragmented BUSCOs9 0.2 未比对上的BUSCOs
Missing BUSCOs36 1.0 总的BUSCO
Total BUSCO3 640 100.0 表 4 尖翅燕鱼各染色体长度
Table 4 Length of each chromosome of P. teira
染色体
Chromosome长度
Length/bp染色体
Chromosome长度
Length/bpHiC_scaffold_1 32 115 465 HiC_scaffold_13 22 937 044 HiC_scaffold_2 28 296 500 HiC_scaffold_14 29 051 425 HiC_scaffold_3 30 192 628 HiC_scaffold_15 28 201 383 HiC_scaffold_4 24 662 710 HiC_scaffold_16 23 075 928 HiC_scaffold_5 16 755 790 HiC_scaffold_17 25 711 309 HiC_scaffold_6 29 747 999 HiC_scaffold_18 34 711 268 HiC_scaffold_7 31 770 170 HiC_scaffold_19 31 217 840 HiC_scaffold_8 30 909 847 HiC_scaffold_20 34 223 832 HiC_scaffold_9 27 971 542 HiC_scaffold_21 32 267 482 HiC_scaffold_10 28 320 680 HiC_scaffold_22 30 609 981 HiC_scaffold_11 34 468 000 HiC_scaffold_23 27 290 755 HiC_scaffold_12 26 316 500 HiC_scaffold_24 32 023 099 合计 Total 692 849 177 表 5 尖翅燕鱼重复序列注释结果
Table 5 Results of repeated sequence annotation of P. teira
元件类型
Elements type元件数量
Number of
elements长度
Length/bp百分比
Percentage/%逆转录因子
Retroelements137 738 39 456 150 5.65 DNA转座子
DNA transposons266 011 55 441 011 7.94 环状
DNA Rolling-circles2 389 682 132 0.10 无分类
Unclassified366 703 66 929 139 9.59 总夹杂的重复序列
Total interspersed
repeats161 826 300 23.18 小RNA
Small RNA700 80 729 0.01 卫星DNA
Satellites DNA660 189 494 0.03 简单的重复序列
Simple repeats317 455 12 696 083 1.82 低复杂性
Low complexity42 640 2 317 723 0.33 总的重复
Total repeats177 792 461 25.47 表 6 尖翅燕鱼结构注释结果BUSCO评估
Table 6 BUSCO evaluation of structural annotation results of P. teira
类型
Type数量
Number百分比
Percentage/%完整的BUSCOs
Complete BUSCOs3 213 88.3 完整的单拷贝BUSCOs
Complete and single-copy BUSCOs3 176 87.3 完整的重复序列BUSCOs
Complete and duplicated BUSCOs37 1.0 碎片BUSCOs
Fragmented BUSCOs155 4.3 未比对上的BUSCOs
Missing BUSCOs272 7.4 总的BUSCO
Total BUSCO3 640 100.0 表 7 尖翅燕鱼功能注释结果
Table 7 Functional annotation results of P. teira
数据库
Database数量
Number百分比
Percentage/%NR 21 016 91.97 SwissProt 18 945 82.91 KEGG 17 511 76.63 COG 5 787 25.32 Trembl 20 996 91.88 功能注释基因
Functional annotation21 104 92.35 总计Total 22 851 100.00 表 8 12个物种基因家族聚类结果
Table 8 Results of gene family clustering in 12 species
物种
Species总的
Total单拷贝
Single特异性
Specific未聚类
Unclustered眼斑双锯鱼A. ocellaris 23 035 4 787 226 185 泰国斗鱼B. splendens 22 791 4 787 245 227 大白鲨C. carcharias 19 440 4 787 1 252 1 273 波纹唇鱼C .undulatus 23 316 4 787 381 184 斑马鱼D. rerio 32 717 4 787 3 503 1 659 云纹石斑鱼E .moara 23 735 4 787 112 336 食蚊鱼G. affinis 23 135 4 787 98 166 青鳉O. latipes 22 071 4 787 460 241 尖翅燕鱼P .teria 22 851 4 787 689 2 727 深裂眶锯雀鲷S. partitus 22 589 4 787 70 363 红箭鱼X. helleri 23 921 4 787 98 138 花斑剑尾鱼X. maculatus 23 238 4 787 34 126 -
[1] BRAY R A, CRIBB T H. Lepocreadiidae (Digenea) from the batfish of the genus Platax Cuvier (Teleostei: Ephippidae) from the southern Great Barrier Reef, Queensland, Australia[J]. Syst Parasitol, 2003, 55(1): 1-9. doi: 10.1023/A:1023974022432
[2] MARIMUTHU N, WILSON J J, KUMARAGURU A K. Teira batrish, Platax teira (Forsskal, 1775) in Pudhumadam coastal waters, drifted due to the tsunami of 26 December 2004[J]. Current Sci, 2005, 89(8): 1310-1312.
[3] GOLANI D, SONIN O, EDELIST D. Second records of the Lessepsian fish migrants Priacanthus sagittarius and Platax teira and distribution extension of Tylerius spinosissimus in the Mediterranean[J]. Aquat Invasions, 2011, 6(S1): S7-S11.
[4] 刘明鉴, 郭华阳, 高杰, 等. 尖翅燕鱼早期胚胎发育及仔稚鱼形态观察[J]. 南方水产科学, 2022, 18(4): 103-111. doi: 10.12131/20210251 [5] BILECENOGLU M, KAYA M. A new alien fish in the Mediterranean Sea-Platax teira (Forsskål, 1775) (Osteichthyes: Ephippidae)[J]. Aquat Invasions, 2006, 1(2): 80-83. doi: 10.3391/ai.2006.1.2.5
[6] LEIS J M, HAY A C, HOWARTH G J. Ontogeny of in situ behaviours relevant to dispersal and population connectivity in larvae of coral-reef fishes[J]. Mar Ecol Prog Ser, 2009, 379: 163-179. doi: 10.3354/meps07904
[7] LIU M J, GAO J, GUO H Y, et al. Transcriptomics reveal the effects of breeding temperature on growth and metabolism in the early developmental stage of Platax teira[J]. Biology, 2023, 12(9): 1161. doi: 10.3390/biology12091161
[8] 陈松林, 徐文腾, 刘洋. 鱼类基因组研究十年回顾与展望[J]. 水产学报, 2019, 43(1): 1-14. [9] APARICIO S, CHAPMAN J, STUPKA E, et al. Whole-genomeshotgun assembly and analysis of the genome of Fugu rubripes[J]. Science, 2002, 297(5585): 1301-1310.
[10] LIU D, WANG X Y, GUO H Y, et al. Chromosome-level genome assembly of the endangered humphead wrasse Cheilinus undulatus: insight into the expansion of opsin genes in fishes[J]. Mol Ecol Resour, 2021, 21(7): 2388-2406.
[11] ZHENG S Q, SHAO F, TAO W J, et al. Chromosome-level assembly of southern catfish (Silurus meridionalis) provides insights into visual adaptation to nocturnal and benthic lifestyles[J]. Mol Ecol Resour, 2021, 21(5): 1575-1592. doi: 10.1111/1755-0998.13338
[12] 廖静. 人工养殖尖翅燕鱼性价比高[J]. 海洋与渔业, 2018(11): 62-63. [13] LIU B, GUO H Y, ZHU K C, et al. Nutritional compositions in different parts of muscle in the longfin batfish, Platax teira (Forsskål, 1775)[J]. J Appl Anim Res, 2019, 47(1): 403-407. doi: 10.1080/09712119.2019.1649680
[14] CHEN S F, ZHOU Y Q, CHEN Y R, et al. fastp: an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17): i884-i890. doi: 10.1093/bioinformatics/bty560
[15] ROBERTS R J, CARNEIRO M O, SCHATZ M C. The advantages of SMRT sequencing[J]. Genome Biol, 2013, 14(7): 405. doi: 10.1186/gb-2013-14-6-405
[16] HU J, WANG Z, SUN Z Y, et al. NextDenovo: an efficient error correction and accurate assembly tool for noisy long reads[J]. Genome Biol, 2024, 25(1): 107. doi: 10.1186/s13059-024-03252-4
[17] HU J, FAN J P, SUN Z Y, et al. NextPolish: a fast and efficient genome polishing tool for long-read assembly[J]. Bioinformatics, 2020, 36(7): 2253-2255. doi: 10.1093/bioinformatics/btz891
[18] SEPPEY M, MANNI M, ZDOBNOV E M. BUSCO: assessing genome assembly and annotation completeness[J]. Methods Mol Biol, 2019, 1962: 227-245.
[19] FLYNN J M, HUBLEY R, GOUBERT C, et al. RepeatModeler2 for automated genomic discovery of transposable element families[J]. PNAS, 2020, 117(17): 9451-9457. doi: 10.1073/pnas.1921046117
[20] HAAS B J, SALZBERG S L, ZHU W, et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments[J]. Genome Biol, 2008, 9(1): R7. doi: 10.1186/gb-2008-9-1-r7
[21] BIRNEY E, CLAMP M, DURBIN R. GeneWise and Genomewise[J]. Genome Res, 2004, 14(5): 988-995. doi: 10.1101/gr.1865504
[22] KIM D, LANGMEAD B, SALZBERG S L. HISAT: a fast spliced aligner with low memory requirements[J]. Nat Methods, 2015, 12(4): 357-360. doi: 10.1038/nmeth.3317
[23] PERTEA M, PERTEA G M, ANTONESCU C M, et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads[J]. Nat Biotechnol, 2015, 33(3): 290-295. doi: 10.1038/nbt.3122
[24] STANKE M, DIEKHANS M, BAERTSCH R, et al. Using native and syntenically mapped cDNA alignments to improve de novo gene finding[J]. Bioinformatics, 2008, 24(5): 637-644. doi: 10.1093/bioinformatics/btn013
[25] EMMS D M, KELLY S. OrthoFinder: phylogenetic orthology inference for comparative genomics[J]. Genome Biol, 2019, 20(1): 238. doi: 10.1186/s13059-019-1832-y
[26] KATOH K, STANDLEY D M. MAFFT Multiple Sequence Alignment Software Version 7: improvements in performance and usability[J]. Mol Biol Evol, 2013, 30(4): 772-780. doi: 10.1093/molbev/mst010
[27] KUMAR S, SULESKI M, CRAIG J M, et al. TimeTree 5: an expanded resource for species divergence times[J]. Mol Biol Evol, 2022, 39(8): msac174. doi: 10.1093/molbev/msac174
[28] YANG Z H. PAML 4: phylogenetic analysis by maximum likelihood[J]. Mol Biol Evol, 2007, 24(8): 1586-1591. doi: 10.1093/molbev/msm088
[29] MENDES F K, VANDERPOOL D, FULTON B, et al. CAFE 5 models variation in evolutionary rates among gene families[J]. Bioinformatics, 2021, 36(22/23): 5516-5518.
[30] EDDY S R. Accelerated profile HMM searches[J]. PLoS Comput Biol, 2011, 7(10): e1002195. doi: 10.1371/journal.pcbi.1002195
[31] YU G C, WANG L G, HAN Y Y, et al. clusterProfiler: an R package for comparing biological themes among gene clusters[J]. OMICS, 2012, 16(5): 284-287. doi: 10.1089/omi.2011.0118
[32] 高杰, 郭华阳, 刘明鉴, 等. 尖翅燕鱼染色体核型分析[J]. 海洋渔业, 2022, 44(5): 535-542. [33] OSHIUMI H , TSUJITA T , SHIDA K, et al. Prediction of the prototype of the human Toll-like receptor gene family from the pufferfish, Fugu rubripes, genome[J]. Immunogenetics, 2003, 54: 791-800.
[34] HU Y C, TAN R H, ZHU X, et al. Genome-wide identification, phylogeny and expressional profile of the Dmrt gene family in Chinese sturgeon (Acipenser sinensis)[J]. Sci Rep, 2024, 14(1): 4231. doi: 10.1038/s41598-024-54899-9
[35] ZHU K C, ZHANG N, LIU B S, et al. A chromosome-level genome assembly of the yellowfin seabream (Acanthopagrus latus; Hottuyn, 1782) provides insights into its osmoregulation and sex reversal[J]. Genomics, 2021, 113(4): 1617-1627. doi: 10.1016/j.ygeno.2021.04.017
[36] ZHANG D C, GUO L, GUO H Y, et al. Chromosome-level genome assembly of golden pompano (Trachinotus ovatus) in the family Carangidae[J]. Sci Data, 2019, 6(1): 216. doi: 10.1038/s41597-019-0238-8
[37] LIANG Y, XIAN L, PAN J M, et al. De Novo genome assembly of the whitespot parrotfish (Scarus forsteni): a valuable scaridae genomic resource[J]. Genes (Basel), 2024, 15(2): 249. doi: 10.3390/genes15020249
[38] ZHOU Q, GUO X Y, HUANG Y, et al. De novo sequencing and chromosomal-scale genome assembly of leopard coral grouper, Plectropomus leopardus[J]. Mol Ecol Resour, 2020, 20(5): 1403-1413. doi: 10.1111/1755-0998.13207
[39] CHEN X H, ZHONG L Q, BIAN C, et al. High-quality genome assembly of channel catfish, Ictalurus punctatus[J]. GigaScience, 2016, 5(1): 39. doi: 10.1186/s13742-016-0142-5
[40] LI J, BIAN C, HU Y C, et al. A chromosome-level genome assembly of the Asian arowana, Scleropages formosus[J]. Sci Data, 2016, 3: 160105.
[41] LI S S, XIE Z Z, CHEN P, et al. The complete mitochondrial genome of the Platax teira (Osteichthyes: Ephippidae)[J]. Mitochondrial DNA A DNA Mapp Seq Anal, 2016, 27(2): 796-797.
[42] HUGHES L C, ORTÍ G, HUANG Y, et al. Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data[J]. PNAS, 2018, 115(24): 6249-6254. doi: 10.1073/pnas.1719358115
[43] HE S, LI L, LYU L Y, et al. Mandarin fish (Sinipercidae) genomes provide insights into innate predatory feeding[J]. Commun Biol, 2020, 3(1): 361. doi: 10.1038/s42003-020-1094-y
[44] MARSHALL H D, COULSON M W, CARR S M. Near neutrality, rate heterogeneity, and linkage govern mitochondrial genome evolution in Atlantic cod (Gadus morhua) and other gadine fish[J]. Mol Biol Evol, 2009, 26(3): 579-589.
[45] TEREKHANOVA N V, LOGACHEVA M D, PENIN A A, et al. Fast evolution from precast bricks: genomics of young freshwater populations of threespine stickleback Gasterosteus aculeatus[J]. PLoS Genet, 2014, 10(10): e1004696. doi: 10.1371/journal.pgen.1004696
[46] AO J Q, MU Y N, XIANG L X, et al. Genome sequencing of the perciform fish Larimichthys crocea provides insights into molecular and genetic mechanisms of stress adaptation[J]. PLoS Genet, 2015, 11(4): e1005118. doi: 10.1371/journal.pgen.1005118
[47] NIEDERRITER A R, DAVIS E E, GOLZIO C, et al. In vivo modeling of the morbid human genome using Danio rerio[J]. J Vis Exp, 2013(78): e50338.
[48] DAVIDSON W S, KOOP B F, JONES S J M, et al. Sequencing the genome of the Atlantic salmon (Salmo salar)[J]. Genome Biol, 2010, 11: 403. doi: 10.1186/gb-2010-11-9-403
[49] LEVANTI M, RANDAZZO B, VIÑA E, et al. Acid-sensing ion channels and transient-receptor potential ion channels in zebrafish taste buds[J]. Ann Anat, 2016, 207: 32-37. doi: 10.1016/j.aanat.2016.06.006
[50] MOHAMED N A, SAAD M F, SHUKRY M, et al. Physiological and ion changes of Nile tilapia (Oreochromis niloticus) under the effect of salinity stress[J]. Aquac Rep, 2021, 19: 100567. doi: 10.1016/j.aqrep.2020.100567
[51] IP Y K, CHEW S F. Ammonia production, excretion, toxicity, and defense in fish: a review[J]. Front Physiol, 2010, 1: 134.
[52] RANDALL D J, TSUI T K N. Ammonia toxicity in fish[J]. Mar Pollut Bull, 2002, 45(1/2/3/4/5/6/7/8/9/10/11/12): 17-23.
[53] ARILLO A, MARGIOCCO C, MELODIA F, et al. Ammonia toxicity mechanism in fish: studies on rainbow trout (Salmo gairdneri Rich.)[J]. Ecotoxicol Environ Saf, 1981, 5(3): 316-328. doi: 10.1016/0147-6513(81)90006-3
-
期刊类型引用(3)
1. 王天雨,丛亚新,吴朝霞,孙文涛,刘依朦. 氨氮对中华绒螯蟹蜕壳和抗氧化能力的影响. 水产科学. 2024(04): 590-597 . 百度学术
2. 杨钰,郑雯雯,宇文斌,许颖洁,张星,宋学宏,秦粉菊. 纳米二氧化铈对2种水产病原弧菌的抑菌活性研究. 南方水产科学. 2024(04): 144-153 . 本站查看
3. 孙雯,王永杰,鲍俊杰,张静,陈红莲,熊英琪. 嗜水气单胞菌(Aeromonas hydrophila)引起斑马鱼肠道生理损伤和肠道菌群失调. 海洋与湖沼. 2023(04): 1191-1198 . 百度学术
其他类型引用(1)