中西太平洋海山特征对延绳钓渔业和围网渔业黄鳍金枪鱼CPUE的影响

Effects of seamount characteristics in Central and Western Pacific Ocean on CPUEs of yellowfin tuna (Thunnus albacares) in longline and purse seine fisheries

  • 摘要: 海山是海底重要的生物栖息地类型之一,是研究海洋生物多样性的热点区域。黄鳍金枪鱼 (Thunnus albacares) 广泛分布于中西太平洋,具有极高的生态和经济价值,然而,鲜有关于海山及其相关特征对黄鳍金枪鱼资源丰度和分布影响的研究。基于2010—2021年中西太平洋渔业委员会 (Western and Central Pacific Fisheries Commission, WCPFC) 汇总的延绳钓和围网渔业数据结合海山特征数据,采用广义加性模型 (Generalized additive model, GAM) 分析两种不同捕捞方式的黄鳍金枪鱼单位捕捞努力量渔获量 (Catch per unit effort, CPUE) 与海山相关特征之间的关系。结果表明,中西太平洋两种渔业方式的黄鳍金枪鱼渔获量主要来源于海山区域,海山特征对两种渔业黄鳍金枪鱼的CPUE均产生了极显著性影响 (P<0.001)。在延绳钓渔业中,较高的CPUE出现在山顶深度、粗糙度、底面积和海山密度较小、坡度较缓的区域;而在围网渔业中,较高的CPUE则出现在粗糙度较小、山顶深度较大、底面积较大、较陡峭且密集的海山区域。研究探讨了中西太平洋海山特征对黄鳍金枪鱼不同群体的影响机制,为今后进一步探索黄鳍金枪鱼种群分布和资源丰度变化与海洋环境的关系提供了参考与新思路。

     

    Abstract: Seamounts are one of the important habitat types on the seafloor and a hotspot for marine biodiversity. Yellowfin tuna (Thunnus albacares) is widely distributed in the Western and Central Pacific Ocean (WCPO) with high ecological and economic value. However, there are few studies on the mechanisms by which seamounts and their associated features affect the abundance and distribution of yellowfin tuna resources. In this study, we used longline and purse seine fishery data summarized by the Western and Central Pacific Fisheries Commission (WCPFC) from 2010–2021, in addition with seamount characteristics data, to analyze the impacts of two different types of seamounts on the abundance and distribution of yellowfin tuna resources using a generalized additive model (GAM). GAM was utilized to examine the connection between catch per unit effort (CPUE) and seamounts characteristics of yellowfin tuna in two different fishing methods. The results show that in the WCPO, the yellowfin tuna catches in the two fisheries mainly originated from seamount areas, and seamount characteristics had a highly significant effect on CPUEs of yellowfin tuna in both fisheries (P<0.001). In the longline fishery, higher CPUE occurred in seamount areas with less peak depth, roughness, base area, and seamount density as well as gentler slopes, whereas higher CPUE occurred in the purse seine fishery in seamount areas with less roughness, greater peak depth, greater base area, as well as steeper and denser slopes. In summary, we explore the mechanism of the influence of WCPO seamount characteristics on different populations of yellowfin tuna, which provides new ideas and references for further exploring the relationship between the distribution of yellowfin tuna populations and changes in resource abundance with the marine environment in the future.

     

/

返回文章
返回