Effect of hanging pulp on quality improvement and protein stability of prepared tilapia fillets
-
摘要:
以罗非鱼 (Oreochromis mossambicus) 鱼片为原料的酸菜鱼产品是水产类预制菜的主要品种之一。为提升鱼片在复热时的质构稳定性,探讨了挂浆对鱼片品质和鱼肉蛋白稳定性的影响。通过添加淀粉、蛋清粉、花生油降低鱼片在复热过程中的蒸煮损失率,提升鱼片的质构特性,优化3类物质的添加量和工艺,以解决鱼片类预制菜在复热过程中易破碎的问题。结果表明,添加淀粉、蛋清粉和花生油均能抑制罗非鱼片的水分流失,降低蒸煮损失,提升质构特性,同时对汤汁浑浊度的影响较小。提高罗非鱼片煮制品质稳定性的最佳挂浆工艺为:淀粉添加量4.4%、蛋清粉添加量3.6%、花生油添加量1.4%、腌制时间13 min。鱼片在此条件下的综合得分(16.16±0.53)接近于预测值(16.70),说明工艺稳定可靠。与未挂浆鱼片相比,优化条件下鱼片煮制的质构硬度提高了74.2%,汤汁浑浊度降低了42.7%,蛋白质的α-螺旋和β-转角结构相对含量更多,结构更稳定,肌纤维间连接的紧密性更好,食用品质显著提升。
Abstract:Pickled cabbage fish product made from tilapia (Oreochromis mossambicus) fillets is one of the main types of aquatic pre-made products. To improve the textural stability of fish fillets during reheating, we discussed the effect of starching on the quality of fish fillets and the stability of fish proteins. By adding starch, egg white powder and peanut oil, the steaming loss rate of fish fillets during reheating was reduced, the texture characteristics of fish fillets were improved, and the amount and process of adding three types of substances were optimized to solve the problem of easy breakage of pre-made fish fillets during reheating. The results show that the addition of starch, egg white powder and peanut oil inhibited the water loss of tilapia fillets, reduced the cooking loss, and enhanced the textural properties, having a minimal impact on the turbidity of soup. The optimal starching process to improve the cooking quality stability of tilapia fillets was 4.4% starch addition, 3.6% egg white powder addition, 1.4% peanut oil addition, and a pickling time of 13 min. The synthesis score of fish fillets under these conditions (16.16±0.53) was close to the predicted value (16.70), indicating a stable and reliable process. Compared with the control group, the textural hardness of the fillets cooked under the optimized conditions increased by 74.2%, while the turbidity of soup decreased by 42.7%. The relative content of protein α-helix and β-turn structures was higher, the structure was more stable, the tightness of muscle fiber connections was better, and the edible quality was significantly improved.
-
Keywords:
- Tilapia fillets /
- Starching /
- Response surface /
- Texture /
- Turbidity of soup
-
卵形鲳鲹(Trachinotus ovatus)俗称金鲳、黄腊鲳、红三等,隶属鲈形目、鲈亚目、鲹科、鲳鲹亚科、鲳鲹属,广泛分布于太平洋、大西洋和印度洋热带及温带海域[1-3]。该鱼体型较大、生长快、食性简单、肉质细嫩鲜美,广受养殖户和消费者喜爱。随着其繁育技术获得突破,且养殖过程中可全程使用人工配合饲料,出口加工市场大等;近年来,卵形鲳鲹养殖产业在我国发展迅速,已成为广东、广西、海南等华南沿海地区网箱主养海水鱼类之一,2017年全国养殖产量超10×104 t[4-6]。
开展鱼类摄食节律研究,通过调整鱼类的摄食活动时间,使其摄食节律与大多数体细胞的生长增殖周期同步,是一种重要的时间生物学策略[7-11]。目前已有多种鱼类的摄食节律被研究,如大鳞副泥鳅(Paramisgurnus dabryanus)[12]、高体革䱨(Scortum barcoo)[13]、牙鲆(Paralichthys olivaceus)[14]、鬼鲉(Inimicus japonicus)[11]、双棘黄姑鱼(Nibea diacanthus)[15]、大口胭脂鱼(Ictiobus Cyprinellus)[16]和塞内加尔鳎(Solea senegalensis)[17]等,但对卵形鲳鲹的相关研究尚未见报道。
鱼类的耗氧率是有氧代谢强度的重要指标之一,耗氧率高低通常与鱼类的大小和摄食水平相对应,鱼类摄食活动的旺盛期通常也是高耗氧率时期。耗氧节律能直接反映出鱼类的新陈代谢规律和生理反应[18-20],耗氧率低时鱼多处在静止或缓慢运动状态,能量代谢强度低;耗氧率高时多处在剧烈运动状态,能量代谢强度高。胃肠排空是指食物从鱼摄食后至分别经胃、肠消化后排出体外的过程,胃肠排空影响着鱼类的食欲,鱼类胃肠饱满度和胃肠排空速率决定摄食量[21-23]。研究表明,不同鱼类的摄食、耗氧节律和胃肠排空时间存在较大差异。本研究以卵形鲳鲹为实验对象,探究其摄食、耗氧节律和胃肠排空时间的规律性,为确定卵形鲳鲹适宜投喂时间提供理论依据,也为其他水产动物的摄食节律研究和投喂策略提供参考。
1. 材料与方法
1.1 实验材料
本研究实验鱼为深圳大鹏澳海域中国水产科学研究院南海水产研究所深圳试验基地抗风浪网箱养殖的4月龄卵形鲳鲹,2018年9月30日,将实验鱼在露天高位池塘过渡驯养15 d,实验开始前1周,挑选大小一致、活力好且体表无伤的个体暂养于室内养殖桶中,使实验鱼适应实验环境,能在实验条件下正常摄食。养殖和暂养全程使用广东越群海洋生物研究开发有限公司生产的浮性卵形鲳鲹专用配合饲料。实验时挑选60尾用于摄食节律实验,9尾用于耗氧节律实验,90尾用于胃肠排空实验。实验期间水温为25.1~26.3 ℃、盐度32.5、pH 7.6~8.5。
1.2 实验方法
摄食节律实验采用分段式连续投喂法[10, 12],实验于2018年10月22日,将一昼夜分为12个时间段(00:00、02:00、04:00、06:00、08:00、10:00、12:00、14:00、16:00、18:00、20:00、22:00),每时段连续投喂,实验设3个平行组,每组20尾实验鱼,总质量(1 532.57±20.64) g,养殖密度约为40尾·m−3。分组后实验鱼停料1 d,从10月23日14:00开始投喂,为尽量排除实验鱼补偿摄食的影响,前3次投喂数据舍去。每次投喂前准确称取过量饲料,确保达到表观饱食,1 h后将残余饵料捞出,收集到各平行组各时段对应的小盒中,−20 ℃冰柜保存,待实验完成后,经60 ℃烘干获得实验鱼实际摄食量。测定残饵的溶失率以校正实验鱼的摄食量,即在实验完成后,将实验鱼捞出,向每组养殖桶中投入10 g实验用饲料,1 h后收集,与10 g未浸泡饲料同时放60 ℃烘干并称质量,求得溶解掉的饲料质量,计算溶失率。实验周期为3.5 d。
耗氧节律实验采用流水呼吸法[18,20],随机挑9尾卵形鲳鲹,设3个平行组,每组3尾,总质量(227.49±6.04) g,分别放入自制透明玻璃鱼缸中,用封口膜密封,玻璃缸规格为长×宽×高=40 cm×40 cm×50 cm,养殖密度约为38尾·m−3。提前用1 t水体的养殖桶备满沙滤自然海水,确保桶中水溶氧大于6 mg·L−1,调整流速,使流出实验玻璃鱼缸的水溶氧大于4 mg·L−1,实验持续1昼夜,分12次取样读取溶氧数据,取样时间与摄食节律实验相同(00:00、02:00、04:00、06:00、08:00、10:00、12:00、14:00、16:00、18:00、20:00、22:00),溶解氧用校准后的德国WTW多参数分析仪测定。
胃肠排空实验采用一次饱食投喂法[10,22],将一昼夜等分为12个时间段,每隔2 h取样1次作为一个处理组,设3个平行组,每组30尾,总质量(2 295.6±48.26) g,养殖密度约为60尾·m−3。分组后实验鱼停料2 d,确保实验鱼胃肠内容物充分排空,实验桶内无其他可食用物,投入的饲料为唯一食物来源。实验鱼饱食投喂后捞出剩饵,分别在饱食后第1、第3、第5、第7、第9、第11、第13、第15、第17、第19、第21和第23小时随机捞出2尾进行解剖取样。解剖前先用丁香酚将实验鱼深度麻醉,以减少胃肠蠕动而造成的实验误差。分别取出胃和肠中内含物并收集到各平行组各时段对应的小盒中,−20 ℃冰柜保存,待实验完成后,经60 ℃烘干称质量,实验均持续1昼夜。
1.3 数据分析
$$ \begin{array}{*{20}{c}} {{K_{\rm{p}}} = {W_{\rm{f}}} \times {W_0}^{ - 1} \times 100\% }\\ {{K_{\rm{a}}} = {W_{\rm{f}}} \times {W_0}^{ - 1} \times {D^{ - 1}} \times 100\% }\\ {{R_{\rm{s}}} = {W_{\rm{s}}} \times {W_{\rm{w}}}^{ - 1} \times 100\% }\\ {{R_{\rm{b}}} = {W_{\rm{b}}} \times {W_{\rm{w}}}^{ - 1} \times 100\% }\\ {{R_{{\rm{OCR}}}} = A \times V \times {W_{\rm{w}}}^{ - 1}\times {t^{ - 1}} \times 100\% } \end{array} $$ 式中Kp为日摄食率;Ka为平均摄食率;Rs为胃内含物比率;Rb为肠内含物比率;ROCR为耗氧率;Wf为摄食量(g);W0为初始体质量(g);D为实验天数(d);Ws为胃内含物干质量(g);Wb为肠内含物干质量(g);Ww为鱼体湿质量(g);A为消耗水溶解氧质量浓度(mg·L−1);V为容积(L);t为呼吸时间(h)。
所有统计分析由Excel 2016和SPSS 20.0软件完成,实验数据先做方差齐性检验,然后进行单因素方差分析(One-Way ANOVA),再对不同处理组进行Duncan's多重比较,取P<0.05为差异显著。
2. 结果
2.1 昼夜摄食节律
在一昼夜的分段式连续投喂下,卵形鲳鲹在上午10:00和下午14:00—16:00期间表现出2个摄食高峰(P<0.05),凌晨02:00—08:00摄食水平显著低于其他时段(P<0.05),06:00摄食水平最低(P<0.05),属于典型的白天摄食类型。第1天的摄食最高峰出现在晚上22:00,之后在上午10:00和下午16:00各出现1个摄食高峰。第2天的摄食率波动较小,凌晨06:00天亮后摄食率逐渐升高,在傍晚18:00出现1个摄食高峰。第3天的摄食节律比前2 d相对稳定,分别在晚上20:00和上午10:00出现2个摄食高峰(图1)。
图 1 在分段式连续投喂下卵形鲳鲹的昼夜摄食节律变化 ($ \overline X \pm {\rm{SE}}$ ,n=3)图中不同英文字母表示每个取样时间点所得数据之间达到显著差异水平(P<0.05);后图同此Figure 1. Variation of diet feeding rhythm of T. ovatus by a continuous feeding at a fixed intervalThe values with different lowercase letters are significantly different at P<0.05 at each sampling time; the same case in the following figures.实验测得饲料的溶失率为6.3%,卵形鲳鲹的昼夜平均摄食率为2.33%,算出实验中卵形鲳鲹饲料的日摄食量为鱼体体质量的2.49%。
2.2 昼夜耗氧节律
水温25.1~26.3 ℃,卵形鲳鲹昼夜耗氧率波动较大,凌晨00:00—08:00,耗氧率逐渐升高,08:00达第1个耗氧高峰,之后迅速下降,在10:00—12:00时间段耗氧率达一天的最低值[0.413 mg·(g·h)−1](P<0.05),午后又迅速上升,在16:00达到第2个耗氧高峰,也是一天耗氧率最高值[0.702 mg·(g·h)−1](P<0.05),之后逐渐下降,至00:00耗氧率接近最低水平[0.417 mg·(g·h)−1] (P<0.05,图2)。
卵形鲳鲹在白天(8:00—18:00)平均耗氧率为(0.571±0.14) mg·(g·h)−1,夜间(18:00—08:00)平均耗氧率为(0.546±0.07) mg·(g·h)−1,白天与夜间相近(P>0.05)。
2.3 胃肠排空时间
卵形鲳鲹摄食后24 h内胃和全肠排空时间见图3。饱食后胃内含物比率下降迅速(P<0.05),7 h下降近50%,第15小时出现极低值(P<0.05),19 h后胃内含物为0。摄食后胃内含物比率呈阶梯下降趋势明显,通过与摄食后时间拟合后获得公式y=0.018 5x2−0.394x+2.071 5 (R2=0.995 5),y为胃内含物比率,x为摄食后时间。
饱食后3 h内全肠内含物比率迅速升高,第9~第11小时达到最大值(P<0.05),之后逐渐降低,在第21小时出现极低值(P<0.05)。
3. 讨论
3.1 昼夜变化对摄食率的影响
Helfman[24]把鱼类的摄食归纳为白天摄食、晚上摄食、晨昏摄食和无明显节律摄食4种类型。本研究的卵形鲳鲹第1天的摄食率波动大,第1个摄食最高峰出现在晚上22:00,之后在上午10:00和下午16:00各出现1个摄食高峰。第2天的摄食率波动较小,凌晨06:00天亮后摄食率逐渐升高,在傍晚18:00出现1个摄食高峰。第3天的摄食节律比前2天相对稳定,分别在晚上20:00和上午10:00出现2个摄食高峰。综合3 d的摄食率变化发现,其原因可能是实验鱼饥饿1 d后,补偿摄食的影响未完全消除而出现的结果,后两天卵形鲳鲹的摄食节律相对明显,表现为在上午10:00和下午14:00—16:00期间出现2个摄食高峰(P<0.05),凌晨02:00—08:00摄食水平显著低于其他时段(P<0.05),06:00摄食水平最低(P<0.05),这表明卵形鲳鲹属于典型的白天摄食类型。叉尾斗鱼(Macropodus opercularis)仔鱼在12:00—16:00表现出明显的摄食高峰,且在持续光照下摄食活动昼夜均很活跃,表明叉尾斗鱼为白天摄食类型[25]。白天摄食类型的鱼类,其视觉在摄食中具有重要意义,而夜间或晨昏摄食类型的鱼类,主要依靠如化学感觉、触觉等进行捕食[10-12, 26]。如大鳞副泥鳅[12]因长期生活在水体底层,栖息环境光线微弱,眼睛逐渐退化,触须发达,靠触觉和化学感觉来识别食物。因此按照自然摄食节律来确定适宜的喂料时间,可有效提高饲料效率,增加经济效益。可见鱼类的日摄食节律不仅能被规律的人工投喂时间适当调整,同时也受栖息环境和不同种属的影响。
3.2 昼夜变化对耗氧率的影响
鱼类的耗氧率高低通常与鱼类的大小、水温和摄食水平相对应。水温适宜,鱼类摄食活动旺盛时耗氧率也会相应升高。耗氧节律能直接反映出鱼类的新陈代谢规律和生理反应[18-20]。鱼类耗氧率的昼夜节律可分为4种,分别是白天耗氧率高于夜间耗氧率、夜间耗氧率高于白天耗氧率、昼夜耗氧率无差异和某一时间段内出现耗氧率高峰区域等[18]。本实验结果表明,卵形鲳鲹属于昼夜耗氧率基本无差异,白天和夜晚均有耗氧高峰期与低峰期,在06:00—8:00和14:00—18:00出现耗氧率高峰(P<0.05),说明卵形鲳鲹在这2个时间段呼吸代谢旺盛,活动频繁,结合前面分析的摄食节律,可能与捕食或消化有关。而在22:00—00:00和10:00—12:00出现耗氧率低谷(P<0.05)。自然条件下,22:00—00:00时间段光线微弱,对卵形鲳鲹这种白天摄食类型的鱼类,摄食活动相对减少,而10:00—12:00时间段,正处于一天中阳光直射、光照强烈且水温较高的时候,鱼类因其本性,减少活动以躲避强光。
3.3 胃肠排空时间
胃肠排空影响着鱼类的食欲,鱼类胃肠饱满度和胃肠排空速率决定摄食量[21-23]。本实验发现卵形鲳鲹在摄食7 h后约50%胃内含物已排出,第19小时胃内含物为0,全肠内含物也降至最低。余方平等[27]用相同方法测得眼斑拟石首鱼(Sciaenops ocellatus)摄食28 h后接近排空;马彩华等[28]发现大菱鲆(Scophthalmus maximus)在摄食6 h后开始排粪,20 h排空;董桂芳等[10]的研究发现斑点叉尾鮰 (Ictalurus punctatus)和杂交鲟(Acipenser baeri×A. gueldenstaedtii)胃和肠排空需要24 h。而卵形鲳鲹摄食胃肠排空时间较短,这可能与不同鱼类的胃肠消化及吸收速率有关。在同一时间段,胃内含物的减少量大于肠内含物的增加量,这可能是由于卵形鲳鲹属于游动迅速、活动量大的鱼类,为适应快速游动,身体侧扁,胃相对较小,肠道也相应较短,因此食物在体内被消化和吸收快,甚至可能部分营养物质在胃内已被消化吸收。结合昼夜节律实验发现,卵形鲳鲹在胃肠排空之前就有摄食行为,且全时段都能进行摄食。
3.4 投喂策略
投喂策略是鱼类养殖技术的重要部分,投喂不当不仅浪费饵料和劳动力,而且污染水质导致养殖效益低[26]。科学的投喂策略应符合鱼类摄食、耗氧节律和胃肠排空时间等生活习性和生理变化。研究表明鱼类摄食节律的形成与自然界食物丰度有关,推测长期特定的人工投喂策略可改变鱼类的摄食节律[29]。因此可通过特定时间的投喂来驯化鱼类的摄食时间,从而调整其日摄食节律。Luo等[30]研究了杂交鲟(A. schrenckii ♀×A. baeri ♂)育成阶段的最适投喂频率和投喂率。表明投喂频率和投喂率均对鲟鱼的生长性能指标有极显著影响(P<0.01),鲟鱼育成阶段最适投喂策略为以3.7%鱼体质量的投喂率,每天投喂6次。郑伟力等[31]通过对大鳞副泥鳅繁育研究表明可通过人工养殖驯化,将大鳞副泥鳅夜间摄食节律调整为晨昏摄食。因此,生产上可根据实际养殖情况对卵形鲳鲹进行定时定点的人工投饵驯化,适当调整其摄食节律,以提高人工养殖效率。
综合卵形鲳鲹昼夜摄食、耗氧节律和胃肠排空的实验结果,建议在卵形鲳鲹网箱养殖生产中,宜在光线较强和耗氧、摄食高峰的上午(09:00—10:00)和下午(14:00—16:00)时段进行投喂,投喂频率2~3次·d−1,投喂间隔7~9 h。
-
图 4 不同淀粉添加量下挂浆罗非鱼片质构的变化
注:*. 两组间差异显著 (p<0.05);**. 两组间差异极显著 (p<0.01);***. 两组间差异极其显著(p<0.001);NS. 两组间差异不显著;折线代表均值的变化趋势。
Figure 4. Changes of texture of tilapia fillets under different starch additions
Note: *. The difference between the two groups is significant (p<0.05); **. The difference between the two groups is very significant (p<0.01); ***. The difference between the two groups is extremely significant (p<0.001); NS. The difference between the two groups is not significant; the broken line represents the change trend of the mean value.
图 6 不同蛋清粉添加量下挂浆罗非鱼片质构的变化
注:*. 两组间差异显著(p<0.05);**. 两组间差异极显著(p<0.01);***. 两组间差异极其显著(p<0.001);NS. 两组间差异不显著;折线代表均值的变化趋势。
Figure 6. Changes of texture of tilapia fillets under different egg white powder additions
Note: *. The difference between the two groups is significant (p<0.05); **. The difference between the two groups is very significant (p<0.01); ***. The difference between the two groups is extremely significant (p<0.001); NS. The difference between the two groups is not significant; the broken line represents the change trend of the mean value.
图 8 不同花生油添加量下挂浆罗非鱼片质构的变化
注:*. 两组间差异显著(p<0.05);**. 两组间差异极显著(p<0.01);***. 两组间差异极其显著(p<0.001);NS. 两组间差异不显著;折线代表均值的变化趋势。
Figure 8. Changes of texture of tilapia fillets under different peanut oil additions
Note: *. The difference between the two groups is significant (p<0.05); **. The difference between the two groups is very significant (p<0.01); ***. The difference between the two groups is extremely significant (p<0.001); NS. The difference between the two groups is not significant; the broken line represents the change trend of the mean value.
图 10 不同腌制时间下挂浆罗非鱼片质构的变化
注:*. 两组间差异显著(p<0.05);**. 两组间差异极显著(p<0.01);***. 两组间差异极其显著(p<0.001);NS. 两组间差异不显著;折线代表均值的变化趋势。
Figure 10. Changes of texture of tilapia fillets under different pickling time
Note: *. The difference between the two groups is significant (p<0.05); **. The difference between the two groups is very significant (p<0.01); ***. The difference between the two groups is extremely significant (p<0.001); NS. The difference between the two groups is not significant; the broken line represents the change trend of the mean value.
图 14 不同处理条件下冻藏10 d后煮制罗非鱼片组织结构 (100×)
注:a、b分别表示蒸馏水处理横切面、纵切面;c、d分别表示优化工艺处理横切面、纵切面。
Figure 14. Tissue structure of cooked tilapia fillets after 10 d of freezing under different treatment conditions (100×)
Note: a, b represent distilled water treatment cross-section and longitudinal section, respectively; c, d represent optimized process treatment cross-section and longitudinal section, respectively.
表 1 感官评定标准
Table 1 Sensory evaluation criteria
评分指标
Scoring index评分标准
Scoring criterion分值
Score色泽
Colour鱼片表面及切面有光泽,淡淡黄色 15~20 鱼片表面及切面稍有光泽,有些许黄色 10~15 鱼片表面及切面黯淡无光泽, 黄色明显 1~10 外观
Appearance鱼片组织致密光滑,纹理清晰,无裂缝,形态完整 15~20 鱼片组织局部松散,纹理较清晰,有些许裂缝,形态基本完整 10~15 鱼片组织过于松散,纹理模糊,裂缝较多,无完整形态 1~10 香气
Fragrance有清新的鱼鲜味,无异味 15~20 有淡淡鱼腥味,无明显异味 10~15 鱼腥味较重 1~10 口感
Taste鱼片肉质细嫩爽滑,咀嚼性好,适口性好 15~20 鱼片肉质较细嫩爽滑,咀嚼性一般,适口性一般 10~15 鱼片肉质干涩,咀嚼性差,适口性差 1~10 可接受度
Acceptability可接受度较高 15~20 可接受度一般 10~15 不可接受 1~10 表 2 响应面试验设计及结果
Table 2 Design and results of response surface experiment
试验号
Test No.A:淀粉添加量
Starch additionB:蛋清粉添加量
Egg white powder additionC:花生油添加量
Peanut oil additionD:腌制时间
Pickling time硬度
Hardness/g汤汁浑浊度
Turbidity of soup综合得分
Comprehensive score1 0 −1 1 0 135.85 0.062 13.33 2 0 0 −1 −1 127.59 0.056 13.74 3 −1 0 0 −1 121.31 0.067 12.14 4 0 1 −1 0 156.43 0.073 13.16 5 1 −1 0 0 86.00 0.045 13.84 6 1 0 1 0 137.66 0.072 12.40 7 0 1 1 0 81.00 0.080 9.25 8 −1 0 −1 0 131.15 0.119 9.64 9 1 0 −1 0 121.43 0.064 12.46 10 0 −1 0 1 90.15 0.047 13.60 11 0 0 0 0 215.20 0.060 17.12 12 0 0 0 0 223.69 0.067 16.72 13 0 0 0 0 190.18 0.065 15.43 14 1 0 0 −1 123.19 0.056 13.54 15 1 0 0 1 125.29 0.057 13.50 16 0 −1 0 −1 144.67 0.062 13.73 17 −1 0 0 1 121.50 0.074 11.51 18 0 −1 −1 0 99.80 0.051 13.29 19 −1 0 1 0 95.47 0.077 10.11 20 0 1 0 −1 149.21 0.086 11.90 21 −1 1 0 0 81.63 0.071 9.99 22 0 0 −1 1 148.75 0.066 13.47 23 −1 −1 0 0 77.72 0.061 10.85 24 0 0 0 0 205.38 0.063 16.32 25 1 1 0 0 104.00 0.058 12.41 26 0 0 1 1 97.32 0.069 10.87 27 0 0 0 0 179.49 0.052 16.68 28 0 1 0 1 99.37 0.065 11.37 29 0 0 1 −1 157.71 0.067 13.77 表 3 回归模型的方差分析结果
Table 3 Analysis of variance results of regression model
方差来源
Source of variance平方和
Square sum自由度
Degree of freedom均方
Mean squareF p 显著性
Significance模型 Model 116.85 14 8.35 15.29 <0.000 1 ** 淀粉添加量 (A) Starch addition 16.12 1 16.12 29.53 <0.000 1 ** 蛋清粉添加量 (B) Egg white powder addition 9.26 1 9.26 16.96 0.001 0 ** 花生油添加量 (C) Peanut oil addition 3.05 1 3.05 5.59 0.033 1 * 腌制时间 (D) Pickling time 1.66 1 1.66 3.04 0.103 3 交互项AB Interaction term AB 0.062 5 1 0.062 5 0.114 5 0.740 1 交互项AC Interaction term AC 0.070 2 1 0.070 2 0.128 6 0.725 2 交互项AD Interaction term AD 0.078 4 1 0.078 4 0.143 6 0.710 4 交互项BC Interaction term BC 3.80 1 3.80 6.96 0.019 4 * 交互项BD Interaction term BD 0.044 1 1 0.044 1 0.080 8 0.780 4 交互项CD Interaction term CD 1.77 1 1.77 3.24 0.093 4 二次项A2 Quadratic term A2 46.28 1 46.28 84.77 <0.000 1 ** 二次项B2 Quadratic term B2 29.50 1 29.50 54.02 <0.000 1 ** 二次项C2 Quadratic term C2 33.90 1 33.90 62.10 <0.000 1 ** 二次项D2 Quadratic term D2 11.34 1 11.34 20.78 0.000 4 ** 残差 Residual 7.64 14 0.546 0 失拟项 Misfit item 6.01 10 0.601 2 1.47 0.377 8 纯误差 Pure error 1.63 4 0.408 0 总和 Sum 124.50 28 注:*. 差异显著 (p<0.05);**. 差异极显著 (p<0.01)。 Note: *. Significant difference (p<0.05); **. Extremely significant difference (p<0.01). -
[1] 陈文治, 郭忠宝, 单丹, 等. 6种不同罗非鱼品种的肌肉营养成分分析[J]. 南方农业学报, 2015, 46(7): 1303-1309. doi: 10.3969/j:issn.2095-1191.2015.7.1303 [2] 郝淑贤, 李来好, 杨贤庆, 等. 5种罗非鱼营养成分分析及评价[J]. 营养学报, 2007, 29(6): 614-615, 618. doi: 10.3321/j.issn:0512-7955.2007.06.022 [3] 农业部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2023中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2023: 25. [4] 代云云, 袁永明, 袁媛, 等. 中国罗非鱼产业供求分析[J]. 中国农学通报, 2021, 37(7): 144-149. doi: 10.11924/j.issn.1000-6850.casb2020-0119 [5] 黄卉, 陈胜军, 赵永强, 等. 水产品预制菜加工与质量安全控制技术研究进展[J]. 南方水产科学, 2022, 18(6): 152-160. doi: 10.12131/20220190 [6] 胡茂芩. 川南特色菜肴滑肉的加工工艺优化及品质特性研究[D]. 成都: 成都大学, 2021: 2. [7] 殷方玉, 汤高奇, 邵建峰, 等. 糊组分对水滑肉挂糊效果的影响[J]. 河南农业大学学报, 2017, 51(5): 717-724. [8] 赵钜阳, 郑昌江, 石长波, 等. 预油炸虾肉上浆配料的优化[J]. 食品安全质量检测学报, 2017, 8(9): 3499-3506. doi: 10.3969/j.issn.2095-0381.2017.09.037 [9] DOGAN S F, SAHIN S, SUMNU G. Effects of soy and rice flour addition on batter rheology and quality of deep fat-fried chicken nuggets[J]. J Food Eng, 2005, 71(1): 127-132. doi: 10.1016/j.jfoodeng.2004.10.028
[10] ALBERT S, MITTAL G S. Comparative evaluation of edible coating to reduce fat uptake in a deep-fried cereal product[J]. Food Res Int, 2002, 35(5): 445-458. doi: 10.1016/S0963-9969(01)00139-9
[11] 潘广坤, 吉宏武, 刘书成, 等. 大豆分离蛋白和油炸条件对面包虾品质的影响[J]. 食品与发酵工业, 2013, 39(8): 143-148. [12] 张令文, 王方, 计红芳, 等. 小麦面筋蛋白对挂糊油炸猪肉片外壳食用品质的影响[J]. 中国粮油学报, 2018, 33(9): 13-18. doi: 10.3969/j.issn.1003-0174.2018.09.003 [13] 张璐, 熊双丽, 李安林, 等. 响应面-主成分分析法优化小酥肉糊料配方[J]. 食品工业科技, 2024, 45(4): 133-141. [14] 翟嘉豪, 陈季旺, 崔璐璐, 等. 多糖亲水胶体对油炸外裹糊鱼块外壳特性与油脂渗透的影响[J]. 食品科学, 2023, 44(10): 30-37. doi: 10.7506/spkx1002-6630-20220809-119 [15] 冯佳奇, 陈季旺, 廖鄂, 等. 膳食纤维对外裹糊特性及油炸外裹糊鲢鱼鱼糜块油脂渗透的影响[J]. 食品科学, 2023, 44(16): 34-41. doi: 10.7506/spkx1002-6630-20221006-040 [16] ALTUNAKAR B, SAHIN S, SUMNU G. Functionality of batters containing different starch types for deep-fat frying of chicken nuggets[J]. Eur Food Res Technol, 2004, 218(4): 318-322. doi: 10.1007/s00217-003-0854-5
[17] SANZ T, SALVADOR A, FISZMAN S M. Resistant starch (RS) in battered fried products: functionality and high-fibre benefit[J]. Food Hydrocoll, 2008, 22(4): 543-549. doi: 10.1016/j.foodhyd.2007.01.018
[18] ZHANG L W, YANG M D, JI H F, et al. Some physicochemical properties of starches and their influence on color, texture, and oil content in crusts using a deep-fat-fried model[J]. CyTA J Food, 2014, 12(4): 347-354. doi: 10.1080/19476337.2014.887148
[19] 翟金玲, 陈季旺, 肖佳妍, 等. 玉米淀粉对油炸外裹糊鱼块品质的影响[J]. 食品科学, 2015, 36(21): 20-25. doi: 10.7506/spkx1002-6630-201521005 [20] 熊雅雯, 黄卉, 李来好, 等. 响应面法优化冷冻水煮罗非鱼片稳定剂配方[J]. 食品与发酵工业, 2022, 48(23): 225-234. [21] 关志强, 康彦, 李敏, 等. 响应面法优化罗非鱼冻藏抗冻剂配方[J]. 渔业现代化, 2014, 41(3): 53-59. doi: 10.3969/j.issn.1007-9580.2014.03.011 [22] 曲佳鸣. 挂浆黑鱼片加工工艺及贮藏品质变化研究[D]. 天津: 天津科技大学, 2022: 17. [23] PAZOS M, MAESTRE R, GALLARDO J M, et al. Proteomic evaluation of myofibrillar carbonylation in chilled fish mince and its inhibition by catechin[J]. Food Chem, 2013, 136(1): 64-72. doi: 10.1016/j.foodchem.2012.07.109
[24] 李锐, 孙祖莉, 杨贤庆, 等. 加热方式对罗非鱼片质构特性和蛋白质理化特性的影响[J]. 大连海洋大学学报, 2020, 35(4): 577-583. [25] 张桂凤, 李文武. 调理肉制品工艺参数优化及低温放置过程中品质变化研究[J]. 中国调味品, 2021, 46(10): 87-93. doi: 10.3969/j.issn.1000-9973.2021.10.016 [26] 刘璐, 洪鹏志, 周春霞, 等. 不同种类淀粉对罗非鱼鱼糜凝胶品质的影响[J]. 食品科学, 2023, 44(6): 82-89. [27] 黄晓冰, 洪鹏志, 周春霞, 等. 不同原淀粉对金线鱼鱼糜凝胶品质的影响及其分子机制[J]. 广东海洋大学学报, 2024, 44(1): 133-141. [28] 郭爱良, 周湘寒, 姚亚亚, 等. 不同玉米品种理化特性及淀粉品质的研究[J]. 中国粮油学报, 2022, 37(5): 39-47. [29] 刘尚丞, 张思原. 蛋清粉的加工特性及改性研究进展[J]. 中国家禽, 2022, 44(6): 100-106. [30] 李金星, 吴燕燕, 王悦齐, 等. 响应面法优化海鲈鱼小片的品质改良工艺技术[J]. 上海海洋大学学报, 2022, 31(5): 1283-1294. [31] 叶丽红, 许艳顺, 夏文水, 等. Κ-卡拉胶、复合磷酸盐和蛋清粉对高水分鱼丸水分和质构特性的影响[J]. 食品科技, 2019, 44(4): 291-297. [32] HUNT A, PARK J W, HANDA A. Effect of various types of egg white on characteristics and gelation of fish myofibrillar proteins[J]. J Food Sci, 2009, 74(9): C683-C692.
[33] 李俐鑫, 迟玉杰, 于滨. 蛋清蛋白凝胶特性影响因素的研究[J]. 食品科学, 2008, 29(3): 46-49. [34] 彭晓龙. 油脂对类PSE鸡肉肉肠品质的影响[D]. 广州: 华南理工大学, 2019: 63, 68-73. [35] 陈佳奇, 刘天毅, 贾逾泽, 等. 水煮鱼微波烹饪过程中鱼肉水分及组织变化对嫩度的影响[J]. 食品与机械, 2020, 36(4): 51-55. [36] CHANG T, WANG C J, WANG X F, et al. Effects of soybean oil, moisture and setting on the textural and color properties of surimi gels[J]. J Food Qual, 2015, 38(1): 53-59. doi: 10.1111/jfq.12121
[37] CHUMNGOEN W, CHEN C F, CHEN H Y, et al. Influences of endpoint heating temperature on the quality attributes of chicken meat[J]. Br Poult Sci, 2016, 57(6): 650-740.
[38] 章银良, 安巧云, 杨慧. 脂肪氧化诱导鱼蛋白聚集变性研究进展[J]. 食品研究与开发, 2011, 32(11): 161-164. [39] ZHANG X L, LU P, XUE W Y, et al. An evaluation of heat on protein oxidation of soy protein isolate or soy protein isolate mixed with soybean oil in vitro and its consequences on redox status of broilers at early age[J]. Asian-Aust J Anim Sci, 2017, 30(8): 1135-1142. doi: 10.5713/ajas.16.0683
[40] 黄莉, 胡颜寓, 任中阳, 等. 腌制时间对大黄鱼鱼肉理化性质和烤制品品质的影响[J]. 中国食品学报, 2024, 24(1): 209-219. [41] 贺思翔. 以八角叶为基料的腌制液及其对调理鱼片品质的影响[D]. 武汉: 华中农业大学, 2022: 41. [42] DOMÍNGUEZ R, PATEIRO M, MUNEKATA P, et al. Protein oxidation in muscle foods: a comprehensive review[J]. Antioxidants, 2021, 11(1): 60. doi: 10.3390/antiox11010060
[43] 艾明艳, 刘茹, 温怀海, 等. 框鳞镜鲤鱼片注射腌制工艺的研究[J]. 食品工业科技, 2013, 34(7): 273-275, 280. [44] 陶文斌, 吴燕燕, 李春生, 等. 响应面法优化腌制大黄鱼的低钠复合咸味剂配方[J]. 食品工业科技, 2019, 40(19): 136-144. [45] 徐永霞, 王瑞, 李学鹏, 等. 热处理对鱼肌原纤维蛋白结构及腥味物质结合能力的影响[J]. 中国食品学报, 2020, 20(9): 131-138. -
期刊类型引用(6)
1. 张静,戴佳玥,来新昊,刘旭祥,张浩,王学锋,汤保贵. 卵形鲳鲹应对流速胁迫的代谢组学分析. 海洋学报. 2023(05): 53-63 . 百度学术
2. 段鹏飞,田永胜,李振通,李子奇,陈帅,黎琳琳,王心怡,王林娜,刘阳,李文升,王晓梅,李波. 棕点石斑鱼(♀)×蓝身大斑石斑鱼(♂)杂交后代与棕点石斑鱼低氧耐受能力初步研究. 中国水产科学. 2022(02): 220-233 . 百度学术
3. 逯云召,于燕光,薄其康,马超,宓慧菁,孙晓旺. 大泷六线鱼幼鱼的摄食节律研究. 渔业现代化. 2021(02): 35-39 . 百度学术
4. 李志成,江飚,钟志鸿,李诗钰,何润真,唐嘉嘉,李安兴. 硫酸铜治疗卵形鲳鲹淀粉卵涡鞭虫病的研究. 南方水产科学. 2021(03): 108-114 . 本站查看
5. 韩明洋,周胜杰,杨蕊,胡静,马振华. 温度胁迫下卵形鲳鲹仔鱼骨骼组织病理及分子表征. 南方农业学报. 2021(11): 3147-3156 . 百度学术
6. 黄小林,戴超,虞为,杨洁,杨育凯,李涛,林黑着,黄忠,孙莘溢,舒琥. 丁香酚对卵形鲳鲹幼鱼的麻醉效果. 广东海洋大学学报. 2020(04): 124-131 . 百度学术
其他类型引用(3)