尖翅燕鱼染色体水平基因组与特征分析

欧阳焱, 潘瑾岷, 冼霖, 刘宝锁, 郭华阳, 朱腾飞, 张楠, 朱克诚, 张殿昌

欧阳焱, 潘瑾岷, 冼霖, 刘宝锁, 郭华阳, 朱腾飞, 张楠, 朱克诚, 张殿昌. 尖翅燕鱼染色体水平基因组与特征分析[J]. 南方水产科学, 2024, 20(6): 31-42. DOI: 10.12131/20240112
引用本文: 欧阳焱, 潘瑾岷, 冼霖, 刘宝锁, 郭华阳, 朱腾飞, 张楠, 朱克诚, 张殿昌. 尖翅燕鱼染色体水平基因组与特征分析[J]. 南方水产科学, 2024, 20(6): 31-42. DOI: 10.12131/20240112
OUYANG Yan, PAN Jinmin, XIAN Lin, LIU Baosuo, GUO Huayang, Zhu Tengfei, ZHANG Nan, ZHU Kecheng, ZHANG Dianchang. Chromosome-level genome and characteristic analysis of Platax teira[J]. South China Fisheries Science, 2024, 20(6): 31-42. DOI: 10.12131/20240112
Citation: OUYANG Yan, PAN Jinmin, XIAN Lin, LIU Baosuo, GUO Huayang, Zhu Tengfei, ZHANG Nan, ZHU Kecheng, ZHANG Dianchang. Chromosome-level genome and characteristic analysis of Platax teira[J]. South China Fisheries Science, 2024, 20(6): 31-42. DOI: 10.12131/20240112

尖翅燕鱼染色体水平基因组与特征分析

基金项目: 海南省科技专项资助 (ZDYF2024XDNY231);国家重点研发计划项目 (2022YFD2400103)
详细信息
    作者简介:

    欧阳焱 (1999—),男,硕士研究生,研究方向为水产种质资源与遗传育种。E-mail: oyynhs2021@163.com

    通讯作者:

    张殿昌 (1977—),男,研究员,博士,研究方向为水产种质资源与遗传育种。E-mail: zhangdch@scsfri.ac.cn

  • 中图分类号: S 917.4

Chromosome-level genome and characteristic analysis of Platax teira

  • 摘要:

    尖翅燕鱼 (Platax teira) 具有生长速度快、肉质鲜美、营养价值高等特点,其外形奇特,尤其幼鱼更为特殊,可作为观赏鱼,是南海发展网箱养殖的重要潜力鱼类之一。由于目前缺乏尖翅燕鱼的基因组信息,其多数功能基因未被挖掘,已成为制约其遗传育种的重要因素。运用三代测序技术和组装获得染色体水平的尖翅燕鱼高质量基因组图谱,通过基因组注释获得尖翅燕鱼基因组序列的基本生物学信息。结果显示,尖翅燕鱼基因组大小为697.98 Mb,Hi-C挂载至24条染色体,挂载率为99.26%,含重复序列177.79 Mb,占整个基因组的25.47%,注释到22 851个蛋白编码基因。系统进化分析显示尖翅燕鱼与波纹唇鱼 (Cheilinus undulatus) 亲缘关系最近,分化时间距今约82.89 Ma。正选择基因主要富集在与离子通道和心脏功能有关的通路中,扩张的基因家族主要富集在嗅觉传导和氮代谢通路上,揭示了其在特定环境中的生存、适应依据和生态适应策略。

    Abstract:

    Platax teira has the characteristics of fast growth rate, delicious meat and high nutritional content, and its strange appearance, especially for young fish, makes it an ornamental fish, being one of the important potential fishes for the cage culture development in the South China Sea. Due to the lack of genomic information, most of the functional genes of P. teira have not been explored, which has become an important factor of restricting its genetic breeding. We utilized triple sequencing technology and assembly to obtain a high-quality genome map of P. teira on chromosome level, and obtained the basic biological information of P. teira genome sequence through genome annotation. The results show that the genome size of P. teira was 697.98 Mb, assembling into 24 chromosomes with an assembly rate of 99.26%. P. teira genome contained 177.79 Mb of repetitive sequences, accounting for 25.47% of the total genome and encoding 22 851 genes. Comparative genomic analysis with 11 other fish species reveals that P. teira shared the closest relationship with Cheilinus undulatus, and the differentiation time was about 82.89 Ma. Genes under positive selection in P. teira were enriched in pathways related to ion channels and cardiac function, while the expanded gene families were enriched in pathways related to olfactory transmission and nitrogen metabolism, which reveals its survival, adaptation basis and ecological adaptation strategies in specific environment.

  • 近年来,由于持续的过度捕捞和环境污染使得澄海莱芜海域渔业资源衰退、海洋环境恶化。人工鱼礁是人为设置在海中的构造物,可为海底生物提供一个人工的栖息场所,为鱼类等水生生物的生长、繁育营造适宜的环境,达到修复海洋生态环境、增殖和养护渔业资源的目的。建设人工鱼礁是修复海洋生态环境和恢复渔业资源的重要措施之一。

    澄海莱芜人工鱼礁区位于广东省汕头市东部莱芜半岛东南约2 n mile的海域,礁区东南方面向广阔的南海,东北方毗连南澳岛,西南方为达濠岛和汕头港。礁区底质坚实,以沙、沙泥为主。礁区水深在6~9 m之间,礁区内有水深小于5 m的浅滩,礁区的西南方至正北方,分布有多个港口和多条入海河流。该礁区于2004年完成了人工鱼礁建设。

    2003年5月和2007年8月分别进行了澄海莱芜人工鱼礁区投礁前的本底调查和投礁后的跟踪调查,文章根据2次调查结果初步评估了人工鱼礁建设的集鱼效果,以期为该礁区的科学管理和进一步建设提供依据,为广东省乃至全国人工鱼礁的建设和研究提供参考资料。

    本底调查和跟踪调查均设礁区站和对比站2个调查站位。投礁前的本底调查于2003年5月6日进行,在礁区的中心位置设置礁区站,在距礁区边缘2~3 n mile的海域设置对比区站。投礁后的跟踪调查于2007年8月24日进行,由于投礁后礁区中心不能拖网,紧贴礁区边设一站位作为礁区站,对比区站的位置同本底调查。

    本底调查租用主机功率为36 kW的“粤澄海91202”虾拖船进行,调查使用的网具为虾拖网,网口宽度为12 m,网全长20 m,袖网网目为60 mm,网囊网目为20 mm。跟踪调查租用主机功率为48 kW的“粤澄海91204”虾拖船进行,调查使用的网具为虾拖网,网口宽度为8 m,网全长35 m,袖网网目为60 mm,网囊网目为20 mm。

    本底调查和跟踪调查,均在礁区站和对比区站进行拖网试捕,每站拖15 min,拖速约为3 kn。

    游泳生物的采样和分析均按《海洋监测规范》(GB17378-1998)和《海洋调查规范-海洋生物调查》(GB12763.6-91)中规定的方法进行。现场对全部渔获物进行种类鉴定和计量。

    采用资源密度指数(D)[1]、Margalef种类丰度指数(R)和Shannon-Winener多样性指数(H′)来研究生物群落多样性[2-6]

    游泳生物资源密度指数(D)采用底拖网扫海面积法[7-9]估算。计算公式为:

    $$ D=\frac{y}{v l} \cdot \frac{1}{(1-E)} $$ (1)

    式中y为拖网渔获率;v为平均拖速;l为网口宽度;E为逃逸率(取0.5)。

    Margalef种类丰富度指数计算公式为:

    $$ R=(S-1) / \ln N $$ (2)

    Shannon-Winener多样性指数计算公式为:

    $$ H^{\prime}=-\sum\limits_{i=1}^S P_i \ln P_i $$ (3)

    生产效益估算公式为:

    $$ Y_v=\sum\limits_{i=1}^S V_i D $$ (4)

    (2) ~ (4)式中,S为各站的总渔获种数,N为各站总渔获尾数,Pi为第i种渔获尾数占该站总渔获尾数的比例,Vi为第i种种类在跟踪调查时的市场价格。

    调查结果显示,投礁后礁区海域各类资源的资源密度都显著比投礁前高,总资源密度由111.16 kg · km-2增加到2 960.359 kg · km-2(表 1),增加了25.63倍。其中,蟹类、虾类、鱼类、虾蛄类和头足类分别比投礁前增加了77.09、44.88、16.75、5.42和4.70倍。在跟踪调查中,蟹类资源密度增加最显著,并且多数蟹种在本底调查中未曾出现。在本底调查和跟踪调查中,同时出现的游泳生物种类为9种,其资源密度在跟踪调查时均有较大增幅,其中口虾蛄增幅最大,比投礁前约增加了144倍。

    表  1  礁区及对比区游泳生物各类群渔获资源密度
    Table  1  Biomass density of nekton groups in artificial reefs area and control area in background and tracking survey
    调查时间
    survey time
    调查站位
    survey stations
    资源密度/kg·km-2 biomass density
    鱼类
    fish
    蟹类
    crab
    虾蛄类
    squilla
    头足类
    cephalopod
    虾类
    shrimp
    合计
    total
    本底调查
    background survey
    礁区 artificial reefs area 51.160 20.944 19.744 14.835 4.472 111.155
    对比区 control area 51.093 41.919 51.441 11.844 2.206 158.503
    跟踪调查
    tracking survey
    礁区 artificial reefs area 908.327 1 635.469 126.790 84.593 205.180 2 960.359
    对比区 control area 940.507 343.609 289.286 36.652 141.700 1 751.754
    下载: 导出CSV 
    | 显示表格

    投礁后对比区海域各类游泳生物的资源密度同样都比投礁前有显著增加,但增加的幅度不如礁区海域,总资源密度由158.503 kg · km-2增加到1 751.754 kg · km-2,增加了10.05倍。其中虾类资源密度增加最显著,由2.206 kg · km-2增加到141.700 kg · km-2,增加了63.23倍。

    投礁前礁区海域游泳生物资源密度低于对比区,投礁后礁区海域游泳生物资源密度为2 960.359 kg · km-2,比同期对比区增加了0.69倍。

    综上所述,投礁后该礁区海域各生物种类资源密度增加显著,显示出明显的集鱼效果。

    2003年本底调查,整个调查海域出现游泳生物10目26科50种。其中鱼类6目17科26种,虾类1目2科7种,蟹类4科10种,虾蛄类1目1科4种,头足类2目2科3种。

    2007年跟踪调查,整个调查海域出现游泳生物14目34科63种。其中鱼类8目21科29种,虾类2目4科16种,蟹类5科12种,虾蛄类1目1科3种,头足类3目3科3种。

    在礁区海域,投礁后各类资源种类均比投礁前丰富,总种类数由投礁前的23种增加至41种,比投礁前本底调查增加了0.78倍。其中,蟹类增加最多,由投礁前的4种增加至11种,增加了1.75倍;虾类由投礁前的3种增加至8种,增加了1.67倍;虾蛄类和头足类增幅较小。

    对比区海域,投礁后游泳生物的总种类也比投礁前丰富,但增幅不如礁区海域明显。总种类数由投礁前的23种增加至32种,比投礁前本底调查增加了0.39倍。其中虾类增加明显,由投礁前的3种增加至10种,增加了2.33倍;鱼类由8种增加至13种,增加了0.63倍。

    投礁前,礁区和对比区总种类数相同,投礁后,礁区种类比对比区丰富,增加了0.28倍(表 2)。尤其是蟹类种类丰富多样,比同期调查对比区增加了0.83倍。

    表  2  本底调查和跟踪调查时礁区及对比区游泳生物各类群渔获种数
    Table  2  Number of species caught in artificial reefs area and control area in background and tracking survey
    调查时间
    survey time
    调查站位
    survey stations
    渔获种数 species number
    鱼类
    fish
    蟹类
    crab
    虾蛄类
    squilla
    头足类
    cephalopod
    虾类
    shrimp
    合计
    total
    本底调查
    background survey
    礁区 artificial reefs area 12 4 2 2 3 23
    对比区 control area 8 6 3 3 3 23
    跟踪调查
    tracking survey
    礁区 artificial reefs area 17 11 2 3 8 41
    对比区 control area 13 6 2 1 10 32
    下载: 导出CSV 
    | 显示表格

    在礁区海域,投礁前和投礁后出现的相同种类数为9种(表 3),投礁后新出现的种类数为32种,其中鱼类和蟹类的种类数增加明显,分别增加了14种和8种。

    表  3  投礁后礁区游泳生物各类群种数增加情况
    Table  3  Increment of species number caught in artificial reefs area in tracking survey
    项目
    item
    渔获种数 species number
    鱼类
    fish
    蟹类
    crab
    虾蛄类
    squilla
    头足类
    cephalopod
    虾类
    shrimp
    合计
    total
    跟踪调查时新增的种类
    new species occured in tracking survey
    14 8 1 2 7 32
    本底调查和跟踪调查出现的相同种类
    the species occurred in both background and tracking survey
    3 3 1 1 1 9
    仅在本底调查时出现的种类
    species only occurred in tracking survey
    9 1 1 1 2 14
    下载: 导出CSV 
    | 显示表格

    莱芜礁区及邻近海域游泳生物种类分布的上述变化情况表明,礁体投放后,礁区海域新型的人工生境已初步形成,对游泳生物(特别是鱼类和虾蟹类)显示出了明显的诱集效果。

    投礁前和投礁后,礁区和对比区游泳生物的优势类群和主要优势种都发生了明显的变化,投礁前礁区主要优势类群为虾蛄类、鱼类、蟹类和头足类,断脊口虾蛄Oratosquilla interrupa的资源密度为19.089 kg · km-2(表 4),为第一优势种,对比区主要优势类群为虾蛄类、鱼类和蟹类,口虾蛄的资源密度为27.869 kg · km-2,为第一优势种。

    表  4  本底调查和跟踪调查时礁区及对比区游泳生物主要优势种及资源密度
    Table  4  The dominant species and biomass density in artificial reefs area and control area in background and tracking survey
    调查时间
    survey time
    调查站位
    survey stations
    主要优势种及资源密度/kg·km-2
    dominant species and biomass density
    本底调查background survey 礁区
    artificial reefs area
    断脊口虾蛄
    Oratosquilla interrupa
    鹿斑鲾
    Leiognathus ruconius
    三疣梭子蟹
    Portunus trituberculatus
    杜氏枪乌贼
    Loligo duvaucelii Orbigny
    短吻鲾
    Leiognathus brevirostris
    19.089 16.580 13.090 11.999 8.945
    对比区
    control area
    口虾蛄
    O.oratoria
    银牙NFDAB
    Otolithes argenteus
    断脊口虾蛄
    O.interrupa
    阿氏强蟹
    Eucrate alcocki Serene
    银鲳
    Pampus argenteus
    27.869 26.708 17.418 14.515 10.683
    跟踪调查
    tracking survey
    礁区
    artificial reefs area
    鳞斑蟹
    Demania scaberrima
    龙头鱼
    Harpodon nehereus
    红星梭子蟹
    P.sanguinolentus
    疣面关公蟹
    Dorippe frascone
    纤手梭子蟹
    P.gracilimanus
    459.963 345.172 344.372 255.980 201.584
    对比区control area 白姑鱼
    Argyrosomus argentatus
    叫姑鱼
    Johnius dussumieri
    口虾蛄
    O.oratoria
    疣面关公蟹
    D.frascone
    龙头鱼
    H.nehereus
    379.606 261.797 248.707 163.623 128.281
    下载: 导出CSV 
    | 显示表格

    投礁后,礁区主要优势类群为蟹类和鱼类,5个优势种中有4个种是蟹类,蟹类成为绝对优势种。鳞斑蟹Demania scaberrima、龙头鱼Harpodon nehereus和红星梭子蟹Portunus sanguinolentus为礁区新增优势种,在本底调查中未曾出现,这说明礁体可以把礁区邻近海域的游泳生物聚集到礁区内,初步表明礁体的投放对聚集鱼类和蟹类非常有效。经济种类资源密度的增加,也一定程度说明鱼礁的投放产生良好的生态效益和经济效益。

    为进一步评估人工鱼礁投放后的生态效果,对2次调查的物种多样性指数进行了计算分析。结果表明,投礁前对比区资源种类丰富度高于礁区,投礁后礁区海域游泳生物的丰富度明显高于投礁前,比投礁前增加了0.22倍(表 5),并且高于同期调查的对比区,投礁后Shannon-Wienver多样性指数(H′)在礁区和对比区均比投礁前有所增加,且在礁区增加较多。这说明投礁后鱼礁区游泳生物丰富度有所改善,群落结构优于投礁前和对比区。

    表  5  礁区及对比区种类数和多样性指数
    Table  5  Species and diversity index in artificial reefs and control area in background survey and tracking survey
    调查时间
    survey time
    调查站位
    survey stations
    总渔获种数
    species number
    种类丰富度指数(R)
    species abundance index
    多样性指数(H′)
    diversity index
    本底调查
    background survey
    礁区 artificial reefs area 23 4.39 2.30
    对比区 control area 23 4.63 2.71
    跟踪调查
    tracking survey
    礁区 artificial reefs area 41 5.38 2.53
    对比区 control area 32 4.50 2.86
    下载: 导出CSV 
    | 显示表格

    为评价投放人工鱼礁所产生的经济价值,笔者把水产市场上出售的鱼种定义为经济鱼种,投礁后,经济鱼种的种类数为29种(表 6),比投礁前增加了9种;经济鱼种的渔获尾数比投礁前约增加了7.9倍,经济鱼种的总资源密度比投礁前约增长17倍。笔者于2007年8月通过询问调查的方法,统计当地经济鱼种的市场价格,以此价格作为基础,用生产效益评估公式,计算投礁前后礁区经济鱼种的总生产效益。结果表明,投礁后经济鱼种的总生产效益比投礁前增加了15倍。说明了人工鱼礁的投放能够丰富礁区海域经济鱼种的种类、数量以及资源密度。投礁后经济鱼种资源量的显著增加,使总生产效益明显增加,表明投放人工鱼礁所产生的经济效益明显。

    表  6  投礁后礁区生产效益估算
    Table  6  Estimation of the production profit in artificial reefs area in tracking survey
    调查时间
    survey time
    经济种类数/种
    the species number of commercial species
    经济种总渔获尾数/尾
    the individual quantity of commercial species
    经济种总资源密度/kg·km-2
    the biomass densityof total commercial species
    经济种总生产效益/元·km-2
    the production profit of commercial species
    本底调查
    background survey
    20 138 103.30 1 448.24
    跟踪调查
    tracking survey
    29 1 228 1 870.85 23 778.30
    下载: 导出CSV 
    | 显示表格

    国内外学者对人工鱼礁的许多研究[10-15]表明,投放人工鱼礁可使大量生物聚集在鱼礁区,起到聚集、养护和增殖渔业资源的效果。对澄海莱芜人工鱼礁区的调查也得到相似的结果,投礁后礁区内生物种类(特别是蟹类)增加明显,总种类数比投礁前本底调查增加了0.78倍,对比区总种类数比投礁前本底调查增加了0.39倍。无论在礁区还是对比区,投礁后各类生物的资源密度明显比投礁前高,总资源密度比投礁前分别增加了25.63和10.05倍。这说明莱芜人工鱼礁建设使礁区和对比区总种类数和总资源密度均显著增加,确实起到了资源养护的效果。

    人工鱼礁区海域生物多样性指数的分析显示,Margalef种类丰度指数(R)和多样性指数(H′)在2次调查中变化较大,投礁后礁区海域的游泳生物丰富度明显高于投礁前,比投礁前增加了0.22倍;Shannon-Wienver多样性指数(H′)也高于投礁前,生物群落多样性指数的变化反映了生物群落种类组成和结构的改善。以上调查结果在一定程度上说明投礁以后人工鱼礁区的渔业资源丰富度有所改善,群落结构变得复杂和多样,资源状况优于投礁前。

    投礁后礁区优势种类群变动明显,蟹类逐渐成为绝对优势种类,且其资源量远大于投礁前。人工鱼礁为蟹类提供了良好的栖息和生长环境,有利于蟹类的聚集和生长。在本底调查中没有出现的经济种类龙头鱼在跟踪调查中也成为主要优势种,说明人工鱼礁作为优良的聚集地和产卵地对聚集鱼类等经济种类非常有效。

    依据当地水产市场上出售的经济鱼类价格,对投礁前后在礁区海域捕获的经济鱼类进行了总生产价值的估算,计算得出投礁后经济鱼种的总生产效益比投礁前增加了15倍,每平方千米约增值2.23万元。表明投放人工鱼礁所产生的经济效益明显。

    跟踪调查结果表明,投礁后礁区海域各类群资源总量显著增加,人工鱼礁表现出显著的集鱼效果。但由于跟踪调查是在休渔期过后的8月份进行,与5月份本底调查的调查时间不同。通常每年5月份是南海北部渔业资源种类的主要产卵期和索饵期,而休渔期限制捕捞,资源密度通常会有所增加,今后应开展人工鱼礁区不同季节资源状况的系统调查和分析,了解在不同时间调查时季节因素对聚鱼效果的影响,以期更准确地评价人工鱼礁的增殖效果。

    人工鱼礁的聚鱼、养护和增殖效果受到礁区的水深、底质[16-17]、流场、资源环境状况以及布局、礁体设计[18]、投放时间[16]、投放规模[19]和礁区管理等诸多因素的影响。国内外的研究表明,鱼礁投放后的优良生态效应要经过长时间才能明显体现。此次调查采样次数有限,只能得出一个初步结果。但就此有限的资料已可看到,鱼礁聚集生物、改善局部区域群落结构和增加生物多样性的作用是显而易见的,人工鱼礁在恢复渔业资源方面已发挥了显著作用。随着礁区规模进一步扩大,加强礁区管理,将会使该礁区更好地发挥其改善海洋生态环境和恢复近海渔业资源的功能。今后的人工鱼礁研究课题应该围绕提高鱼礁区渔获质量、生物多样性、生态系统稳定性和摸清鱼礁水动力机制与集鱼之间的关系等方面作进一步的研究。

  • 图  1   尖翅燕鱼k-mer分布频数

    Figure  1.   k-mer distribution frequency of P. teira

    图  2   尖翅燕鱼Hi-C互作图

    Figure  2.   Hi-C mutual mapping of P. teira

    图  3   尖翅燕鱼4个数据库注释结果韦恩图

    Figure  3.   Venn diagram of four databases annotated results for P. teira

    图  4   12物种构建的分化时间树

    Figure  4.   Divergent time trees of 12 species

    图  5   各物种基因家族扩张收缩结果

    注:圈内红色代表扩张的基因家族;蓝色代表收缩的基因家族;物种名下方显示具体数值。

    Figure  5.   Results of gene family expansion and contraction in each species

    Note: In the circle, red represents expanding gene families; blue represents contracting gene families,and specific values are displayed below the species name.

    图  6   尖翅燕鱼正选择基因KEGG富集结果

    Figure  6.   KEGG pathway enrichment of positive selection genes identified in P. teira

    图  7   尖翅燕鱼正选择基因GO富集结果

    Figure  7.   GO enrichment of positive selection genes identified in P. teira

    图  8   尖翅燕鱼扩张基因家族KEGG富集结果

    Figure  8.   KEGG pathway enrichment of expand gene family identified in P. teira

    图  9   尖翅燕鱼扩张基因家族GO富集结果

    Figure  9.   GO pathway enrichment of expand gene family identified in P. teira

    表  1   尖翅燕鱼基因组组装和校正后组装结果统计

    Table  1   Statistical analysis of genome assembly and corrected assembly results of P. teira

    类型
    Type
    NextDenovo软件 NextPolish软件
    长度
    Length/bp
    数量
    Count
    长度
    Length/bp
    数量
    Count
    N50 26 172 673 12 26 178 423 12
    N90 8 653 897 29 8 656 320 29
    最小长度
    Min. length
    11 814 11 779
    最大长度
    Max. length
    33 665 020 33 669 695
    平均长度
    Ave. length
    5 207 983 5 208 839
    总长度
    Total length
    697 869 769 134 697 984 514 134
    下载: 导出CSV

    表  2   尖翅燕鱼BWA比对结果

    Table  2   Results of BWA comparison of P. teira

    总读长
    Total reads
    匹配读长
    Map reads
    匹配率
    Map rate/%
    双端读长
    Paired reads
    双端比对读长
    Paired map reads
    真正的读长
    Proper paired reads
    正确匹配率
    Properly map rate/%
    758 790 194 755 705 560 99.59 701 824 260 698 739 626 671 793 148 95.72
    下载: 导出CSV

    表  3   尖翅燕鱼基因组BUSCO评估

    Table  3   Genome BUSCO evaluation of P. teira

    类型
    Type
    数量
    Number
    百分比
    Percentage/%
    完整的BUSCOs
    Complete BUSCOs
    3 595 98.8
    完整的单拷贝BUSCOs
    Complete and single-copy BUSCOs
    3 571 98.1
    完整的重复序列BUSCOs
    Complete and duplicated BUSCOs
    24 0.7
    碎片BUSCOs
    Fragmented BUSCOs
    9 0.2
    未比对上的BUSCOs
    Missing BUSCOs
    36 1.0
    总的BUSCO
    Total BUSCO
    3 640 100.0
    下载: 导出CSV

    表  4   尖翅燕鱼各染色体长度

    Table  4   Length of each chromosome of P. teira

    染色体
    Chromosome
    长度
    Length/bp
    染色体
    Chromosome
    长度
    Length/bp
    HiC_scaffold_1 32 115 465 HiC_scaffold_13 22 937 044
    HiC_scaffold_2 28 296 500 HiC_scaffold_14 29 051 425
    HiC_scaffold_3 30 192 628 HiC_scaffold_15 28 201 383
    HiC_scaffold_4 24 662 710 HiC_scaffold_16 23 075 928
    HiC_scaffold_5 16 755 790 HiC_scaffold_17 25 711 309
    HiC_scaffold_6 29 747 999 HiC_scaffold_18 34 711 268
    HiC_scaffold_7 31 770 170 HiC_scaffold_19 31 217 840
    HiC_scaffold_8 30 909 847 HiC_scaffold_20 34 223 832
    HiC_scaffold_9 27 971 542 HiC_scaffold_21 32 267 482
    HiC_scaffold_10 28 320 680 HiC_scaffold_22 30 609 981
    HiC_scaffold_11 34 468 000 HiC_scaffold_23 27 290 755
    HiC_scaffold_12 26 316 500 HiC_scaffold_24 32 023 099
    合计 Total 692 849 177
    下载: 导出CSV

    表  5   尖翅燕鱼重复序列注释结果

    Table  5   Results of repeated sequence annotation of P. teira

    元件类型
    Elements type
    元件数量
    Number of
    elements
    长度
    Length/bp
    百分比
    Percentage/%
    逆转录因子
    Retroelements
    137 738 39 456 150 5.65
    DNA转座子
    DNA transposons
    266 011 55 441 011 7.94
    环状
    DNA Rolling-circles
    2 389 682 132 0.10
    无分类
    Unclassified
    366 703 66 929 139 9.59
    总夹杂的重复序列
    Total interspersed
    repeats
    161 826 300 23.18
    小RNA
    Small RNA
    700 80 729 0.01
    卫星DNA
    Satellites DNA
    660 189 494 0.03
    简单的重复序列
    Simple repeats
    317 455 12 696 083 1.82
    低复杂性
    Low complexity
    42 640 2 317 723 0.33
    总的重复
    Total repeats
    177 792 461 25.47
    下载: 导出CSV

    表  6   尖翅燕鱼结构注释结果BUSCO评估

    Table  6   BUSCO evaluation of structural annotation results of P. teira

    类型
    Type
    数量
    Number
    百分比
    Percentage/%
    完整的BUSCOs
    Complete BUSCOs
    3 21388.3
    完整的单拷贝BUSCOs
    Complete and single-copy BUSCOs
    3 17687.3
    完整的重复序列BUSCOs
    Complete and duplicated BUSCOs
    371.0
    碎片BUSCOs
    Fragmented BUSCOs
    1554.3
    未比对上的BUSCOs
    Missing BUSCOs
    2727.4
    总的BUSCO
    Total BUSCO
    3 640100.0
    下载: 导出CSV

    表  7   尖翅燕鱼功能注释结果

    Table  7   Functional annotation results of P. teira

    数据库
    Database
    数量
    Number
    百分比
    Percentage/%
    NR 21 016 91.97
    SwissProt 18 945 82.91
    KEGG 17 511 76.63
    COG 5 787 25.32
    Trembl 20 996 91.88
    功能注释基因
    Functional annotation
    21 104 92.35
    总计Total 22 851 100.00
    下载: 导出CSV

    表  8   12个物种基因家族聚类结果

    Table  8   Results of gene family clustering in 12 species

    物种
    Species
    总的
    Total
    单拷贝
    Single
    特异性
    Specific
    未聚类
    Unclustered
    眼斑双锯鱼A. ocellaris 23 035 4 787 226 185
    泰国斗鱼B. splendens 22 791 4 787 245 227
    大白鲨C. carcharias 19 440 4 787 1 252 1 273
    波纹唇鱼C .undulatus 23 316 4 787 381 184
    斑马鱼D. rerio 32 717 4 787 3 503 1 659
    云纹石斑鱼E .moara 23 735 4 787 112 336
    食蚊鱼G. affinis 23 135 4 787 98 166
    青鳉O. latipes 22 071 4 787 460 241
    尖翅燕鱼P .teria 22 851 4 787 689 2 727
    深裂眶锯雀鲷S. partitus 22 589 4 787 70 363
    红箭鱼X. helleri 23 921 4 787 98 138
    花斑剑尾鱼X. maculatus 23 238 4 787 34 126
    下载: 导出CSV
  • [1]

    BRAY R A, CRIBB T H. Lepocreadiidae (Digenea) from the batfish of the genus Platax Cuvier (Teleostei: Ephippidae) from the southern Great Barrier Reef, Queensland, Australia[J]. Syst Parasitol, 2003, 55(1): 1-9. doi: 10.1023/A:1023974022432

    [2]

    MARIMUTHU N, WILSON J J, KUMARAGURU A K. Teira batrish, Platax teira (Forsskal, 1775) in Pudhumadam coastal waters, drifted due to the tsunami of 26 December 2004[J]. Current Sci, 2005, 89(8): 1310-1312.

    [3]

    GOLANI D, SONIN O, EDELIST D. Second records of the Lessepsian fish migrants Priacanthus sagittarius and Platax teira and distribution extension of Tylerius spinosissimus in the Mediterranean[J]. Aquat Invasions, 2011, 6(S1): S7-S11.

    [4] 刘明鉴, 郭华阳, 高杰, 等. 尖翅燕鱼早期胚胎发育及仔稚鱼形态观察[J]. 南方水产科学, 2022, 18(4): 103-111. doi: 10.12131/20210251
    [5]

    BILECENOGLU M, KAYA M. A new alien fish in the Mediterranean Sea-Platax teira (Forsskål, 1775) (Osteichthyes: Ephippidae)[J]. Aquat Invasions, 2006, 1(2): 80-83. doi: 10.3391/ai.2006.1.2.5

    [6]

    LEIS J M, HAY A C, HOWARTH G J. Ontogeny of in situ behaviours relevant to dispersal and population connectivity in larvae of coral-reef fishes[J]. Mar Ecol Prog Ser, 2009, 379: 163-179. doi: 10.3354/meps07904

    [7]

    LIU M J, GAO J, GUO H Y, et al. Transcriptomics reveal the effects of breeding temperature on growth and metabolism in the early developmental stage of Platax teira[J]. Biology, 2023, 12(9): 1161. doi: 10.3390/biology12091161

    [8] 陈松林, 徐文腾, 刘洋. 鱼类基因组研究十年回顾与展望[J]. 水产学报, 2019, 43(1): 1-14.
    [9]

    APARICIO S, CHAPMAN J, STUPKA E, et al. Whole-genomeshotgun assembly and analysis of the genome of Fugu rubripes[J]. Science, 2002, 297(5585): 1301-1310.

    [10]

    LIU D, WANG X Y, GUO H Y, et al. Chromosome-level genome assembly of the endangered humphead wrasse Cheilinus undulatus: insight into the expansion of opsin genes in fishes[J]. Mol Ecol Resour, 2021, 21(7): 2388-2406.

    [11]

    ZHENG S Q, SHAO F, TAO W J, et al. Chromosome-level assembly of southern catfish (Silurus meridionalis) provides insights into visual adaptation to nocturnal and benthic lifestyles[J]. Mol Ecol Resour, 2021, 21(5): 1575-1592. doi: 10.1111/1755-0998.13338

    [12] 廖静. 人工养殖尖翅燕鱼性价比高[J]. 海洋与渔业, 2018(11): 62-63.
    [13]

    LIU B, GUO H Y, ZHU K C, et al. Nutritional compositions in different parts of muscle in the longfin batfish, Platax teira (Forsskål, 1775)[J]. J Appl Anim Res, 2019, 47(1): 403-407. doi: 10.1080/09712119.2019.1649680

    [14]

    CHEN S F, ZHOU Y Q, CHEN Y R, et al. fastp: an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17): i884-i890. doi: 10.1093/bioinformatics/bty560

    [15]

    ROBERTS R J, CARNEIRO M O, SCHATZ M C. The advantages of SMRT sequencing[J]. Genome Biol, 2013, 14(7): 405. doi: 10.1186/gb-2013-14-6-405

    [16]

    HU J, WANG Z, SUN Z Y, et al. NextDenovo: an efficient error correction and accurate assembly tool for noisy long reads[J]. Genome Biol, 2024, 25(1): 107. doi: 10.1186/s13059-024-03252-4

    [17]

    HU J, FAN J P, SUN Z Y, et al. NextPolish: a fast and efficient genome polishing tool for long-read assembly[J]. Bioinformatics, 2020, 36(7): 2253-2255. doi: 10.1093/bioinformatics/btz891

    [18]

    SEPPEY M, MANNI M, ZDOBNOV E M. BUSCO: assessing genome assembly and annotation completeness[J]. Methods Mol Biol, 2019, 1962: 227-245.

    [19]

    FLYNN J M, HUBLEY R, GOUBERT C, et al. RepeatModeler2 for automated genomic discovery of transposable element families[J]. PNAS, 2020, 117(17): 9451-9457. doi: 10.1073/pnas.1921046117

    [20]

    HAAS B J, SALZBERG S L, ZHU W, et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments[J]. Genome Biol, 2008, 9(1): R7. doi: 10.1186/gb-2008-9-1-r7

    [21]

    BIRNEY E, CLAMP M, DURBIN R. GeneWise and Genomewise[J]. Genome Res, 2004, 14(5): 988-995. doi: 10.1101/gr.1865504

    [22]

    KIM D, LANGMEAD B, SALZBERG S L. HISAT: a fast spliced aligner with low memory requirements[J]. Nat Methods, 2015, 12(4): 357-360. doi: 10.1038/nmeth.3317

    [23]

    PERTEA M, PERTEA G M, ANTONESCU C M, et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads[J]. Nat Biotechnol, 2015, 33(3): 290-295. doi: 10.1038/nbt.3122

    [24]

    STANKE M, DIEKHANS M, BAERTSCH R, et al. Using native and syntenically mapped cDNA alignments to improve de novo gene finding[J]. Bioinformatics, 2008, 24(5): 637-644. doi: 10.1093/bioinformatics/btn013

    [25]

    EMMS D M, KELLY S. OrthoFinder: phylogenetic orthology inference for comparative genomics[J]. Genome Biol, 2019, 20(1): 238. doi: 10.1186/s13059-019-1832-y

    [26]

    KATOH K, STANDLEY D M. MAFFT Multiple Sequence Alignment Software Version 7: improvements in performance and usability[J]. Mol Biol Evol, 2013, 30(4): 772-780. doi: 10.1093/molbev/mst010

    [27]

    KUMAR S, SULESKI M, CRAIG J M, et al. TimeTree 5: an expanded resource for species divergence times[J]. Mol Biol Evol, 2022, 39(8): msac174. doi: 10.1093/molbev/msac174

    [28]

    YANG Z H. PAML 4: phylogenetic analysis by maximum likelihood[J]. Mol Biol Evol, 2007, 24(8): 1586-1591. doi: 10.1093/molbev/msm088

    [29]

    MENDES F K, VANDERPOOL D, FULTON B, et al. CAFE 5 models variation in evolutionary rates among gene families[J]. Bioinformatics, 2021, 36(22/23): 5516-5518.

    [30]

    EDDY S R. Accelerated profile HMM searches[J]. PLoS Comput Biol, 2011, 7(10): e1002195. doi: 10.1371/journal.pcbi.1002195

    [31]

    YU G C, WANG L G, HAN Y Y, et al. clusterProfiler: an R package for comparing biological themes among gene clusters[J]. OMICS, 2012, 16(5): 284-287. doi: 10.1089/omi.2011.0118

    [32] 高杰, 郭华阳, 刘明鉴, 等. 尖翅燕鱼染色体核型分析[J]. 海洋渔业, 2022, 44(5): 535-542.
    [33]

    OSHIUMI H , TSUJITA T , SHIDA K, et al. Prediction of the prototype of the human Toll-like receptor gene family from the pufferfish, Fugu rubripes, genome[J]. Immunogenetics, 2003, 54: 791-800.

    [34]

    HU Y C, TAN R H, ZHU X, et al. Genome-wide identification, phylogeny and expressional profile of the Dmrt gene family in Chinese sturgeon (Acipenser sinensis)[J]. Sci Rep, 2024, 14(1): 4231. doi: 10.1038/s41598-024-54899-9

    [35]

    ZHU K C, ZHANG N, LIU B S, et al. A chromosome-level genome assembly of the yellowfin seabream (Acanthopagrus latus; Hottuyn, 1782) provides insights into its osmoregulation and sex reversal[J]. Genomics, 2021, 113(4): 1617-1627. doi: 10.1016/j.ygeno.2021.04.017

    [36]

    ZHANG D C, GUO L, GUO H Y, et al. Chromosome-level genome assembly of golden pompano (Trachinotus ovatus) in the family Carangidae[J]. Sci Data, 2019, 6(1): 216. doi: 10.1038/s41597-019-0238-8

    [37]

    LIANG Y, XIAN L, PAN J M, et al. De Novo genome assembly of the whitespot parrotfish (Scarus forsteni): a valuable scaridae genomic resource[J]. Genes (Basel), 2024, 15(2): 249. doi: 10.3390/genes15020249

    [38]

    ZHOU Q, GUO X Y, HUANG Y, et al. De novo sequencing and chromosomal-scale genome assembly of leopard coral grouper, Plectropomus leopardus[J]. Mol Ecol Resour, 2020, 20(5): 1403-1413. doi: 10.1111/1755-0998.13207

    [39]

    CHEN X H, ZHONG L Q, BIAN C, et al. High-quality genome assembly of channel catfish, Ictalurus punctatus[J]. GigaScience, 2016, 5(1): 39. doi: 10.1186/s13742-016-0142-5

    [40]

    LI J, BIAN C, HU Y C, et al. A chromosome-level genome assembly of the Asian arowana, Scleropages formosus[J]. Sci Data, 2016, 3: 160105.

    [41]

    LI S S, XIE Z Z, CHEN P, et al. The complete mitochondrial genome of the Platax teira (Osteichthyes: Ephippidae)[J]. Mitochondrial DNA A DNA Mapp Seq Anal, 2016, 27(2): 796-797.

    [42]

    HUGHES L C, ORTÍ G, HUANG Y, et al. Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data[J]. PNAS, 2018, 115(24): 6249-6254. doi: 10.1073/pnas.1719358115

    [43]

    HE S, LI L, LYU L Y, et al. Mandarin fish (Sinipercidae) genomes provide insights into innate predatory feeding[J]. Commun Biol, 2020, 3(1): 361. doi: 10.1038/s42003-020-1094-y

    [44]

    MARSHALL H D, COULSON M W, CARR S M. Near neutrality, rate heterogeneity, and linkage govern mitochondrial genome evolution in Atlantic cod (Gadus morhua) and other gadine fish[J]. Mol Biol Evol, 2009, 26(3): 579-589.

    [45]

    TEREKHANOVA N V, LOGACHEVA M D, PENIN A A, et al. Fast evolution from precast bricks: genomics of young freshwater populations of threespine stickleback Gasterosteus aculeatus[J]. PLoS Genet, 2014, 10(10): e1004696. doi: 10.1371/journal.pgen.1004696

    [46]

    AO J Q, MU Y N, XIANG L X, et al. Genome sequencing of the perciform fish Larimichthys crocea provides insights into molecular and genetic mechanisms of stress adaptation[J]. PLoS Genet, 2015, 11(4): e1005118. doi: 10.1371/journal.pgen.1005118

    [47]

    NIEDERRITER A R, DAVIS E E, GOLZIO C, et al. In vivo modeling of the morbid human genome using Danio rerio[J]. J Vis Exp, 2013(78): e50338.

    [48]

    DAVIDSON W S, KOOP B F, JONES S J M, et al. Sequencing the genome of the Atlantic salmon (Salmo salar)[J]. Genome Biol, 2010, 11: 403. doi: 10.1186/gb-2010-11-9-403

    [49]

    LEVANTI M, RANDAZZO B, VIÑA E, et al. Acid-sensing ion channels and transient-receptor potential ion channels in zebrafish taste buds[J]. Ann Anat, 2016, 207: 32-37. doi: 10.1016/j.aanat.2016.06.006

    [50]

    MOHAMED N A, SAAD M F, SHUKRY M, et al. Physiological and ion changes of Nile tilapia (Oreochromis niloticus) under the effect of salinity stress[J]. Aquac Rep, 2021, 19: 100567. doi: 10.1016/j.aqrep.2020.100567

    [51]

    IP Y K, CHEW S F. Ammonia production, excretion, toxicity, and defense in fish: a review[J]. Front Physiol, 2010, 1: 134.

    [52]

    RANDALL D J, TSUI T K N. Ammonia toxicity in fish[J]. Mar Pollut Bull, 2002, 45(1/2/3/4/5/6/7/8/9/10/11/12): 17-23.

    [53]

    ARILLO A, MARGIOCCO C, MELODIA F, et al. Ammonia toxicity mechanism in fish: studies on rainbow trout (Salmo gairdneri Rich.)[J]. Ecotoxicol Environ Saf, 1981, 5(3): 316-328. doi: 10.1016/0147-6513(81)90006-3

  • 期刊类型引用(3)

    1. 王天雨,丛亚新,吴朝霞,孙文涛,刘依朦. 氨氮对中华绒螯蟹蜕壳和抗氧化能力的影响. 水产科学. 2024(04): 590-597 . 百度学术
    2. 杨钰,郑雯雯,宇文斌,许颖洁,张星,宋学宏,秦粉菊. 纳米二氧化铈对2种水产病原弧菌的抑菌活性研究. 南方水产科学. 2024(04): 144-153 . 本站查看
    3. 孙雯,王永杰,鲍俊杰,张静,陈红莲,熊英琪. 嗜水气单胞菌(Aeromonas hydrophila)引起斑马鱼肠道生理损伤和肠道菌群失调. 海洋与湖沼. 2023(04): 1191-1198 . 百度学术

    其他类型引用(1)

推荐阅读
丰水期珠江口浮游植物群落结构特征及其环境影响因子分析
粟丽 et al., 南方水产科学, 2025
大泷六线鱼胃排空规律和摄食消化酶活力变化研究
汪峰 et al., 南方水产科学, 2024
珠海外伶仃海洋牧场春季渔业资源生物碳储量初探
魏文迪 et al., 南方水产科学, 2024
溶藻菌czbc1在氯化物型盐碱水中对铜绿微囊藻的溶藻效果研究
胡晓娟 et al., 南方水产科学, 2024
长江口棘头梅童鱼夏季肌肉脂肪酸组成及食源指示分析
王敏 et al., 水产科技情报, 2025
长山列岛潮间带贝类群落结构季节变化
GE Guangyu et al., PROGRESS IN FISHERY SCIENCES, 2024
Seasonality of the meridional overturning circulation in the subpolar north atlantic
Fu, Yao et al., COMMUNICATIONS EARTH & ENVIRONMENT, 2023
The multifaceted roles of arbuscular mycorrhizal fungi in peanut responses to salt, drought, and cold stress
Liu, Yuexu et al., BMC PLANT BIOLOGY, 2023
Water periods impact the structure and metabolic potential of the nitrogen-cycling microbial communities in rivers of arid and semi-arid regions
WATER RESEARCH
Fate of extracellular antibiotic resistant genes in wastewater treatment plants: characteristics, persistence, transformation, removal and potential risk
ENERGY & ENVIRONMENTAL SUSTAINABILITY, 2025
Powered by
图(9)  /  表(8)
计量
  • 文章访问数:  476
  • HTML全文浏览量:  20
  • PDF下载量:  29
  • 被引次数: 4
出版历程
  • 收稿日期:  2024-05-22
  • 修回日期:  2024-05-27
  • 录用日期:  2024-10-22
  • 网络出版日期:  2024-10-28
  • 刊出日期:  2024-12-04

目录

/

返回文章
返回