Study on quality differences of cultured Trachinotus ovatus with different breeding size
-
摘要:
规格会影响水产品肌肉质地、氨基酸、脂肪酸等品质指标。为了解不同养殖规格卵形鲳鲹 (Trachinotus ovatus) 营养品质的差异,采集海南昌江棋子湾养殖的不同规格卵形鲳鲹样品,分析比较鱼体的形体指标、基本营养成分、氨基酸、脂肪酸及矿物元素的差异。结果表明,随着养殖卵形鲳鲹规格的增大,其脏体指数、粗脂肪与粗蛋白质增加,水分减少,必需氨基酸与鲜味氨基酸总量呈现上升趋势。3种养殖规格的卵形鲳鲹均检测出18种氨基酸,小、中、大规格的氨基酸总量与必需氨基酸指数分别为139.88、140.68、151.70 mg·g−1与85.08、85.49、89.33。卵形鲳鲹中饱和脂肪酸与单不饱和脂肪酸与多不饱和脂肪酸接近1∶1∶1。中规格的肥满度与不饱和脂肪酸值最高,锌 (Zn) 与铁 (Fe) 的比值最低。Pearson相关性分析结果显示,养殖规格与脏体指数、鲜味氨基酸、氨基酸总量、镁 (Mg) 呈显著正相关性,与水分呈显著负相关性。3种规格的氨基酸与脂肪酸组成均衡,营养价值均较高,研究结果为卵形鲳鲹养殖与加工业的精细化发展提供了数据参考。
Abstract:Breeding size affects quality indexes of aquatic products such as muscle texture, amino acids, fatty acids, etc.. To better understand the quality differences of cultured Trachinotus ovatus with different sizes, we collected T. ovatus cultured in Qizi Bay, Hainan Province as samples, and conducted a comparative analysis on the body morphology indexes, basic nutritional components, amino acids, fatty acids, and mineral elements. The results reveal that as the fish size increased, the viscerosomatic index, crude lipid and crude protein content also increased, but the moisture content decreased. Furthermore, the levels of essential and umami amino acids showed an increasing trend. Three types of cultured T. ovatus contained a total of 18 amino acids. The total amount of amino acids and essential amino acid index of small, medium and large size groups were 139.88, 140.68, 151.70 mg·g−1, and 85.08, 85.49, 89.33, respectively. The ratio of saturated fatty acids to monounsaturated fatty acids to polyunsaturated fatty acids was approximately 1∶1∶1. The medium size group had the highest condition factor and the greatest amount of unsaturated fatty acids, but having the lowest Zn to Fe content ratio. Pearson correlation analysis demonstrates significant positive correlations between fish size and viscerosomatic index, delicious amino acids, total amount of amino acids and Mg, but revealing a significant negative correlation with moisture content. In conclusion, the amino acid and fatty acid composition of cultured T. ovatus with three sizes are well balanced, and they demonstrate relatively high nutritional value. The study provides data references for refined development of T. ovatus culture and processing industry.
-
Keywords:
- Trachinotus ovatus /
- Breeding size /
- Nutrient composition /
- Nutritional quality
-
大黄鱼是我国主要海产经济鱼类之一,其肉质细嫩鲜美、蛋白质高、胆固醇低,治疗贫血、滋补身体而成为海水鱼类中的极品,深受海内外消费者的青睐。随着网箱养殖的成功,大黄鱼的产量也逐年增加,其深加工产品亟待开发。其中新型淡腌黄鱼制品正在形成水产品加工的产业,但其科技含量有待提高。目前,淡腌黄鱼制品普遍采用真空包装并在-10℃以下冷冻贮藏流通的方式,由于是半干制品,实际中经常是在常温或冷藏流通,然而脱离冷冻条件,将给产品品质和安全带来潜在危害,因此,探讨常温和冷藏条件下,淡腌黄鱼制品的品质变化及造成腐败的原因有重要的实际意义[1]。然而,目前对淡腌鱼类的贮藏性,特别是0℃以上温度条件下贮藏性的研究较少,仅王慥等[2]做过一些研究。本文系统地考察了淡腌黄鱼在冷藏温度(5、10、15℃)和常温(25℃)贮藏过程中,微生物和脂肪氧化造成的品质下降情况,从而确定不同温度贮藏下产品的货架期及其主要影响因素,并对货架期终点的指标值进行探讨。对于目前的微生物预报技术预测食品的剩余货架期而言,必须要考虑食品中微生物生存的生态系统[3-5]。因此研究不同贮藏温度下产品中微生物生长的情况及研究腐败的优势菌并对其建模来监控产品品质及预测产品的货架期将有重要的实际意义[6]。
1. 材料与方法
1.1 实验材料
从福建霞浦‘啊~奇人’冷冻食品公司购买的淡腌黄鱼产品,产品均为刚出厂产品,鲜度良好。平均重量为250 g,运回实验室后,分别贮藏于5、10、15、25℃条件下,或冻藏于-30℃冷冻柜中备用。
1.2 实验设计
对保存在不同温度条件下的样品,按一定时间间隔分别检测样品的细菌总数、挥发性盐基氮、过氧化值、感官变化及产品的水分含量、水分活度(aw)、氯化钠(NaCl)含量等。每次检测做平行实验,取平均值。
1.3 方法
1.3.1 挥发性盐基氮(VBN)的测定
将鱼肉绞碎研匀,取样品10 g,用10倍无氨蒸馏水置冰箱中抽提30 min,期间不断振荡,然后过滤,滤液为10%样品浸抽液,置冰箱中供测定用。按GB/T5009.44-2003测定挥发性盐基氮含量。
1.3.2 细菌总数的测定
按GB/T4789.2-2003[7]用稀释平板法测定细菌总数。
1.3.3 POV值的测定
参照文献[2]加以改进,称取黄鱼腹肉2~3 g,加入5 mL醋酸-氯仿混合液(3 : 2),用小型组织捣碎器将鱼肉充分捣碎,后转入充氮的碘量瓶中,用醋酸-氯仿液洗涤容器及捣碎器3次(每次5 mL),合并入碘量瓶,振荡5 min,加入1 mL饱和碘化钾溶液,振匀后置暗处反应2~3 min,取出加30 mL去离子水,用0.01N标准硫代硫酸钠滴定。由消耗的硫代硫酸钠溶液的总体积数,按下式计算POV值。
$$ \operatorname{POV}=\frac{N_{N a_2 \mathrm{~S}_2 O_3} \times V_{N a_2 S_2 O_3}}{W_{\text {样品 }(\mathrm{g})}} \times 1000\left(\mathrm{meq} \cdot \mathrm{~kg}^{-1}\right) $$ 1.3.4 感官评定
感官评定小组由5~6人组成,人员基本固定,在进行正式评定前,小组成员经过一段时期的训练,掌握评分标准。检定时,先对产品的色泽、气味、感官等方面进行检定,然后蒸煮10 min后,对熟品的气味、色泽、口味、质地等方面进行评定。后将评分汇总进行统计处理。评分等级为0~4分。感官等级评定标准见表 1。
表 1 淡腌黄鱼贮藏期间感官变化评分标准Table 1 Sensory changes in lighted salted P.crocer during storage等级
scales色泽
color气味
odor口感
texture外观
appearance0 肉质白色,体表鲜亮,透明 咸香味, 肉质鲜嫩,口感适中,有嚼劲,有鱼香味 肉有弹性,体表干燥清洁 1 肉稍有红色,体表较鲜亮,略不透明 咸香味下降,稍有鱼腥味 肉粘着性下降,有鱼香味,有嚼劲 肉有弹性,体表有少量渗出液, 2 肉色失去光泽,肉发红黄色,透明度下降 鱼腥味加大,略有香味, 嚼劲下降,较有鱼香味 肉中有黑色肉丝有较多渗出液, 3 肉色发乌 有异味,香味较少 有很少嚼劲,无味 肉中有少量白色斑点 4 体表发红褐色 有臭味 肉质嚼起发涩,口中无味, 有大量白点,体表有黏液 2. 结果与讨论
2.1 淡腌黄鱼不同温度下保藏的感官变化随保存时间的变化
淡腌黄鱼在贮藏期间的感官会随保存时间的延长而变化,主要在色泽、气味、肉质、口感等方面,这是由于微生物及化学变化引起的。感官等级评定标准见表 1,4分及4分以上为感官终点,即产品腐败。评定结果见表 2。
表 2 各贮藏温度下淡腌黄鱼达到不同等级的天数Table 2 Days corresponding to the sensory scores of lighted salted P.crocer stored at different temperatured 贮藏温度
T等级scales 1 2 3 4 5℃ 6 11 15 20 10℃ 4 9 12 14 15℃ 3 4.5 6 8 25℃ 2 3.5 4 4.5 从表 1、2看出,各贮藏温度下,在腐败终点时感官变化较明显。淡腌黄鱼在5、10、15、25℃贮藏下,感官评分达到等级3时货架期分别为15、12、6、4 d,而达到等级4时货架期分别为20、14、8、4.5 d。这与王慥等[2]报导的淡腌鲐鱼在5、20℃贮藏货架期分别为15、5 d基本相似。也表明在感官评分达到3时,产品进入初期腐败。同时与鲜黄鱼0、5、10℃贮藏货架期分别为15、8.25、4.5 d相比,淡腌黄鱼的货架期明显延长,这是由于腌制和真空包装抑制了部分微生物活动,从而降低了产品的腐败速度。而产品在贮藏中随着贮藏温度的降低,感官变化明显变慢。温度越高,感官变化越快。5~25℃条件下贮藏淡腌黄鱼产品,其保藏期均较短。
2.2 淡腌黄鱼在不同温度下保藏的VBN随产品保存时间的变化
淡腌黄鱼产品由于其盐分(2.5%)较低,水分含量较高(60%),因此脱离冷链流通将极易导致微生物的繁殖导致产品腐败,挥发性氨基氮(VBN)[6]将随之增高,并且随保存时间的延长而增高。淡腌黄鱼保存的温度越高,挥发性氨基氮值增加也越快;反之,增加较缓。本实验是将产品保存在5、10、15、25℃4个温度下,分别按3、2、1、0.5~0.8 d的时间段测定了其挥发性盐基氮的值,结果见图 1。
由图 1可见,15、25℃保藏的产品VBN值呈直线上升,而5、10℃保藏的产品则在保藏初期出现一个相对的缓慢期,后期VBN值迅速上升。淡腌黄鱼在5℃贮藏中TVB-N变化的缓慢期比10、15、25℃长得多,15、25℃保藏中的TVB-N上升比5、10℃明显快。5℃保藏第17天、10℃保藏第12天TVB-N值才开始明显增加,而15℃保藏第4.5天TVB-N值就开始明显增加。而后期达到初期腐败点30 mg · 100 g-1[2]时,VBN值变化幅度均加大,并且其对应的天数与感官评分所得的天数基本一致。
2.3 淡腌黄鱼在不同温度下的微生物增长随保藏时间的变化
对不同温度下贮藏的淡腌黄鱼进行细菌总数的测定,对微生物生长情况进行汇总,见图 2。
产品在保藏期间其细菌总数随保存时间的延长而增加;保存的温度越低,细菌总数增加的越缓慢。5和25℃保藏,细菌总数达到最大时的天数分别为15、7 d,相差1倍以上。5和10℃相比也有较大的差异,相差大约5 d。这表明淡腌黄鱼产品不能脱离冷链流通,否则将导致微生物的快速增长。由图 2中也可得出4个温度下保藏,得到的最大菌数基本一致,均达到8~9 log10CFU · g-1。达到较高菌数的时间与感官评分及VBN的天数保持一致,这也表明三者之间存在一定的相关性。
2.4 不同温度下POV变化随产品保存时间的变化
在不同贮藏条件下,POV变化情况见图 3。
淡腌黄鱼属脂肪较高的鱼种(脂肪含量大约12%),因此在保藏期间常出现脂肪氧化现象。由图 3中可见,4个温度下保藏,尽管产品均出现峰值但数值不高。实验中25和15℃下贮藏时,在贮藏3~4 d出现峰值,然后迅速下降。而5和10℃下贮藏时,在贮藏1周后出现峰值,然后下降,但较15和25℃缓慢。且5和10℃的峰值相差不大,这也表明降低贮藏温度可延缓氧化的进行。结合上述分析,发现POV值的变化情况与细菌总数、感官评分及VBN的变化保持一致,这表明4者之间有一定的相关性。
3. 小结
淡腌黄鱼产品在15、25℃保藏VBN值呈直线上升,而5、10℃保藏的产品则在保藏初期出现一个相对的缓慢期,后期VBN值迅速上升。5和25℃保藏,细菌总数达到最大时的天数分别为15、7 d,相差1倍以上。5和10℃相比也有较大的差异,相差大约5 d。4个实验温度下,保藏后期达到的最大菌数基本一致,均为8~9 log10CFU · g-1;25和15℃下保藏时,产品的POV在3~4 d出现峰值,然后迅速下降。而5和10℃下保藏时,在保藏1周后出现峰值,然后下降且两者的峰值相差不大。感官评分值与VBN值、POV、细菌总数的变化趋于一致,表明几者之间的相关性很好。淡腌黄鱼5、10、15、25℃条件下保藏,货架期分别为20、14、8、4.5 d。这对目前市场上流通的淡腌黄鱼(aw 0.930~0.950,水分含量60%)来说,要想保持较长的货架期则需要新的工艺条件及保藏技术。建议这种产品可通过稍加重盐分含量,使其在5%左右,也适当降低水分含量,使其保持在50%左右。这样不但延长产品的货架期,而且不影响产品的感官及风味。而消费者只需在食用前轻微脱盐即可。
-
Figure 2. Body morphological indexes of cultured T. ovatus with different breeding sizes. Different letters indicate that there are significant differences among different size groups (P < 0.05), the same in Fig. 3.
表 1 不同养殖规格卵形鲳鲹氨基酸组成 (湿质量)
Table 1 Amino acids contents of cultured T. ovatus with different breeding sizes (Wet mass) mg·g−1
氨基酸
Amino acid小规格
Small size (S)中规格
Medium size (M)大规格
Large size (L)苏氨酸 (Thr)Δ 8.21±0.41a 8.33±0.89a 8.98±1.28a 缬氨酸 (Val)Δ 10.04±0.32a 8.88±1.23a 10.09±1.36a 蛋氨酸 (Met)Δ 5.44±0.60a 5.72±1.09a 5.86±1.45a 异亮氨酸 (Ile)Δ 5.72±0.80a 5.89±0.45a 6.22±0.17a 亮氨酸 (Leu)Δ 9.21±0.86a 9.71±0.45a 10.36±1.42a 苯丙氨酸 (Phe)Δ 6.65±0.90a 6.83±1.38a 6.79±1.28a 赖氨酸 (Lys)Δ 19.47±0.82a 19.68±1.43a 20.55±1.02a 色氨酸 (Trp)Δ 2.64±1.25a 2.72±2.74a 3.13±1.13a 酪氨酸(Tyr)Δ 6.05±0.25a 5.93±0.06a 6.88±0.68a 必需氨基酸 (EAA) 73.42±2.10a 73.70±2.81a 78.86±3.75a 天冬氨酸 (Asp)* 11.34±0.84a 11.91±1.07a 12.93±0.94a 谷氨酸 (Glu)* 16.96±0.16b 17.40±0.14b 19.32±0.27a 甘氨酸 (Gly)* 7.53±1.13a 7.66±0.94a 8.97±0.52a 丙氨酸 (Ala)* 9.12±0.20a 9.31±1.63a 9.60±1.94a 鲜味氨基酸 (DAA) 44.95±1.31b 46.28±2.74ab 50.83±1.55a 丝氨酸 (Ser) 5.07±0.14b 5.31±0.18ab 5.88±0.38a 脯氨酸 (Pro) 5.50±0.62a 4.15±0.90a 4.61±1.44a 组氨酸 (His) 2.77±0.11a 2.85±0.13a 2.89±0.13a 精氨酸 (Arg) 7.10±0.91a 7.23±0.88a 7.56±0.67a 胱氨酸 (Cys) 1.07±0.56a 1.16±0.25a 1.07±0.27a 氨基酸总量 (TAA) 139.88±2.72b 140.68±5.19b 151.70±3.68a EAA/TAA 0.52±0.01a 0.52±0.01a 0.52±0.01a DAA/TAA 0.32±0.01a 0.33±0.01a 0.34±0.01a 注:Δ. 必需氨基酸;*. 鲜味氨基酸。同行不同小写字母表示组间差异显著 (P<0.05),表3、表4同此。Note: Δ. Necessary amino acids; *. Umami amino acids. Different letters within the same row represent significant differences among groups (P<0.05). The same case in Table 3 and Table 4. 表 2 不同养殖规格卵形鲳鲹的氨基酸评分和化学评分
Table 2 Amino acids score and chemical score of cultured T. ovatus with different breeding sizes
mg·g−1 评分
Score规格
Size缬氨酸
Val蛋氨酸+胱氨酸
Met+Cys异亮氨酸
Ile亮氨酸
Leu苏氨酸
Thr赖氨酸
Lys苯丙氨酸+酪氨酸
Phe+ Tyr氨基酸 AAS S 1.12 1.02 0.79② 0.72① 1.13 1.97 1.15 M 0.95 1.04 0.79② 0.74① 1.11 1.93 1.12 L 1.02 0.98 0.78② 0.74① 1.12 1.89 1.12 化学评分 CS S 0.84 0.58① 0.60 0.59② 0.97 1.52 0.77 M 0.72 0.59① 0.59② 0.61 0.95 1.49 0.75 L 0.77 0.56① 0.59② 0.61 0.96 1.46 0.76 注:① 为第一限制氨基酸;② 为第二限制氨基酸。Note: ① represents the first limiting amino acid; ② represents the second limiting amino acid. 表 3 不同养殖规格卵形鲳鲹的脂肪酸组成
Table 3 Fatty acid compositions of cultured T. ovatus with different breeding sizes
% 脂肪酸
Fatty acid小规格
Small size (S)中规格
Medium size (M)大规格
Large size (L)月桂酸 C12:0 0.35±0.12a 0.47±0.11a 0.45±0.12a 肉豆蔻酸 C14:0 2.02±0.52a 2.45±2.00a 2.31±1.99a 十五碳酸 C15:0 0.24±0.06a 0.28±0.30a 0.29±0.24a 棕榈酸 C16:0 21.83±0.95a 24.64±3.74a 22.28±1.99a 十七碳酸C17:0 0.21±0.19a 0.22±0.03a 0.20±0.06a 硬脂酸 C18:0 5.54±1.97a 5.54±1.50a 5.72±2.32a 花生酸 C20:0 0.23±0.14a 0.25±0.13a 0.21±0.03a 二十二碳酸 C22:0 0.34±0.25a 0.37±0.17a 0.32±0.06a 二十三碳酸 C23:0 0.13±0.08a 0.10±0.03a 0.12±0.08a 二十四碳酸 C24:0 0.58±0.74a 0.48±0.12a 0.60±0.48a 饱和脂肪酸 SFA 31.48±1.76a 34.79±4.52a 32.51±3.87a 肉豆蔻油酸 C14:1 n-5 0.03±0.02a 0.04±0.01a 0.05±0.06a 棕榈油酸 C16:1 n-7 0.34±0.09a 0.44±0.42a 0.37±0.17a 顺式-10-十七烯酸 C17:1 n-7 0.24±0.19a 0.32±0.43a 0.23±0.07a 油酸C18:1 n-9c 27.22±9.60a 31.71±2.51a 29.27±1.17a 反油酸 C18:1 n-9t 2.80±0.26a 3.62±1.96a 3.25±1.57a 芥酸 C22:1 n-9 0.64±0.22a 0.75±0.47a 0.70±0.49a 二十四碳一烯酸 C24:1 n-9 0.73±0.47a 0.57±0.36a 0.43±0.51a 单不饱和脂肪酸 MUFA 32.00±8.81a 37.46±4.40a 34.31±1.59a γ-亚麻酸 C18:3 n-6 0.18±0.21a 0.19±0.07a 0.19±0.19a 亚油酸 C18:2 n-6 24.74±6.29a 27.29±9.65a 22.51±8.23a α-亚麻酸 C18:3 n-3 1.60±1.03a 1.47±0.57a 1.97±1.79a 花生四烯酸 C20:4 n-6 0.90±0.80a 0.82±0.10a 0.73±0.24a 二十碳五烯酸 C20:5 n-3 (EPA) 0.80±0.43a 0.77±0.31a 0.62±0.33a 8,11,14-二十碳三烯酸 C20:3 n-6 0.39±0.09a 0.48±0.15a 0.46±0.21a 顺式-11,14,17-二十碳三烯酸 C20:3 n-3 0.49±0.43a 0.40±0.18a 0.56±0.38a 二十二碳六烯酸 C22:6 n-3 (DHA) 7.19±3.08a 6.09±2.57a 5.95±0.80a 二十二碳二烯酸 C22:2 n-6 0.24±0.14a 0.24±0.11a 0.24±0.19a 多不饱和脂肪酸 PUFA 36.52±8.71a 37.77±8.85a 33.22±5.43a EPA +DHA 7.98±3.50a 6.86±2.32a 6.57±0.59a 表 4 不同养殖规格卵形鲳鲹的矿物元素组成 (湿质量)
Table 4 Minerals of cultured T. ovatus with different breeding sizes (Wet mass) mg·kg−1
元素
Element小规格
Small size (S)中规格
Medium size (M)大规格
Large size (L)钠 Na 4.47±0.24a 3.67±0.27ab 4.35±0.32b 镁 Mg 4.24±0.11c 4.81±0.16b 5.24±0.21a 钾 K 37.77±2.47a 27.25±0.90b 25.65±2.24b 钙 Ca 0.35±0.01a 0.34±0.01a 0.35±0.01a 锰 Mn <0.10 <0.10 <0.10 铁 Fe 0.26±0.02b 0.68±0.03a 0.26±0.00b 铜 Cu 0.01±0.00c 0.03±0.00b 0.02±0.00a 锌 Zn 0.09±0.03ab 0.08±0.00b 1.25±0.00a Table 1 Amino acids contents of cultured T. ovatus with different breeding sizes (Wet mass)
Table 2 Amino acids score and chemical score of cultured T. ovatus with different breeding sizes
Table 3 Fatty acid compositions of cultured T. ovatus with different breeding sizes
Table 4 Minerals of cultured T. ovatus with different breeding sizes (Wet mass)
-
[1] 张进伟, 胡晓, 陈胜军, 等. 腌制风干过程中卵形鲳鲹鱼肉性质、蛋白质氧化及游离氨基酸的变化[J]. 食品科学, 2022, 43(18): 272-278. [2] TUTMAN P, GLAVI N, KOZUL V, et al. Preliminary information on feeding and growth of pompano, Trachinotus ovatus (Linnaeus, 1758) (Pisces; Carangidae) in captivity[J]. Aquac Int, 2004, 12(4): 387-393.
[3] ZHANG D C, GUO L, GUO H Y, et al. Chromosome-level genome assembly of golden pompano (Trachinotus ovatus) in the family Carangidae[J]. Sci Data, 2019, 6: 216. doi: 10.1038/s41597-019-0238-8
[4] WANG F, HAN H, WANG Y, et al. Growth, feed utilization and body composition of juvenile golden pompano Trachinotus ovatus fed at different dietary protein and lipid levels[J]. Aquac Nutr, 2013, 19(3): 360-367. doi: 10.1111/j.1365-2095.2012.00964.x
[5] 农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2023中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2023: 22. [6] 刘建村, 王桦. 广东省金鲳鱼产业发展及对策探究[J]. 广东蚕业, 2023, 57(7): 107-110. doi: 10.3969/j.issn.2095-1205.2023.07.32 [7] 韦玲静, 叶香尘, 甘宝江, 等. 不同规格苏氏圆腹𩷶生长性状和肌肉质构特性分析[J]. 水产养殖, 2020, 41(8): 22-25. doi: 10.3969/j.issn.1004-2091.2020.08.005 [8] 王琳, 赵玲, 齐祥明, 等. 不同规格秋刀鱼肌肉的营养成分分析与品质评价[J]. 食品安全质量检测学报, 2022, 13(21): 6815-6820. [9] 吴杨, 杨铿, 黄小林, 等. 饲料中添加丁酸梭菌对卵形鲳鲹幼鱼生长性能和肠道菌群的影响[J]. 南方水产科学, 2022, 18(3): 155-162. [10] ZHOU J Q, DONG X P, KONG B H, et al. Effects of magnetic field-assisted immersion freezing at different magnetic field intensities on the muscle quality of golden pompano (Trachinotus ovatus)[J]. Food Chem, 2023, 407: 135092. doi: 10.1016/j.foodchem.2022.135092
[11] 李温蓉, 田明礼, 安玥琦, 等. 池塘养殖和大湖养殖对“华海1号”团头鲂鱼肉品质的影响[J]. 水产学报, 2022, 46(7): 1220-1234. [12] 黄卉, 魏涯, 李来好, 等. 季节变化对杂交鲟鱼肉营养成分的影响[J]. 食品工业科技, 2021, 42(7): 360-365. [13] PELLETT P L, YOUNG V R. Nutritional evaluation of protein foods[M]. Tokyo: United National University, 1980: 26-29.
[14] FOLCH J M S, LEES M M, STANLEY G H S. A simple method for the isolation and purification of total lipids from animal tissues[J]. J Sci Food Agric, 1957, 22(1): 24-36.
[15] 韩迎雪, 林婉玲, 杨少玲, 等. 15种淡水鱼肌肉脂肪含量及脂肪酸组成分析[J]. 食品工业科技, 2018, 39(20): 217-222. [16] 刘芳芳, 杨少玲, 林婉玲, 等. 七种海水鱼背部肌肉营养成分及矿物元素分布与健康评价[J]. 水产学报, 2019, 43(11): 2413-2423. [17] 桑永明, 杨瑶, 尹航, 等. 饲料蛋白水平对方正银鲫幼鱼生长、体成分、肝脏生化指标和肠道消化酶活性的影响[J]. 水生生物学报, 2018, 42(4): 736-743. doi: 10.7541/2018.090 [18] 程小飞, 李传武, 邹利, 等. 饲料蛋白水平对湘华鲮幼鱼生长性能、体成分及血清生化指标的影响[J]. 水生生物学报, 2020, 44(2): 346-356. [19] 赵国庆, 陈俊霖, 张衡, 等. 西北太平洋公海日本鲭生物学特征研究[J]. 海洋渔业, 2023, 45(4): 385-402. [20] 吴燕燕, 陶文斌, 李来好, 等. 宁德地区养殖大黄鱼形态组织结构与品质特性[J]. 水产学报, 2019, 43(6): 1472-1482. [21] 刘胜男, 王善宇, 曹荣, 等. 不同规格玉筋鱼的营养分析与评价[J]. 渔业科学进展, 2022, 43(1): 188-194. [22] 杨欣怡, 张凤枰, 赵鑫, 等. 网箱海养卵形鲳鲹饲料与肌肉品质评价[J]. 食品科学, 2015, 36(21): 243-248. [23] 熊添, 吴燕燕, 李来好, 等. 卵形鲳鲹肌肉原料特性及食用品质的分析与评价[J]. 食品科学, 2019, 40(17): 104-112. [24] 赵玲, 胡梦月, 曹荣, 等. 蓝鳍金枪鱼不同部位肌肉的营养与主要风味分析[J]. 渔业科学进展, 2023, 44(1): 219-227. [25] 张红霞, 张加玲, 尚晓虹, 等. 中国黄海海域部分海鱼脂肪酸含量分析[J]. 卫生研究, 2014, 43(3): 423-429. [26] 苗晓庆, 尚珊, 秦宁波, 等. 3种海水鱼鱼排营养成分分析及评价[J]. 食品研究与开发, 2023, 44(12): 160-165. [27] 杨立, 张波涛, 邵凤娟. 巢湖太湖新银鱼营养成分分析及营养评价[J]. 科学养鱼, 2018(8): 72-74. [28] YANG H, RAHMAN M M, LI X Q, et al. Dietary leucine requirement of juvenile largemouth bass (Micropterus salmoides) based on growth, nutrient utilization and growth-related gene analyses[J]. Aquaculture, 2022, 555: 738207. doi: 10.1016/j.aquaculture.2022.738207
[29] 张昌颖, 李亮, 李昌甫, 等. 生物化学[M]. 2版. 北京: 人民卫生出版社, 1988: 305, 561. [30] MAHOUGLO B H, CHIMENE A R Y, WILFRIED Z, et al. Nutritional composition of fatty acids and amino acids of the fermented Scomberomorus tritor in benin[J]. Sci J Chem, 2019, 7(1): 19-25. doi: 10.11648/j.sjc.20190701.14
[31] 李正中. 花粉、灵芝与珍珠中必需氨基酸的定量测定与分析比较[J]. 氨基酸杂志, 1988(4): 41-43. [32] SHI L P, SONG F B, XING S Y, et al. The muscle nutritional components analysis of golden pompano (Trachinotus blochii) in different mariculture area, growth stages, and genders[J]. Front Nutr, 2023, 10: 1148687. doi: 10.3389/fnut.2023.1148687
[33] 平泽禹, 郑尧, 郭全友, 等. 不同规格的南极磷虾营养品质差异研究[J]. 食品与发酵科技, 2022, 58(3): 82-91. [34] 李忠莹, 丁红秀, 张露, 等. 不同生境来源的草鱼肌肉营养品质比较[J]. 食品与发酵工业, 2021, 47(17): 133-139. [35] YAMAMOTO H J, IKEDA K, NEGISHI H, et al. Serum lipid effects of a monounsaturated (palmitoleic) fatty acid-rich diet based on macadamia nuts in healthy, young Japanese women[J]. Clin Exp Pharmacol, 2004, 31: S37-S38.
[36] 王萍, 张银波, 江木兰. 多不饱和脂肪酸的研究进展[J]. 中国油脂, 2008, 33(12): 42-46. [37] 马彦平, 石磊, 何源. 微量元素铁、锰、硼、锌、铜、钼营养与人体健康[J]. 肥料与健康, 2020, 47(5): 12-17. doi: 10.3969/j.issn.2096-7047.2020.05.004 [38] 尤宏争, 李文雯, 夏苏东, 等. 斑石鲷含肉率与肌肉营养成分分析[J]. 大连海洋大学学报, 2016, 31(2): 174-179. [39] 周聃. 两种大洋性金枪鱼差异蛋白组学的研究[D]. 杭州: 浙江工商大学, 2016: 17. [40] FRANKE B M, HALDIMANN N M, GREMAUD G, et al. Element signature analysis: its validation as a tool for geographic authentication of the origin of dried beef and poultry meat[J]. Eur Food Res Technol, 2008, 227(3): 701-708. doi: 10.1007/s00217-007-0776-8
[1] ZHANG J W, HU X, CHEN S J, et al. Changes in physicochemical properties, protein oxidation and free amino acids of Trachinotus ovatus during curing and air-drying[J]. Food Science, 2022, 43(18): 272-278. (in Chinese) [2] TUTMAN P, GLAVI N, KOZUL V, et al. Preliminary information on feeding and growth of pompano, Trachinotus ovatus (Linnaeus, 1758)(Pisces; Carangidae) in captivity[J]. Aquac Int, 2004, 12(4): 387-393. [3] ZHANG D C, GUO L, GUO H Y, et al. Chromosome-level genome assembly of golden pompano (Trachinotus ovatus) in the family Carangidae[J]. Sci Data, 2019, 6: 216. [4] WANG F, HAN H, WANG Y, et al. Growth, feed utilization and body composition of juvenile golden pompano Trachinotus ovatus fed at different dietary protein and lipid levels[J]. Aquac Nutr, 2013, 19(3): 360-367. [5] Ministry of Agriculture and Rural Fisheries Administration, National Aquatic Technology Extension Station, Chinese Society of Fisheries. 2023 China Fishery Statistical Yearbook[M]. Beijing: China Agriculture Press, 2023: 22. (in Chinese) [6] LIU J C, WANG H. Research on the development and countermeasures of Trachinotus ovatus industry in Guangdong Province[J]. Guangdong Sericulture, 2023, 57(7): 107-110. (in Chinese) [7] WEI L J, YE X C, GAN B J, et al. Analysis of the growth characteristics and muscle texture characteristics of Pangasius sutchi in different sizes[J]. Journal of Aquaculture, 2020, 41(8): 22-25. (in Chinese) [8] WANG L, ZHAO L, QI X M, et al. Nutritional composition analysis and quality evaluation of muscles of different specifications of Cololabis saira[J]. Journal of Food Safety and Quality, 2022, 13(21): 6815-6820. (in Chinese) [9] WU Y, YANG K, HUANG X L, et al. Effects of dietary Clostridium butyricum supplementation on growth performance and intestinal flora of juvenile Trachinotus ovatus[J]. South China Fisheries Science, 2022, 18(3): 155-162. (in Chinese) [10] ZHOU J Q, DONG X P, KONG B H, et al. Effects of magnetic field-assisted immersion freezing at different magnetic field intensities on the muscle quality of golden pompano (Trachinotus ovatus)[J]. Food Chem, 2023, 407: 135092. [11] LI W R, TIAN M L, AN Y Q, et al. Effects of pond culture and lake culture on fish quality of Megalobrama amblycephala "Huahai No. 1"[J]. Journal of Fisheries of China, 2022, 46(7): 1220-1234. (in Chinese) [12] HUANG H, WEI Y, LI L H, et al. Effects of seasonal variation on nutrient composition of hybrid sturgeon (Huso dauricus♀×Acipenser schrenckii♂)[J]. Science and Technology of Food Industry, 2021, 42(7): 360-365. (in Chinese) [13] PELLETT P L, YOUNG V R. Nutritional evaluation of protein foods[M]. Tokyo: United National University, 1980: 26-29. [14] FOLCH J M S, LEES M M, STANLEY G H S. A simple method for the isolation and purification of total lipids from animal tissues[J]. J Sci Food Agric, 1957, 22(1): 24-36. [15] HAN Y X, LIN W L, YANG S L, et al. Analysis of fat content and fatty acid composition in muscles of 15 species of freshwater fish[J]. Science and Technology of Food Industry, 2018, 39(20): 217-222. (in Chinese) [16] LIU F F, YANG S L, LIN W L, et al. Nutritional components and mineral element distribution and health evaluation of back muscle of seven marine fishes[J]. Journal of Fisheries of China, 2019, 43(11): 2413-2423. (in Chinese) [17] SANG Y M, YANG Y, YIN H, et al. Effects of dietary protein levels on growth performance, body composition, liver biochemical indices, and digestive enzyme activities of juvenile Chinese crucian carp[J]. Acta Hydrobiologica Sinica, 2018, 42(4): 736-743. (in Chinese) [18] CHENG X F, LI C W, ZOU L, et al. Effects of dietary protein levels on growth performance, body composition and serum biochemical indices of juvenile Sinilabeo decorus Tungting (Nichols)[J]. Acta Hydrobiologica Sinica, 2020, 44(2): 346-356. (in Chinese) [19] ZHAO G Q, CHEN J L, ZHANG H, et al. Biological characteristics of Scomber japonicus in the high seas of the Northwest Pacific[J]. Marine Fisheries, 2023, 45(4): 385-402. (in Chinese) [20] WU Y Y, TAO W B, LI L H, et al. Morphological structure and quality characteristics of cultured Larimichthys crocea in Ningde[J]. Journal of Fisheries of China, 2019, 43(6): 1472-1482. (in Chinese) [21] LIU S N, WANG S Y, CAO R, et al. Nutritional composition analysis and quality evaluation of different sizes of Ammodytes personatus[J]. Progress in Fishery Sciences, 2022, 43(1): 188-194. (in Chinese) [22] YANG X Y, ZHANG F P, ZHAO X, et al. Evaluation of nutritional composition and quality of feed and muscle of sea cage cultured Trachinotus ovatus[J]. Food Science, 2015, 36(21): 243-248. (in Chinese) [23] XIONG T, WU Y Y, LI L H, et al. Material characteristics and eating quality of Trachinotus ovatus muscle[J]. Food Science, 2019, 40(17): 104-112. (in Chinese) [24] ZHAO L, HU M Y, CAO R, et al. Analysis of nutrition and major flavor of different muscle parts of Thunnus thynnus[J]. Progress in Fishery Sciences, 2023, 44(1): 219-227. (in Chinese) [25] ZHANG H X, ZHANG J L, SHANG X H, et al. Fatty acids content of common marine fish from Yellow Sea of China[J]. Journal of Hygiene Research, 2014, 43(3): 423-429. (in Chinese) [26] MIAO X Q, SHANG S, QIN N B, et al. Analysis and evaluation of nutrient composition of three seawater fish steaks [J]. Food Research and Development, 2023, 44(12): 160-165. (in Chinese) [27] YANG L, ZHANG B T, SHAO F J. Analysis on nutrition component and nutritional evaluation of Neosalanx taihuensis in Chaohu lake[J]. Scientific Fish Farming, 2018(8): 72-74. (in Chinese) [28] YANG H, RAHMAN M M, LI X Q, et al. Dietary leucine requirement of juvenile largemouth bass (Micropterus salmoides) based on growth, nutrient utilization and growth-related gene analyses[J]. Aquaculture, 2022, 555: 738207. [29] ZHANG C Y, LI L, LI C F, et al. Biochemistry[M]. The 2nd edition. Beijing: People's Medical Publishing House, 1988: 305, 561. (in Chinese) [30] MAHOUGLO B H, CHIMENE A R Y, WILFRIED Z, et al. Nutritional composition of fatty acids and amino acids of the fermented Scomberomorus tritor in benin[J]. Sci J Chem, 2019, 7(1): 19-25. [31] LI Z Z. Quantitative determination and analysis of essential amino acids in pollen, Ganoderma lucidum and pearl[J]. Amino Acids & Biotic Resources, 1988(4): 41-43. [32] SHI L P, SONG F B, XING S Y, et al. The muscle nutritional components analysis of golden pompano (Trachinotus blochii) in different mariculture area, growth stages, and genders[J]. Front Nutr, 2023, 10: 1148687. [33] PING Z Y, ZHENG Y, GUO Q Y, et al. Study on the difference in nutritional quality of different sizes of Antarctic krill[J]. Food and Fermentation Science & Technology, 2022, 58(3): 82-91. (in Chinese) [34] LI Z Y, DING H X, ZHANG L, et al. Comparative analysis on the nutritional quality of grass carp muscle from different habitats[J]. Food and Fermentation Industries, 2021, 47(17): 133-139. (in Chinese) [35] YAMAMOTO H J, IKEDA K, NEGISHI H, et al. Serum lipid effects of a monounsaturated (palmitoleic) fatty acid-rich diet based on macadamia nuts in healthy, young Japanese women[J]. Clin Exp Pharmacol, 2004, 31: S37-S38. [36] WANG P, ZHANG Y B, JIANG M L. Research advance in polyunsaturated fatty acid[J]. China Oils and Fats, 2008, 33(12): 42-46. (in Chinese) [37] MA Y P, SHI L, HE Y. Trace elements iron, manganese, boron, zinc, copper, molybdenum and human health[J]. Fertilizer & Health, 2020, 47(5): 12-17. (in Chinese) [38] YOU H Z, LI W W, XIA S D, et al. Dressing rate and nutrient components in muscle of spotted knifejaw Oplegnathus punctatus[J]. Journal of Dalian Ocean University, 2016, 31(2): 174-179. (in Chinese) [39] ZHOU D. Research on the difference proteomics of two kinds of ocean tuna[D]. Hangzhou: Zhejiang Gongshang University, 2016: 17. (in Chinese) [40] FRANKE B M, HALDIMANN N M, GREMAUD G, et al. Element signature analysis: its validation as a tool for geographic authentication of the origin of dried beef and poultry meat[J]. Eur Food Res Technol, 2008, 227(3): 701-708.