珠江口棘头梅童鱼营养生态位研究

石娟, 刘永, 李纯厚, 王腾, 赵金发, 宋晓宇, 谢宏宇

石娟, 刘永, 李纯厚, 王腾, 赵金发, 宋晓宇, 谢宏宇. 珠江口棘头梅童鱼营养生态位研究[J]. 南方水产科学, 2024, 20(3): 56-65. DOI: 10.12131/20240025
引用本文: 石娟, 刘永, 李纯厚, 王腾, 赵金发, 宋晓宇, 谢宏宇. 珠江口棘头梅童鱼营养生态位研究[J]. 南方水产科学, 2024, 20(3): 56-65. DOI: 10.12131/20240025
SHI Juan, LIU Yong, LI Chunhou, WANG Teng, ZHAO Jinfa, SONG Xiaoyu, XIE Hongyu. Trophic niche analysis of Collichthys lucidus in Pearl River Estuary[J]. South China Fisheries Science, 2024, 20(3): 56-65. DOI: 10.12131/20240025
Citation: SHI Juan, LIU Yong, LI Chunhou, WANG Teng, ZHAO Jinfa, SONG Xiaoyu, XIE Hongyu. Trophic niche analysis of Collichthys lucidus in Pearl River Estuary[J]. South China Fisheries Science, 2024, 20(3): 56-65. DOI: 10.12131/20240025

珠江口棘头梅童鱼营养生态位研究

基金项目: 国家重点研发计划项目 (2019YFD0901204, 2019YFD0901201);广东省科技计划项目 (2019B121201001);广东省基础与应用基础研究重大项目课题 (2019B030302004-05);农业财政专项 (NHZX2024);中国水产科学研究院基本科研业务费 (2023TD16);中国水产科学研究院南海水产研究所中央级公益性科研院所基本科研业务费专项资金资助 (2021SD04, 2019TS28)
详细信息
    作者简介:

    石 娟 (1997—),女,硕士,研究方向为海洋鱼类生态学。E-mail: sjuan0917@163.com

    通讯作者:

    王 腾 (1986—),男,副研究员,博士,研究方向为海洋鱼类生态学。E-mail: wt3074589@163.com

  • 中图分类号: S 931.1

Trophic niche analysis of Collichthys lucidus in Pearl River Estuary

  • 摘要:

    棘头梅童鱼 (Collichthys lucidus) 是重要的小型经济鱼类,为了解其营养结构和食性等特征,于2021和2022年在珠江口水域采集样本,并基于碳、氮稳定同位素 (δ13C、δ15N) 技术从营养生态位、营养结构指标、食性等角度对其进行研究。结果表明:棘头梅童鱼δ13C为 (−18.74±1.41)‰,δ15N为 (12.35±0.57)‰,营养级为 (3.25±0.17)‰。δ13C在体长小于100.00 mm时随体长增加逐渐上升,之后随体长增加而下降;δ15N在体长 <110.00 mm时随体长增加而上升,在110.00~120.00 mm时出现骤降拐点,δ15N最小,之后随体长增加而上升。在体长 <100.00 mm和 >120.00 mm两阶段的营养多样性较高,营养生态位宽幅较大;在体长100.00~120.00 mm阶段,种群冗余度与均匀度较高,群落内营养生态位分布均匀,拥有相似营养特征的个体占比高。贝叶斯混合模型溯源表明,浮游动物对棘头梅童鱼的食物贡献比例最高。研究结果可为棘头梅童鱼的资源保护与开发提供理论依据。

    Abstract:

    Collichthys lucidus is an important small economic fish, and in order to understand its nutritional structure and dietary characteristics, we collected samples from the waters of the Pearl River Estuary in 2021 and 2022, and studied them from the perspectives of trophic niche, trophic structure index and feeding habit by on stable isotope technology. The results indicate that the δ13C and δ15N values of C. lucidus were (−18.74±1.41)‰ and (12.35±0.57)‰, respectively, with a trophic level of (3.25±0.17)‰. The δ13C value gradually increased when the body length was less than 100.00 mm, then decreased with the increase of body length. The δ15N value increased with the increase of body length when the body length was less than 110.00 mm, and the inflection point occurred at body length of 110.00–120.00 mm. The δ15N value was the lowest, and then increased with the increase of body length. When the body length was less than 100.00 mm and more than 120.00 mm, the trophic diversity was high, and the trophic niche width was large. When the body length was 100.00–120.00 mm, the redundancy and evenness were high, and the trophic niche distribution was uniform in the community, and the individuals with similar trophic characteristics accounted for the majority. Bayesian mixing model tracing reveals that the highest food contribution proportion for C. lucidus was from zooplankton. The research provides a theoretical basis for the resource conservation and management of C. lucidus.

  • 花鲈 (Lateolabrax maculatus) 广泛分布于中国沿海、日本西部沿海以及朝鲜半岛海域,为太平洋西北沿海特有品种[1]。因其适宜陆基工厂化、池塘、深远海网箱等多种养殖模式,在山东、福建、广东等沿海地区的繁育与养殖体系均较为完善,现已成为中国水产养殖的重要经济鱼类之一。然而随着养殖规模的不断壮大,花鲈幼鱼在养殖过程中细菌性、病毒性和寄生虫性疾病频发[2-3],严重影响了其产业的健康、可持续发展。

    在饲料中添加低聚木糖、壳寡糖、果寡糖、甘露寡糖等低聚糖类益生元可有效提升鱼类的生长和免疫相关性能。已有研究表明,添加适宜的低聚木糖不仅能够有效促进虹鳟 (Oncorhynchus mykiss) 幼鱼生长,提高机体免疫性能[4],还可增强花鲈幼鱼的免疫功能,降低肠道有害菌群相对丰度,改善肠道健康[5]。壳寡糖可明显增强尼罗罗非鱼 (Oreochromis niloticus) 抗菌和抗氧化水平[6],提高杂交黄颡鱼 (Tachysurus fulvidraco♀×T. vachelli♂) 白细胞吞噬和淋巴细胞转化能力[7],且下调珍珠龙胆石斑鱼 (Epinephelus fuscoguttatus♀×E. lanceolatus♂) 促炎细胞因子和细胞凋亡相关基因的表达,增强其免疫能力[8]。饲料中添加适宜的果寡糖可显著提升斜带石斑鱼 (E. coioides) 非特异性免疫酶以及肠道消化酶的活性[9-10],并且对奥尼罗非鱼 (O. niloticus×O. aureus) 肠道中益生菌群相对丰度具有显著的提升效果[11]。甘露寡糖还可作为免疫诱导剂使大菱鲆 (Scophthalmus maximus) 具有更强的细菌清除能力,从而减轻肝损伤风险[12]。此外,甘露寡糖还可显著上调杂交红罗非鱼 (O. niloticus×O. mossambicus) 生殖相关基因的表达,提高其繁殖性能[13]

    与之相比,从海洋褐藻胶中提取的褐藻寡糖,在水产养殖动物生长和免疫性能改善方面也发挥了重要作用[14-15]。van Doan等[16-17]研究发现,褐藻寡糖可以显著提高尼罗罗非鱼的生长与免疫性能、饲料转化率。Hu等[18]在草鱼 (Ctenopharyngodon idella) 饲料中添加褐藻寡糖后鱼体生长性能和非特异性免疫性能均得到显著改善。黄健彬等[19]指出,褐藻寡糖的添加能够有效提升卵形鲳鲹 (Trachinotus ovatus) 幼鱼生长、血浆免疫和肝脏抗氧化性能,对肠道组织形态结构也具有一定的改善效果。此外,褐藻寡糖能够提高尖吻鲈 (Lates calcarifer) 肠道胰蛋白酶、淀粉酶和脂肪酶活性[20]。可见,褐藻寡糖不仅可以增强水生生物的免疫水平和抗病性能,还能够改善肠道形态,提高成活率。但是,目前尚未见关于褐藻寡糖在花鲈养殖过程中应用效果的研究报道。因此,本研究通过对花鲈生长表型数据、消化酶和免疫相关酶活性、生长相关基因表达及肠道组织形态等评价指标进行对比分析,综合评价褐藻寡糖对其幼鱼生长性能和免疫水平的影响,并获得褐藻寡糖在花鲈幼鱼中的适宜添加量,为褐藻寡糖在花鲈健康养殖中的应用和安全评估提供科学依据。

    实验用花鲈幼鱼购于山东省烟台市经海海洋渔业有限公司海上网箱养殖基地,平均体长为 (13.34±0.88) cm,平均体质量为 (44.19±1.44) g,将实验幼鱼运至山东省海阳市黄海水产有限公司的工厂化养殖车间水泥池 (水体积约为20 m3) 内暂养,以备实验使用。

    实验用基础饲料为山东升索饲料科技有限公司所生产的配合颗粒饲料 [主要成分包括鱼粉、虾粉、豆柏、鱼油、小麦粉、维生素、矿物元素等;其中 (质量分数),粗蛋白≥50.0%,粗脂肪≥8.0%,粗灰分≤17.0%,粗纤维≤6.0%,钙≤5.0%,总磷 ≥1.2%,赖氨酸 ≥2.0%]。称取适量褐藻寡糖溶于纯水中,通过喷涂方式均匀喷洒于基础饲料颗粒表面,通风、阴凉处晾干后存放于4 ℃冰箱中。其中,每千克基础饲料中褐藻寡糖的添加量分别为0、50、100和200 mg。实验用褐藻寡糖由潍坊麦卡阿吉生物科技有限公司生产,纯度为90%。实验所用褐藻寡糖不同添加量的饲料均为提前1 d制备的饲料。

    实验于2022年9—10月在山东省海阳市黄海水产有限公司的工厂化养殖车间完成,使用有效水体积为0.7 m3的圆形玻璃钢水桶,实验为期42 d。随机捞取300尾幼鱼,按照实验饲料的设置分为4组 (B0、B1、B2和B3组),每组3个平行,每个平行随机放置25尾。其中,B0组为对照组,投喂褐藻寡糖添加量为0 mg·kg−1的饲料;B1、B2和B3组分别投喂褐藻寡糖添加量为50、100和200 mg·kg−1的饲料。实验开始前将实验鱼进行称质量并饥饿处理24 h,实验开始后分别投喂对应的实验饲料,每天投喂2次。日换水率为200%~300%,实验过程中水温为18~22 ℃,盐度为31‰~32‰,pH 7.9~8.2,溶解氧质量浓度>7 mg·L−1,氨氮质量浓度<0.03 mg·L−1,亚硝酸盐质量浓度<0.006 mg·L−1

    实验结束后,先将各组幼鱼进行24 h饥饿处理,每个平行组中随机捞取3尾,经MS-222充分麻醉后测量并记录体质量、体长等数据。随后将实验结束的幼鱼进行解剖,剪取肝脏和肠道样品。其中,一部分肝脏样品采用无RNA酶的离心管保存于液氮中,用于生长相关基因的定量表达分析;另一部分样品采用冻存管保存于 −20 ℃冰箱中,用于抗氧化、免疫和转氨酶活性分析。一部分肠道样品采用冻存管保存于 −20 ℃冰箱中,用于消化相关酶活性分析;另一部分肠道样品剪取中肠部位采用Davis固定液保存于冻存管中,用于组织结构分析。

    生长指标包括体质量增长率 (Weight gain rate, WGR, %)、特定生长率 (Specific growth rate, SGR,%·d−1)、肥满度 (Condition factor, CF, g·cm−3),计算公式分别为:

    $$ \mathrm{WGR}{\text{=}}\left[\left(W_2{\text{−}}W_1\right) / W_1\right] \times 100 {\text{%}} $$ (1)
    $$ \mathrm{SGR}{\text{=}}\left[\left(\ln W_2{\text{−}}\ln W_1\right) / D\right] \times 100 {\text{%}} $$ (2)
    $$ \mathrm{CF}{\text{=}}W_2 / L^3$$ (3)

    式中:W1W2分别为实验开始和结束时的平均体质量 (湿质量,g);D为实验周期 (d);L为平均体长 (cm)。

    各组幼鱼生理生化指标均采用南京建成生物研究所研制的试剂盒测定。其中,肠道的脂肪酶 (LPS)、淀粉酶 (AMS) 和胰蛋白酶 (TRY) 活性检测试剂盒货号分别为:A054-2-1 (微板法)、C016-1-1 (淀粉-碘比色法)、A080-2-2 (紫外比色法);肝脏的超氧化物歧化酶 (SOD)、过氧化氢酶 (CAT) 、谷胱甘肽过氧化物酶 (GSH-Px) 、溶菌酶 (LZM) 活性和丙二醛 (MDA) 含量检测试剂盒货号分别为:A001-3-2 (WST-1法)、A007-1-1 (钼酸铵法)、A005-1-2 (比色法)、A050-1-1 (比浊法)、A003-1-2 (TBA法)。

    采用RNAiso Plus试剂盒 (TaKaRa,日本) 提取花鲈幼鱼肝脏组织总RNA,经浓度与纯度检测合格后,使用反转录试剂盒合成cDNA第一链,保存于 −20 ℃冰箱中备用。目的基因和内参 (β-actin) 基因的实时荧光定量PCR引物序列如表1所示。本研究采用的PCR扩增条件为:95 ℃预变性30 s,95 ℃延伸5 s,60 ℃退火20 s,共45个循环,使用的仪器是Lightcycler 480 II Real-time PCR仪 (Roche,瑞士)。反应体系为20 μL:TB Green PremiEx Taq II (TaKaRa,日本) 10 μL,上、下游引物 (10 μmol·L−1) 各0.8 μL,ddH2O 6.4 μL,cDNA模板2 μL,通过熔解曲线验证产物特异性,目的基因和内参基因的标准曲线相关系数 (R2):0.99<R2<0.999,扩增效率 (E):0.9<E<1.1。采用2–ΔΔCt法计算目的基因的相对表达量。

    表  1  花鲈幼鱼实时荧光定量PCR引物序列信息
    Table  1.  Primer sequences used in qRT-PCR of L. maculatus juvenile
    引物
    Primer
    引物序列 (5'—3')
    Primer sequence (5'−3')
    igf-1-F CGCAATGGAACAAAGTCGGAATAT
    igf-1-R GTGAGAGGGTGTGGCTACAGGAGA
    gh-F GAGCAGCGTCAACTCAACAA
    gh-R TCAAACGATACGAGATAGACAACA
    β-actin-F CAACTGGGATGACATGGAGAAG
    β-actin-R TTGGCTTTGGGGTTCAGG
    下载: 导出CSV 
    | 显示表格

    将存放于Davis固定液中的中肠样品分别采用不同体积分数的乙醇进行脱水,使用二甲苯溶液透明处理,石蜡包埋后进行组织切片制作,通过苏木精-伊红 (HE) 染色后采用中性树胶封片。采用Pannoramic MIDI II数字切片扫描仪 (丹吉尔,匈牙利) 对制备好的组织切片进行图像扫描,Case Viewer 2.4.0W软件测量肠绒毛的高度和宽度、肠道肌层的厚度。

    所有数据均以“平均值±标准误 ($\overline { x}\pm s_{\overline { x}} $)”表示。采用SPSS Statistics 26.0 软件对数据进行单因素方差分析 (One-way ANOVA),通过Duncan's检验对同一评价指标在不同处理组间的差异性进行多重比较,显著性水平α 设为0.05。

    随着褐藻寡糖添加量的升高,各组花鲈幼鱼的WGR和SGR呈现出先升高后下降的趋势;B2组的WGR和SGR最大,分别为 (96.50±7.95)%和 (1.73±0.09)%·d−1 (表2)。此外,B0组的CF均高于褐藻寡糖添加组,但差异均不显著 (P>0.05)。

    表  2  不同添加量褐藻寡糖对花鲈幼鱼生长性能的影响
    Table  2.  Effects of different additions of alginate oligosaccharide on growth indicators of L. maculatus juvenile
    指标 Indicator组别 Group
    B0B1B2B3
    终末体质量 Final body mass/g 83.38±4.14 83.67±3.58 86.83±3.51 85.87±4.22
    体质量增长率 WGR/% 88.69±9.38 89.34±8.10 96.50±7.95 94.31±9.56
    特定生长率 SGR/(%·d−1) 1.62±0.12 1.64±0.10 1.73±0.09 1.70±0.11
    肥满度CF/(g·cm−3) 1.97±0.05 1.81±0.06 1.92±0.07 1.83±0.04
    注:同行不同小写字母表示组间有显著性差异 (P<0.05)。 Note: Different superscript lowercase letters within the same low represent significant differences among groups (P<0.05).
    下载: 导出CSV 
    | 显示表格

    添加褐藻寡糖组幼鱼肠道的AMS活性差异不显著 (P>0.05),但均高于对照组 (图1-a)。B1和B2组花鲈幼鱼肠道的LPS活性显著高于B0和B3组 (P<0.05);其中,B1组活性最高,为 (16.63±0.12) U·g−1,且与B2组的差异不显著 (P>0.05) (图1-b)。随着褐藻寡糖添加量的升高,除B1组外,幼鱼肠道的TRY活性呈现上升趋势,但差异不显著 (P>0.05),B3组活性最高 (图1-c)。

    图  1  褐藻寡糖的不同添加量对花鲈幼鱼肠道消化酶活性的影响
    注:方柱上不同小写字母表示组间差异显著 (P<0.05)。
    Figure  1.  Effects of different additions of alginate oligosaccharide on intestinal digestive enzyme activities of L. maculatus juvenile
    Note: Different lowercase letters on the bar indicate that significant differences among groups (P<0.05).

    随着褐藻寡糖添加量的升高,花鲈幼鱼肝脏的CAT、SOD、GSH-Px和LZM活性整体呈显著上升趋势 (P<0.05),且在B3组活性最高,分别为 (26.07±0.20) U·mg−1 (图2-a)、(21.84±0.17) U·mg −1 (图2-b)、(45.05±0.30) U·mg−1 (图2-c) 和 (26.07±0.20) μg·mg−1 (图2-e) 。肝脏内MDA水平随着褐藻寡糖添加量的增加而显著下降 (P<0.05),B3组的MDA质量摩尔浓度最低,为 (2.23±0.22) nmol·mg−1 (图2-d)。

    图  2  褐藻寡糖的不同添加量对花鲈幼鱼肝脏非特异性免疫酶活性的影响
    注:方柱上不同小写字母表示组间有显著性差异 (P<0.05)。
    Figure  2.  Effects of different additions of alginate oligosaccharide on non-specific immunizing enzyme activities in liver of L. maculatus juvenile
    Note: Different lowercase letters on the bar represent significant differences among groups (P<0.05).

    随着褐藻寡糖添加量的升高,上调igf-1基因的表达,B3组igf-1基因相对表达量显著高于其他组 (P<0.05),其他组间差异不显著 (P>0.05) (图3-a)。与B0组相比,添加褐藻寡糖组花鲈幼鱼肝脏的gh基因相对表达量显著上调 (P<0.05),但添加褐藻寡糖组间gh基因相对表达量差异不显著 (P>0.05);其中B2组的gh基因相对表达量最高 (图3-b)。

    图  3  igf-1gh基因在花鲈幼鱼肝脏中的相对表达量
    注:方柱上不同小写字母表示组间有显著性差异 (P<0.05)。
    Figure  3.  Relative expression levels of igf-1 and gh genes in liver of L. maculatus juvenile
    Note: Different lowercase letters on the bar represent significant differences among groups (P<0.05).

    与B0组相比,添加褐藻寡糖后,实验组花鲈幼鱼肠道肌层厚度增加,且肠绒毛整体增大 (图4)。随着褐藻寡糖添加量的升高,花鲈幼鱼肠道的肌层厚度、绒毛高度和绒毛宽度整体呈现显著的先升后降趋势 (P<0.05),均为B2组指标最高 (表3)。其中,B2和B3组的肌层厚度显著优于对照组 (P<0.05),B2组的绒毛高度显著高于对照组 (P<0.05),B1、B2、B3组的肠道绒毛宽度均显著优于B0组 (P<0.05)。

    图  4  饲料中不同添加量褐藻寡糖对花鲈肠道形态的影响 (HE染色)
    Figure  4.  Effects of different additions of alginate oligosaccharides on intestinal morphology of L. maculatus juvenile (HE staining)
    表  3  不同添加量褐藻寡糖对花鲈幼鱼肠道组织形态学的影响
    Table  3.  Effects of different additions of alginate oligosaccharide on intestinal morphology of L. maculatus juvenile
    指标
    Indicator
    组别 Group
    B0B1B2B3
    肌层厚度 Muscular thickness/μm 190.43±3.17a 201.23±8.57ab 227.03±7.36c 220.50±8.63bc
    绒毛高度 Villus height/μm 787.52±11.98a 803.45±8.30a 846.20±16.78b 816.52±9.38ab
    绒毛宽度 Villus width/μm 27.88±0.90a 30.53±0.91b 39.37±0.69c 37.20±0.87c
    注:同行不同小写字母表示组间有显著性差异 (P<0.05)。 Note: Different superscript lowercase letters within the same low represent significant differences among groups  (P<0.05).
    下载: 导出CSV 
    | 显示表格

    褐藻寡糖是天然高分子酸性多糖褐藻胶的降解产物,具有改善机体生长性能、提高机体抗氧化和免疫能力等多种生理活性,在水产养殖中的应用前景广阔[14]。研究发现,以饲料为载体添加褐藻寡糖,对尼罗罗非鱼、草鱼和卵形鲳鲹的WGR和SGR具有显著提升效果[16-19],但对大菱鲆WGR和SGR的影响不显著[21]。本研究中,各生长指标与对照组相比均有一定的上升趋势,但差异不显著。

    下丘脑-垂体-肝脏轴是调控机体生长发育的中心轴,GH和IGF家族是这一中心轴上的关键调控因子[22]。通过对ghigf-1基因相对表达量的测定有助于从分子水平上更加深入地解释鱼类生长的机理[23]。本研究中,添加褐藻寡糖上调了花鲈幼鱼的ghigf-1基因相对表达量,其中gh基因相对表达量显著上调,而igf-1基因相对表达量仅在B3组显著上调。然而反映在生长表型上的WGR和SGR呈现一定的上升趋势,但差异不显著,说明褐藻寡糖的添加对花鲈幼鱼的生长具有一定的促进作用;同时,机体的生长是多个通路、调控基因转录与翻译水平等综合调控的结果,这可能是造成生长指标差异不显著的主要原因。

    肠道是鱼体消化吸收营养物质的主要器官,在机体生长发育过程中其形态结构发挥了重要作用[24-25]。肠绒毛由肠道上皮细胞特化而成,能够有效增加肠黏膜与肠腔内食糜接触的表面积,是营养物质被肠道吸收的重要结构,其形态与对营养物质吸收能力的强弱有关[11,26]。鱼类肠道肌层的增厚则使肠道蠕动能力增强,有利于营养物质的吸收与利用[27-29]。研究发现,饲料中褐藻寡糖添加量升高后显著增加了卵形鲳鲹幼鱼[19]、尖吻鲈[20]以及斜带石斑鱼[30]的肠绒毛高度。此外,添加适宜的低聚糖能够增加奥尼罗非鱼肠道的绒毛高度、肌层厚度,提升鱼体消化吸收能力[31]。与上述研究结果相似,本研究中,饲料中添加褐藻寡糖显著增加了花鲈幼鱼肠肌层厚度、绒毛高度与宽度,有效改善了肠道组织形态。由此推测,褐藻寡糖进入花鲈幼鱼肠道后,可能促进了肠绒毛增殖和发育,从而优化了肠道的形态结构。

    鱼类肠道消化酶活性是反映机体生长发育的重要生理指标[32-33],在饲料中添加营养物质是影响肠道消化酶活性高低的重要外源性因素之一。有研究表明,褐藻寡糖促进暗纹东方鲀(Takifugu obscurus)[34]肠道淀粉酶、脂肪酶等消化酶活性的升高。潘金露等[35]发现,饲料中添加0.02% (w) 和0.05% (w) 的褐藻寡糖,大菱鲆肠道的脂肪酶活性显著高于对照组,但淀粉酶活性变化不显著。李玉芬[36]在饲料中添加褐藻寡糖后发现大黄鱼 (Larimichthys crocea) 和石斑鱼体内蛋白酶活性显著升高。本研究中,添加褐藻寡糖后,花鲈幼鱼肠道的脂肪酶、淀粉酶和胰蛋白酶活性均出现一定的升高趋势,说明添加褐藻寡糖在一定程度上提升了机体对营养物质的消化吸收能力。这可能是因为褐藻寡糖显著改善了肠道组织结构,增加食靡与肠道绒毛间的接触面积,使更多的消化酶分泌后被激活,从而使其活性也得到一定提升。添加褐藻寡糖实验组的花鲈幼鱼肠道的淀粉酶和胰蛋白酶活性虽得到了一定提升,但不同添加量组间差异不显著;且仅B1和B2组的脂肪酶活性显著高于B0组,这可能也是造成生长差异不显著的主要原因。

    鱼类因代谢异常而产生多余的活性氧 (ROS) 时会对其机体细胞造成损伤。机体内存在的抗氧化酶,在修复ROS介导的损伤中发挥重要作用,从而维持机体抗氧化性能和氧化平衡状态[37]。SOD在消除生物体新陈代谢产生的自由基过程中至关重要,其活力与机体自由基的消除能力成正相关关系[38]。CAT则起到保护细胞、抗衰老、调节体内分泌系统的作用[39]。GSH-Px是体内重要的抗氧化剂和自由基清除剂[40]。MDA是氧自由基产生过多脂质过氧化物过程中的主要分解产物,具有很强的生物毒性,可对机体造成严重损害[41]。在一个完整的抗氧化体系中,以上几种酶活性或物质含量是评估机体抗氧化应激能力的重要指标。本研究中,实验组幼鱼肝脏中SOD、CAT和GSH-Px的活性与褐藻寡糖添加量呈正相关关系,而MDA的含量随着褐藻寡糖添加量的增加呈下降趋势,说明褐藻寡糖的添加使机体抗氧化酶活性和清除自由基的能力增强,并导致细胞膜脂质过氧化程度下降。这与刺参 (Apostichopus japonicus) [42]和草鱼[16]的研究结果相似。舒昊明[30]指出,海藻降解的褐藻寡糖是天然抗氧化活性化合物的重要来源,拥有天然良好的抗氧化作用。而其分子质量较低、易于吸收的特性则更有助于提升机体的抗氧化酶活性,从而减少机体细胞的损伤并促进已受损细胞的修复,可有效增强机体的抗氧化能力。LZM是水产动物机体的一种非特异性防御因子,能够分解细菌细胞壁上的黏多糖,促进细菌细胞壁破裂进而导致其死亡[43]。本研究中,添加褐藻寡糖的各实验组幼鱼肝脏的LZM活性均显著高于对照组,且褐藻寡糖添加量越高,LZM活性越强,说明褐藻寡糖在提升幼鱼自身的非特异性免疫性能方面的效果更显著。这与江晓路等[42]和黄健彬等[19]的研究结果一致。

    综上所述,饲料中添加褐藻寡糖能够显著改善花鲈幼鱼肠道组织形态结构,上调生长相关基因表达,从而对幼鱼生长产生一定的促进作用;同时,褐藻寡糖能够显著提升花鲈幼鱼抗氧化和免疫水平。当褐藻寡糖添加量为100 mg·kg−1时,褐藻寡糖对花鲈幼鱼的促生长效果较好;添加量为200 mg·kg−1时,对花鲈幼鱼免疫水平的提升效果最佳。

  • 图  1   棘头梅童鱼各体长组稳定同位素特征图

    Figure  1.   Stable isotope characteristics of each body length group of C. lucidus

    图  2   棘头梅童鱼δ13C、δ15N与体长的相关性

    Figure  2.   Correlation between δ13C, δ15N values and body length of C. lucidus

    图  3   棘头梅童鱼各体长组δ13C变化图

    Figure  3.   δ13C variation of each body length group of C. lucidus

    图  4   棘头梅童鱼各体长组营养级变化图

    Figure  4.   Trophic level variation of each body length group of C. lucidus

    图  5   棘头梅童鱼各体长组营养生态位特征图

    Figure  5.   Trophic niche characteristics of each body length group of C. lucidus

    图  6   棘头梅童鱼各体长组的食物碳源贡献比

    Figure  6.   Contribution ratio of carbon sources to food of each body length group of C. lucidus

    表  1   棘头梅童鱼体长组划分及其稳定同位素特征

    Table  1   Classification of body length groups and stable isotope characteristics of C. lucidus

    体长
    Body length (L)/mm
    样本数
    Number of samples/尾
    平均体长
    Average length/mm
    营养级
    Trophic level
    δ15N/‰δ13C/‰
    L≤90 11 64.43±17.31 3.21±0.15 12.21±0.52ab −20.69±1.81a
    90<L≤100 23 96.36±2.19 3.28±0.14 12.45±0.47a −17.78±0.82d
    100<L≤110 34 104.71±2.34 3.28±0.12 12.46±0.40a −17.89±0.79d
    110<L≤120 40 114.97±3.17 3.19±0.12 12.15±0.40a −18.43±0.81c
    120<L≤130 35 123.84±2.51 3.25±0.19 12.34±0.65ab −19.36±1.23b
    130<L 15 137.04±12.39 3.34±0.28 12.65±0.94a −20.06±1.56a
    注:同列不同字母表示组间差异显著 (P<0.05)。 Note: Values with different letters within the same column are significantly different (P<0.05).
    下载: 导出CSV

    表  2   棘头梅童鱼各体长组的营养结构指标

    Table  2   Trophic structure indexes of each body length group of C. lucidus

    体长
    Body length (L)/mm
    δ13C差值
    CR
    δ15N差值
    NR
    平均离心距离
    CD
    平均最邻近距离
    MNND
    平均最邻近距离标准差
    SDNND
    多边形总面积
    TA
    矫正后的标准椭圆面积
    SEAc
    L≤90 5.79 1.87 1.59 0.61 0.52 5.93 2.92
    90<L≤100 4.17 2.01 0.60 0.27 0.65 2.86 0.97
    100<L≤110 3.53 1.75 0.65 0.20 0.27 3.18 0.78
    110<L≤120 2.96 1.76 0.77 0.21 0.18 3.84 0.99
    120<L≤130 5.33 3.71 1.09 0.26 0.35 8.35 1.88
    130<L 5.13 3.41 1.52 0.55 0.42 6.45 2.73
    Note: CR. δ13C range; NR. δ15N range; CD. Mean distance to centroid; MNND. Mean nearest neighbor distance; SDNND. Standard deviation of nearest neighbor distance; TA. Total area; SEAc. Corrected standard ellipse area.
    下载: 导出CSV

    表  3   棘头梅童鱼各体长组营养生态位椭圆重叠面积比率

    Table  3   Ratio of overlap area of trophic niche ellipses in each body length group of C. lucidus

    体长
    Body length (L)/mm
    L≤9090<L≤100100<L≤110110<L≤120120<L≤130130<L
    L≤90 2.92 0.00% 0.00% 4.76% 32.30% 34.23%
    90<L≤100 0.00% 0.97 75.24% 13.21% 0.00% 0.00%
    100<L≤110 0.00% 93.24% 0.78 22.54% 0.00% 0.00%
    110<L≤120 14.09% 12.94% 17.82% 0.99 58.44% 33.56%
    120<L≤130 50.12% 0.00% 0.00% 30.66% 1.88 83.42%
    130<L 36.58% 0.00% 0.00% 12.13% 57.46% 2.73
    注:加粗字表示该体长组标准椭圆面积(SEAc),右上角数据和左下角数据均表示两个体长组SEAc占左列体长组SEAc的百分比。 Note: Bold represents the standard elliptical area (SEAc) of the body length group. The data in the upper right corner and lower left corner both represent the percentage of the two body length groups' SEAc to the left column body length group's SEAc.
    下载: 导出CSV
  • [1]

    ZHANG S, LI M, ZHU J F, et al. An integrated approach to determine the stock structure of spinyhead croaker Collichthys lucidus (Sciaenidae) in Chinese coastal waters[J]. Front Mar Sci, 2021, 8: 693954. doi: 10.3389/fmars.2021.693954

    [2] 熊朋莉, 陈作志, 侯刚, 等. 珠江河口棘头梅童鱼生物学特征的年代际变化[J]. 南方水产科学, 2021, 17(6): 31-38.
    [3] 区又君, 廖锐, 李加儿, 等. 利用耳石日轮研究珠江口棘头梅童鱼的产卵期及生长[J]. 台湾海峡, 2012, 31(1): 85-88.
    [4]

    SONG N, YIN L N, SUN D R, et al. Fine-scale population structure of Collichtys lucidus populations inferred from microsatellite markers[J]. J Appl Ichthyol, 2019, 35(3): 709-718. doi: 10.1111/jai.13902

    [5] 黄良敏, 谢仰杰, 李军, 等. 闽江口及附近海域棘头梅童鱼的生物学特征[J]. 集美大学学报(自然科学版), 2010, 15(4): 8-13.
    [6] 农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2022中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2022: 59-64.
    [7] 农业部渔业渔政管理局. 2014中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2014: 59-63.
    [8]

    WANG Y Y, ZHANG H A, CHEN Y W, et al. Trophic niche width and overlap of three benthic living fish species in Poyang Lake: a stable isotope approach[J]. Wetlands, 2019, 39(1): 17-23. doi: 10.1007/s13157-018-1028-3

    [9]

    WANG J, JIANG R J, XIAO Y, et al. Trophic niche partitioning of five Sciaenidae species sampled in Zhoushan Archipelago waters via stable isotope analysis[J]. Front Mar Sci, 2022, 9: 880123. doi: 10.3389/fmars.2022.880123

    [10]

    WANG S Q, WANG X F, XU L X, et al. Feeding habits and trophic niche of rainbow runner Elagatis bipinnulata in the western and central Pacific Ocean[J]. Environ Biol Fishes, 2022, 105(1): 139-149. doi: 10.1007/s10641-021-01200-w

    [11]

    KVAAVIK C, OSKARSSON G J, PÉTURSDÓTTIR H, et al. New insight into trophic niche partitioning and diet of mackerel (Scomber scombrus) and herring (Clupea harengus) in Icelandic waters[J]. ICES J Mar Sci, 2021, 78(4): 1485-1499. doi: 10.1093/icesjms/fsaa100

    [12]

    CHENG J, MA G Q, MIAO Z Q, et al. Complete mitochondrial genome sequence of the spinyhead croaker Collichthys lucidus (Perciformes, Sciaenidae) with phylogenetic considerations[J]. Mol Biol Rep, 2012, 39(4): 4249-4259. doi: 10.1007/s11033-011-1211-6

    [13]

    MA Q Y, TIAN S Q, HAN D Y, et al. Growth and maturity heterogeneity of three croaker species in the East China Sea[J]. Reg Stud Mar Sci, 2021, 41: 101483.

    [14]

    LIU H B, JIANG T, HUANG H H, et al. Estuarine dependency in Collichthys lucidus of the Yangtze River Estuary as revealed by the environmental signature of otolith strontium and calcium[J]. Environ Biol Fish, 2015, 98(1): 165-172. doi: 10.1007/s10641-014-0246-7

    [15] 高世科, 黄金玲, 于雯雯, 等. 吕泗渔场两种石首鱼科鱼类营养生态学特征: 来自稳定同位素的证据[J]. 应用海洋学学报, 2021, 40(3): 413-420.
    [16] 贺舟挺, 薛利建, 金海卫. 东海北部近海棘头梅童鱼食性及营养级的探讨[J]. 海洋渔业, 2011, 33(3): 265-273.
    [17] 王建锋, 赵峰, 宋超, 等. 长江口棘头梅童鱼食物组成和摄食习性的季节变化[J]. 应用生态学报, 2016, 27(1): 291-298.
    [18] 杨纪明. 渤海鱼类的食性和营养级研究[J]. 现代渔业信息, 2001(10): 10-19.
    [19] 宋业晖, 薛莹, 徐宾铎, 等. 海州湾3种石首鱼的食物组成和生态位重叠[J]. 水产学报, 2020, 44(12): 2017-2027.
    [20] 王军, 苏永全, 柳建英, 等. 罗源湾五种石首鱼类的食性研究[J]. 厦门水产学院学报, 1994(2): 34-39.
    [21] 王静. 舟山群岛海域四种经济鱼类的摄食生态研究[D]. 舟山: 浙江海洋大学, 2022: 25-39.
    [22]

    POST D M. Using stable isotopes to estimate trophic position: models, methods, and assumptions[J]. Ecology, 2002, 83(3): 703-718. doi: 10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2

    [23]

    LAYMAN C A, ARRINGTON D A, MONTAA C G, et al. Can stable isotope ratios provide for community-wide measures of trophic structure?[J]. Ecology, 2007, 88(1): 42-48. doi: 10.1890/0012-9658(2007)88[42:CSIRPF]2.0.CO;2

    [24]

    JACKSON A L, INGER R, PARNELL A C, et al. Comparing isotopic niche widths among and within communities: SIBER-Stable Isotope Bayesian Ellipses in R[J]. J Anim Ecol, 2011, 80(3): 595-602. doi: 10.1111/j.1365-2656.2011.01806.x

    [25] 石焱. 基于碳氮稳定同位素的闽江口常见鱼类营养生态位季节性变化[D]. 厦门: 集美大学, 2018: 26-33.
    [26] 叶学瑶, 任泷, 匡箴, 等. 基于稳定同位素技术的阳澄湖鱼类群落营养结构研究[J]. 中国水产科学, 2021, 28(6): 703-714.
    [27] 赖丽华, 张申增, 陆丽仪, 等. 2017—2020年珠江口棘头梅童鱼的种群特征[J]. 应用生态学报, 2022, 33(5): 1413-1419.
    [28]

    PAULY D, PALOMARES M L. Fishing down marine food web: it is far more pervasive than we thought[J]. Bull Mar Sci, 2005, 76(2): 197-211.

    [29]

    JENNINGS S, GREENSTREET S P R, HILL L, et al. Long-term trends in the trophic structure of the North Sea fish community: evidence from stable-isotope analysis, size-spectra and community metrics[J]. Mar Biol, 2002, 141(6): 1085-1097. doi: 10.1007/s00227-002-0905-7

    [30] 郑德锋, 赵金良, 周文玉, 等. 我国沿海棘头梅童鱼(Collichthys lucidus)群体遗传结构的AFLP分析[J]. 海洋与湖沼, 2011, 42(3): 443-447.
    [31]

    QUILLFELDT P, EKSCHMITT K, BRICKLE P, et al. Variability of higher trophic level stable isotope data in space and time: a case study in a marine ecosystem[J]. Rapid Commun Mass Spectrom, 2015, 29(7): 667-674. doi: 10.1002/rcm.7145

    [32] 廖建基, 郑新庆, 杜建国, 等. 基于氮稳定同位素的九龙江口鱼类营养级研究[J]. 海洋学报, 2015, 37(2): 93-103.
    [33] 高春霞, 戴小杰, 田思泉, 等. 基于稳定同位素技术的浙江南部近海主要渔业生物营养级[J]. 中国水产科学, 2020, 27(4): 438-453.
    [34] 何雄波, 李波, 王锦溪, 等. 不同时期北部湾日本带鱼营养生态位差异[J]. 应用生态学报, 2021, 32(2): 683-690.
    [35] 银利强, 孔业富, 吴忠鑫, 等. 南海中西部海域春季三种金枪鱼类的营养生态位比较[J]. 生态学杂志, 2020, 39(12): 4121-4130.
    [36] 闫光松, 张涛, 赵峰, 等. 基于稳定同位素技术对长江口主要渔业生物营养级的研究[J]. 生态学杂志, 2016, 35(11): 3131-3136.
    [37] 王淼, 徐开达, 梁君. 杭州湾北部棘头梅童鱼繁殖群体生物学特征初步分析[J]. 上海海洋大学学报, 2018, 27(5): 781-788.
    [38]

    GUL G, DEMIREL N. Ontogenetic shift in diet and trophic role of Raja clavata inferred by stable isotopes and stomach content analysis in the Sea of Marmara[J]. J Fish Biol, 2022, 101(3): 560-572. doi: 10.1111/jfb.15123

    [39] 操亮亮, 刘必林, 李建华. 基于稳定同位素技术的东南太平洋公海茎柔鱼摄食生态分析[J]. 大连海洋大学学报, 2022, 37(1): 120-128.
    [40]

    ZHOU F, WU H P, JIA S S, et al. Ontogenetic variation of trophic habitat for sympatric benthic octopods in East China Sea derived from isotopic analysis on beaks[J]. Fish Res, 2021, 238: 105902. doi: 10.1016/j.fishres.2021.105902

    [41] 郭家彤, 王腾, 陈得仿, 等. 大亚湾黑棘鲷的摄食习性[J]. 中国水产科学, 2021, 28(8): 1041-1050.
    [42]

    BARNES C L, BEAUDREAU A H, YAMADA R N. The role of size in trophic niche separation between two groundfish predators in Alaskan waters[J]. Mar Coast Fish, 2021, 13(1): 69-84. doi: 10.1002/mcf2.10141

    [43]

    PARK H J, KWAK J H, LEE Y J, et al. Trophic structures of two contrasting estuarine ecosystems with and without a dike on the temperate coast of Korea as determined by stable isotopes[J]. Estuar Coast, 2020, 43(3): 560-577. doi: 10.1007/s12237-019-00522-4

    [44] 杨蕊, 韩东燕, 高春霞, 等. 浙江南部近海前肛鳗营养生态位变化研究: 基于稳定同位素技术[J]. 生态学报, 2022, 42(23): 9796-9807.
    [45] 黄佳兴, 龚玉艳, 徐姗楠, 等. 南海中西部海域鸢乌贼中型群和微型群的营养生态位[J]. 应用生态学报, 2019, 30(8): 2822-2828.
    [46] 殷宝法, 淮虎银, 张镱锂, 等. 可可西里地区藏羚羊、藏原羚和藏野驴的营养生态位[J]. 应用生态学报, 2007, 18(4): 766-770. doi: 10.3321/j.issn:1001-9332.2007.04.010
    [47] 徐超, 王思凯, 赵峰, 等. 长江口水生动物食物网营养结构及其变化[J]. 水生生物学报, 2019, 43(1): 155-164.
    [48] 曾艳艺, 赖子尼, 杨婉玲, 等. 珠江河口渔业生物稳定同位素营养级分析[J]. 生态学杂志, 2018, 37(1): 194-202.
    [49]

    ZHANG Y L, ZHANG C L, XU B D, et al. Impacts of trophic interactions on the prediction of spatio-temporal distribution of mid-trophic level fishes[J]. Ecol Indic, 2022, 138(2/3): 108826.

    [50]

    AYELEN T, FRANCO C, ANÍBAL G N, et al. Trophic niche partitioning of five skate species of genus Bathyraja in northern and central Patagonia, Argentina[J]. J Fish Biol, 2020, 97(3): 656-667. doi: 10.1111/jfb.14416

    [51] 李振华, 徐开达, 蒋日进, 等. 东海中北部小眼绿鳍鱼的食物组成及摄食习性的体长变化[J]. 中国水产科学, 2011, 18(1): 185-193.
图(6)  /  表(3)
计量
  • 文章访问数:  114
  • HTML全文浏览量:  17
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-24
  • 修回日期:  2024-03-05
  • 录用日期:  2024-04-07
  • 网络出版日期:  2024-04-12
  • 刊出日期:  2024-06-04

目录

/

返回文章
返回