基于耳石微化学的长江禁捕前后鄱阳湖都昌水域刀鲚群体动态变化研究

姜涛, 杨健, 刘洪波, 陈修报, 薛竣仁

姜涛, 杨健, 刘洪波, 陈修报, 薛竣仁. 基于耳石微化学的长江禁捕前后鄱阳湖都昌水域刀鲚群体动态变化研究[J]. 南方水产科学, 2024, 20(3): 18-26. DOI: 10.12131/20230173
引用本文: 姜涛, 杨健, 刘洪波, 陈修报, 薛竣仁. 基于耳石微化学的长江禁捕前后鄱阳湖都昌水域刀鲚群体动态变化研究[J]. 南方水产科学, 2024, 20(3): 18-26. DOI: 10.12131/20230173
JIANG Tao, YANG Jian, LIU Hongbo, CHEN Xiubao, XUE Junren. Study on resource dynamics of Coilia nasus from Duchang waters in Poyang Lake based on otolith microchemistry before and after implementation of Yangtze River fishing ban[J]. South China Fisheries Science, 2024, 20(3): 18-26. DOI: 10.12131/20230173
Citation: JIANG Tao, YANG Jian, LIU Hongbo, CHEN Xiubao, XUE Junren. Study on resource dynamics of Coilia nasus from Duchang waters in Poyang Lake based on otolith microchemistry before and after implementation of Yangtze River fishing ban[J]. South China Fisheries Science, 2024, 20(3): 18-26. DOI: 10.12131/20230173

基于耳石微化学的长江禁捕前后鄱阳湖都昌水域刀鲚群体动态变化研究

基金项目: 国家重点研发计划项目 (2022YFF0608203);国家自然科学基金面上项目 (31372533)
详细信息
    作者简介:

    姜 涛 (1984—),男,副研究员,博士,研究方向为渔业微化学。E-mail: jiangt@ffrc.cn

    通讯作者:

    杨 健(1964—),男,研究员,博士,研究方向为渔业微化学。E-mail: jiany@ffrc.cn

  • 中图分类号: S 931

Study on resource dynamics of Coilia nasus from Duchang waters in Poyang Lake based on otolith microchemistry before and after implementation of Yangtze River fishing ban

  • 摘要:

    为了解长江禁捕对鄱阳湖都昌南部水域刀鲚 (Coilia nasus) 资源的影响,利用电子探针微区分析 (EPMA) 分别对该水域禁捕前 (2014年) 和禁捕后 (2019年) 刀鲚的洄游生态学特征开展了研究。结果显示,所有刀鲚个体耳石自核心至边缘均依次具有锶钙比 (Sr/Ca×1000)<3、3~7以及<3的生境履历特征,表现为典型的溯河洄游履历。禁捕后刀鲚数量 (17尾) 明显多于禁捕前 (2尾),体长 [(28.1±2.3) cm]也长于禁捕前 [(21.3±4.7) cm],且长于禁捕前的已有报道。此外,刀鲚耳石边缘低值区呈现多样化特征 [2014年(125.0±63.6) μm、80~170 μm,2019年(173.5±73.6) μm、20~290 μm],表现出多个上溯群体在该水域混栖的现象。结合该水域多数个体性腺尚未成熟,且都昌南部水域 (大矶山至和合乡水域) 是刀鲚群体自江湖通道出入鄱阳湖中部和南部湖区及通湖河流(如饶河、信江等)的必经之路,得出都昌水域主要行使刀鲚洄游通道的生态功能,亟须加强保护。

    Abstract:

    In order to understand the effect of fishing ban on Coilia nasus resources in the southern Duchang waters in the Poyang Lake, we conducted an electron probe microanalysis (EPMA) to study the migratory ecological characteristics of C. nasus in the waters before (2014) and after (2019) fishing ban. The results show that the otolith of all individuals had three significant fluctuation phases of Sr/Ca ratios of <3, 3–7 and <3 from the core to the edge, indicating a typical anadromous migration history. The number of samples (17 tails) after fishing ban was significantly higher than that before the ban (2 tails), and the body length of the former [(28.1±2.3) cm] was longer than that of the latter [(21.3±4.7) cm], which was also longer than that of the former reported before fishing ban. In addition, the length of low-value area on the otolith edge showed diverse characteristics [(125.0±63.6) μm, 80–170 μm in 2014, (173.5±73.6) μm, 20–290 μm in 2019], which suggests the phenomenon of mixed habitat of multiple upstream groups in the local waters. Considering that most of the individual gonads in the area were not mature, and that the southern Duchang waters (Dajishan to Hehe Township) are the only way for the population to enter and exit the central and southern waters of the Poyang Lake and the rivers connecting the lake (Such as Raohe River and Xinjiang River), it is strongly suggested that corresponding effective protection of this key habitat should be enhanced since the area mainly plays the ecological function of migration channel for C. nasus.

  • 三峡库区位于长江上游宜昌至重庆江段,为峡谷河道型水库,长600 km,面积约1 080 km2,总库容达393×108 m3。三峡水库建成之前,该区域地貌是典型的峡谷景观,包括瞿塘峡、巫峡和西陵峡,河道两侧岩石峭立,悬崖陡峭,河道狭窄,水流湍急[1],这一特殊的地理位置和多样的自然环境使三峡库区在历史上拥有丰富的鱼类资源。在20世纪80年代前,库区不同江段内有鱼类140~200种,其中包括40多种珍稀特有鱼类,如中华鲟 (Acipenser sinensis)、白鲟 (Psephurus gladius) 和胭脂鱼 (Myxocyprinus asiaticus) 等国家重点保护的水生野生动物[2]。因此,三峡库区在长江水生生物保护中具有重要地位。然而,自库区蓄水以来,随着水位上升、水深增加以及人类活动 (如捕捞、航运和工程建设) 的增加,导致渔业资源急剧衰退,鱼类群落呈现低龄化和小型化趋势[3-4]

    鱼类群落结构变化是生态系统健康状况和环境变化对水生生物影响的一个重要指标。水体的物理和化学特性的季节变化 (如水温、盐度和营养物质浓度等) 影响鱼类群落结构和生物多样性[5-6]。在温带湖泊中,鱼类通常在春季栖息于浅水区域,而在夏季,由于水体热分层的形成,部分鱼类会迁移到深水区,而表层和上层鱼类则继续在浅水区活动[7]。以肯尼亚的淡水湖肯亚博利湖为例,水温和营养盐水平的季节性变化会驱动浮游生物群落的变化,进而影响鱼类种群的分布和丰度[8]。鄱阳湖的水位随季节性降水和水文变化呈周期性涨落,在洪水期提供广泛的浅水栖息地,促进群落多样化,而枯水期水位下降导致栖息地减少,鱼类迁移至深水区,引发群落的空间和时间动态变化[9]。此外,库区环境中水流和水深的变化显著影响鱼类在不同区域的空间分布。库首江段因其靠近大坝,水体呈现湖泊化特征,营养物质的积累使静水性鱼类逐渐占据主导地位,而喜流水性鱼类则向库尾区域迁移[10]

    为恢复长江流域的水生生物资源,自2021年起,长江全流域实施了“十年禁渔”政策[11]。本研究基于2018年对三峡库区不同江段夏季和秋季鱼类资源的调查,分析了禁捕前不同江段的优势种分布及其环境影响因素,旨在为后续评估禁捕效果提供科学依据。

    2018年7—8月 (夏季) 和10—11月 (秋季) 在三峡库区木洞、涪陵、云阳和巫山4个站位开展鱼类资源调查 (表1) 。

    表  1  三峡库区调查站位
    Table  1  Sampling stations in Three Gorges Reservoir
    采样断面
    Transect
    离坝距离
    Distance from dam/km
    中心经度
    Central longitude
    中心纬度
    Central latitude
    夏季水深
    Summer water depth/m
    秋季水深
    Autumn water depth/m
    库区位置
    Reservoir location
    木洞 Mudong 569 106.832 803°E 29.580 415°N 29 44 库尾
    涪陵 Fuling 487 107.376 025°E 29.719 089°N 51 66 库中
    云阳 Yunyang 247 108.703 019°E 30.926 619°N 61 76 库中
    巫山 Wushan 123 109.873 626°E 31.069 974°N 109 124 库首
    下载: 导出CSV 
    | 显示表格

    鱼类资源调查通过雇佣渔民和利用渔船在站位上下游20 km范围内进行主动捕捞作业。每个江段夏季和秋季各调查30船次,每个站位调查网具均为:流刺网 (网目尺寸:6、8、10、12 cm)、地笼 (网目尺寸:1 cm) 和挂罾 (网目尺寸:1 cm),每个站位调查网具数量一致。将每个季节同一站位内的30船次所有渔获物数据合并,计算该季节该站位各物种的丰度和生物量。调查单船作业时间为12 h,每船通常配有2名作业人员。所有渔获物进行冰鲜保存,运回实验室分析。根据《中国淡水鱼类检索》[12]、《中国动物志·硬骨鱼纲·鲤形目 (中卷)》[13] 和《中国动物志·硬骨鱼纲·鲇形目》[14]等文献资料进行鉴定,并测量全长、体长 (精确到0.1 cm) 和体质量 (精确到0.1 g)。

    调查过程中同步监测水深、水温、溶解氧、叶绿素a (Chl-a) 和透明度。水深数据由回声探测仪 (BioSonics DT-X,美国) 获取;水温、溶解氧和叶绿素a含量通过YSI多参数水质检测仪 (美国) 测量;透明度采用塞氏盘法测量。离坝距离为采样中心点至大坝的直线距离。

    采用Shannon-Wiener多样性指数 (H') 和Pielou均匀度指数 (J') 对鱼类群落多样性进行表征,运用Kruskal-Wallis检验来分析不同江段间物种多样性差异。Shannon-Wiener指数是衡量物种多样性的一个重要工具,其值越高,表明群落的多样性越丰富;Pielou均匀度指数则用来评估物种个体数分布的均匀程度。多样性指数的计算涵盖了调查采集到的所有鱼类种类,包括外来种,以全面反映库区鱼类群落结构。计算公式为:

    $$ H{\text{'}} {\mathrm{=}} {\text{−}} {\sum} _{i=1}^{S}{P}_{i} {\mathrm{ln}} {P}_{i} $$ (1)
    $$ {P}_{i}{\mathrm{=}}{n}_{i}/N$$ (2)
    $$ J{\text{'}} {\mathrm{=}}H{\text{'}}/\mathrm{l}\mathrm{n}S $$ (3)

    式中:Pi为第i种鱼类占总尾数的比例;$ {n}_{i} $ 为特定站位第i种鱼类总尾数;N为特定站位所有鱼类总尾数;S为特定站位鱼类种类数。

    采用百分比相对重要性指数 (Index of relative importance, IRI) 进行衡量,将IRI≥10的物种定义为优势种[15]。计算公式为:

    $$ \mathrm{I}\mathrm{R}\mathrm{I}{\mathrm{=}}\left(\frac{({W}_{i}{\mathrm{+}}{N}_{i})\times {F}_{i}}{\sum _{i=1}^{n}({W}_{i}{\mathrm{+}}{N}_{i})\times {F}_{i}}\right)\times 100{\text{%}}   $$ (4)

    式中:Ni表示每个江段30船次中某物种的尾数占总尾数的百分比;Wi表示每个江段30船次中某物种的质量占总质量的百分比;Fi表示该物种在该江段30船次采样中的出现频率。

    ANOSIM (Analysis of similarities) 是一种非参数统计方法,用于测试两个或多个组之间的显著性差异,常用于生态学研究中群落组成的比较。ANOSIM的r值范围为 −1~1,r值越接近1,表示组间差异越显著,接近0则表明组间无显著性差异。

    ABC (Abundance-biomass comparison) 曲线分析是一种用于评估生态系统健康和群落结构的方法,通过比较物种个体数量和生物量来判断环境干扰程度。在ABC曲线分析中,W值用于量化生态系统受干扰程度。计算公式为:

    $$ W{\mathrm{=}}\sum _{i{\mathrm{=}}1}^{S}\frac{({W}_{i}{\text{−}}{N}_{i})}{50(S{\text{−}}1)}   $$ (5)

    式中:S为物种数。当W值为正时,生物量曲线高于数量曲线,表明群落结构较为稳定、受干扰程度低;W值为负则表明数量曲线高于生物量曲线,反映出生态系统可能受到显著干扰。

    通过Kendall's Tau相关性分析计算优势种鱼类相对丰度 (每个江段30船次中某物种的尾数与总尾数比值) 与各环境变量 (水深、水温、叶绿素a、透明度、溶解氧和离坝距离) 之间的相关系数,以评估环境因素对鱼类丰度的影响方向和程度。此外,采用冗余分析 (Redundancy analysis, RDA) 对优势种鱼类相对丰度与环境因子的关系进行排序。在分析前,对物种丰度数据和环境因子数据进行z-score标准化处理,以确保不同量纲的变量具有可比性。

    采用R (版本4.4) 软件进行统计分析:ANOSIM、RDA分析使用“vegan”包,ABC曲线绘制使用“ggplot2”包,Kendall's Tau相关性分析使用“stats”和“ComplexHeatmap”包。

    三峡库区4个江段共调查到鱼类94种,隶属于9目21科 (附录A,详见http://dx.doi.org/10.12131/20240199的资源附件),其中外来种13种,长江中上游特有鱼类15种。鲤形目种类数量最多,有64种,占比为58.09%;其次为鲇形目16种,占比为17.02%;鲈形目8种,占比为8.51%;鲱形目、鲟形目、鲑形目、颌针鱼目、合鳃鱼目、脂鲤目各1种。科级水平上,鲤科鱼类56种,占比最高,为56.38%;鲿科次之,有10种,占比为10.64%。季节上,夏、秋季分别调查到鱼类85、75种,两季均以木洞站位调查到的鱼类种类数最多,分别为67、57种,涪陵两季种类分别为46、54种,云阳两季种类分别为61、51种,巫山两季种类分别为46、37种,整体上夏季种类数高于秋季。空间上,木洞、涪陵、云阳和巫山鱼类种类分别为75、64、71和48种。ANOSIM分析显示,不同江段之间的鱼类群落结构存在一定差异 (r=0.437 5, p<0.05)。夏季和秋季鱼类群落结构差异较小 (r=0.093 7, p>0.05)。

    图1所示,Shannon-Wiener多样性指数夏季均值为2.31,变动范围为2.21~2.41;秋季均值为2.21,变动范围为1.53~2.66。Pielou均匀度指数夏季均值为0.58,变动范围为0.54~0.63;秋季均值为0.56,变动范围为0.39~0.66。木洞和涪陵物种多样性整体较云阳和巫山高,Kruskal-Wallis检验结果显示两季物种多样性差异不显著 (p>0.05)。

    图  1  三峡库区不同江段夏季和秋季鱼类物种多样性
    Fig. 1  Fish species diversity at different sections of Three Gorges Reservoir in summer and autumn

    结果显示,木洞江段夏季鱼类的优势种主要为蛇鮈 (Saurogobio dabryi)、银鮈 (Squalidus argentatus)、铜鱼 (Coreius heterodon) 和光泽黄颡鱼 (Pelteobagrus nitidus),IRI分别为20.72、20.55、20.14和10.19;秋季的优势种主要为圆筒吻鮈 (Rhinogobio cylindricus) 、鲤 (Cyprinus carpio) 和蛇鮈,IRI分别为39.81、13.96和10.43。涪陵江段夏季的鱼类优势种主要为鲢 (Hypophthalmichthys molitrix) 和光泽黄颡鱼,IRI分别为48.36和16.24;秋季的优势种主要为鲢、光泽黄颡鱼、圆筒吻鮈和铜鱼,IRI分别为32.91、13.40、12.57和10.12。云阳江段夏季鱼类的优势种主要为光泽黄颡鱼、银鮈、鲢、贝氏䱗 (Hemiculter bleekeri)、蛇鮈和短颌鲚 (Coilia brachygnathus) ,IRI分别为42.27、12.86、12.8、11.37、11.26和10.64;秋季主要优势种为光泽黄颡鱼、鲤、银鮈和蛇鮈,IRI分别为57.99、37.47、32.36和12.98。巫山江段夏季鱼类的主要优势种为似鳊 (Pseudobrama simoni) 和瓦氏黄颡鱼 (P. vachellii),IRI分别为12.69和10.95;秋季的主要优势种为光泽黄颡鱼,IRI为20.66 (表2)。

    表  2  三峡库区不同江段夏季和秋季鱼类优势种相对重要性指数
    Table  2  Relative importance indexes of dominant fish species at different sections of Three Gorges Reservoir in summer and autumn
    采样断面
    Transect
    夏季 Summer
    物种名
    Species
    数量百分比
    Percentage of number/%
    质量百分比
    Percentage of mass/%
    相对重要性指数
    IRI
    木洞
    Mudong
    蛇鮈 Saurogobio dabryi 28.33 4.39 20.72
    银鮈 Squalidus argentatus 26.90 3.93 20.55
    铜鱼 Coreius heterodon 4.24 27.56 20.14
    光泽黄颡鱼 Pelteobagrus nitidus 10.68 5.41 10.19
    涪陵
    Fuling
    Hypophthalmichthys molitrix 1.70 58.74 48.36
    光泽黄颡鱼 Pelteobagrus nitidus 24.48 4.18 16.24
    云阳
    Yunyang
    光泽黄颡鱼 Pelteobagrus nitidus 37.81 7.48 42.27
    银鮈 Squalidus argentatus 11.97 1.81 12.86
    Hypophthalmichthys molitrix 0.43 25.17 12.80
    贝氏䱗 Hemiculter bleekeri 9.65 1.73 11.37
    蛇鮈Saurogobio dabryi 9.10 2.55 11.26
    短颌鲚 Coilia brachygnathus 6.80 4.21 10.64
    巫山
    Wushan
    似鳊 Pseudobrama simoni 28.17 6.44 12.69
    瓦氏黄颡鱼 P. vachellii 6.76 6.93 10.95
    采样断面
    Transect
    秋季 Autumn
    物种名
    Species
    数量百分比
    Percentage of number/%
    质量百分比
    Percentage of mass/%
    相对重要性指数
    IRI
    木洞
    Mudong
    圆筒吻鮈 Rhinogobio cylindricus 19.27 30.49 39.81
    Cyprinus carpio 0.82 25.36 13.96
    蛇鮈 Saurogobio dabryi 11.48 3.42 10.43
    涪陵
    Fuling
    Hypophthalmichthys molitrix 2.08 44.94 32.91
    光泽黄颡鱼 Pelteobagrus nitidus 25.02 3.70 13.40
    圆筒吻鮈 Rhinogobio cylindricus 9.87 7.27 12.57
    铜鱼 Coreius heterodon 5.59 12.27 10.12
    云阳
    Yunyang
    光泽黄颡鱼 Pelteobagrus nitidus 48.31 9.68 57.99
    Cyprinus carpio 1.99 41.24 37.47
    银鮈 Squalidus argentatus 30.55 4.11 32.36
    蛇鮈 Saurogobio dabryi 9.09 4.81 12.98
    巫山
    Wushan
    光泽黄颡鱼 Pelteobagrus nitidus 51.96 4.38 20.66
    下载: 导出CSV 
    | 显示表格

    ABC曲线分析结果显示 (图2),在木洞、云阳和巫山3个站位,鱼类群落的丰度曲线整体位于生物量曲线之上,对应的W值分别为 −0.022、 −0.078和 −0.225,这表明三峡库区从上游到下游,鱼类群落结构受到了不同程度的干扰,同时群落中的优势种以小型鱼类为主。而在涪陵站位,生物量曲线始终高于丰度曲线,W值为0.040,说明该区域的鱼类群落结构较为稳定,且群落中优势种包含大型个体鱼类。

    图  2  三峡库区不同江段鱼类群落ABC曲线
    注:a. 木洞江段;b. 涪陵江段;c. 云阳江段;d. 巫山江段。
    Fig. 2  ABC curves of fish assemblages at different sections of Three Gorges Reservoir
    Note: a. Mudong; b. Fuling; c. Yunyang; d. Wushan.

    Kendall's Tau相关性分析结果显示 (图3),蛇鮈和圆筒吻鮈丰度与离坝距离显著正相关 (p<0.05),与水深显著负相关;光泽黄颡鱼丰度与离坝距离和溶解氧含量显著负相关 (p<0.05);翘嘴鲌 (Culter alburnus) 和短颌鲚丰度与离坝距离显著负相关 (p<0.05),与水深显著正相关 (p<0.05);贝氏䱗与水体透明度显著负相关 (p<0.05);似鳊丰度与水温显著正相关 (p<0.05)。

    图  3  三峡库区不同江段主要鱼类优势种与环境因子的Kendall's Tau相关性分析
    注:红色和蓝色分别表示正相关和负相关,颜色越深表示相关性越强。* 表示统计学上具显著的相关性 (p<0.05)。
    Fig. 3  Kendall's Tau correlation analysis of primary dominant fish species and environmental variables in Three Gorges Reservoir
    Note: Red and blue colors represent positive and negative correlations, respectively, with darker shades representing stronger correlations. * . Statistically significant correlations (p<0.05).

    三峡库区重庆段鱼类优势种与主要环境因子的RDA排序结果见图4。前两轴鱼类优势种与环境因子相关性的累积百分比为63.18%,表明前两轴能解释较多的环境因子对鱼类优势种的影响。根据RDA结果,似鳊丰度主要受水温和叶绿素a含量正向影响,圆筒吻鮈丰度受离坝距离正向影响,光泽黄颡鱼丰度则受透明度的正向影响。

    图  4  三峡库区优势种鱼类与环境因子的RDA双序图
    注:s1. 蛇鮈;s2. 贝氏䱗;s3. 似鳊;s4. 圆筒吻鮈;s5. 光泽黄颡鱼;s6. 短颌鲚;s7. 翘嘴鲌。SD. 透明度;DIS. 离坝距离;DEEP. 水深;WT. 水温;DO. 溶解氧;Chl-a. 叶绿素a
    Fig. 4  Biplot of RDA ordination of dominant fish species and environmental variables in Three Gorges Reservoir area
    Note: s1. S. dabryi; s2. H. bleekeri; s3. P. simoni; s4. R. cylindricus; s5. P. nitidus; s6. C. brachygnathus; s7. C. alburnus; SD. Transparency; DIS. Distance from the dam; DEEP. Water depth; WT. Water temperature; DO. Dissolved oxygen; Chl-a. Chlorophyll a.

    三峡库区自2003年起分阶段蓄水,2010年水位升至设计高程175 m[16]。蓄水前的1988—1989年库区内调查到鱼类148种[17]。蓄水后,2005—2006年调查到108种[18],2010—2012年减少至87种[16]。本次研究共调查到鱼类146种,其中新记录20种。对比蓄水前后数据,未发现种类为38种,新增种类为36种。三峡大坝的建设阻隔鱼类洄游,导致白鲟和暗色东方鲀 (Takifugu obscurus) 等洄游性鱼类消失[16]。库区的形成引起水生环境改变,如水深增加、水流减缓及富营养化,不利于浅水、流水偏好及水质敏感的鱼类 [如瓣结鱼 (Folifer brevifilis)、华缨鱼 (Sinocrossocheilus guizhouensis)、墨头鱼 (Garra lamta)、鯮 (Luciobrama macrocephalus) 和鳤 (Ochetobius elongatus)] [2,19-20]。采样条件和网具选择也影响了调查结果,不同网具对鱼类种类和大小有选择性[21-22]。新增鱼类主要是外来物种,通常作为经济鱼类引入,其中一些广适性鱼类 (如短颌鲚) 在库区内迅速繁殖并形成稳定种群[23-25]

    由此可见,库区蓄水后水生环境的变化不仅导致了特定种类的消失和外来种的扩散,还加剧了各江段鱼类群落结构的差异。本研究结果表明,三峡库区不同江段的鱼类群落结构和生物多样性在空间上存在显著性差异,而夏季与秋季的群落结构差异不显著。这种空间差异主要与水文条件如水温、水深和流速的变化有关[10,26]。库尾区域流速更快,栖息环境更多样化,更适合喜流水鱼类生存繁殖[27];而库首江段靠近大坝,水流缓慢,水深增加,水体呈现湖泊化特征,使静水性鱼类逐渐占据主导地位[10]。相比之下,库区夏季和秋季水温和食物供应的稳定性可能导致季节间的群落结构相对一致[28]。库区的水体热容量大,对外界气温变化的响应较慢,使得温度呈现滞后性[29]。这不仅能缓冲温度的季节波动,还促进浮游生物的繁殖,使夏季和秋季饵料资源充足[30],减少鱼类在不同栖息地的竞争压力,从而维持群落结构的稳定性。

    三峡库区的木洞、云阳和巫山江段,以中小型鱼类为优势种,而在涪陵江段,鲢在夏季和秋季始终占据主导地位。尽管鲢个体可达较大尺寸,但群落中主要为幼鱼,符合已有小型化趋势的研究结果[3,31]。通过ABC曲线分析,发现各江段鱼类群落结构均受到一定程度的干扰,可能来源于水体污染、栖息地破坏及过度捕捞等[32-33],这些因素导致大型鱼类生物量减少,小型鱼类逐渐占据主导地位[20]

    不同江段的环境因子 (如离坝距离、水温、透明度、溶解氧和叶绿素a) 显著影响了优势鱼类的丰度,其中离坝距离和水深对优势种的影响尤为明显。研究显示,库区水体流速随离坝距离的增加而加快[3],因此,喜流水并偏好较浅水区的蛇鮈和圆筒吻鮈的丰度会随离坝距离的增加和水深的减少而提高[34-36]。相对而言,光泽黄颡鱼、翘嘴鲌和短颌鲚更适应缓流水或静水环境,常栖息于湖泊和河流的中下层水域,其丰度则随离坝距离的缩小和水深的增加而升高[25,37-39]。在透明度较低的水体中,贝氏䱗因丰富的浮游生物和有机质资源而更为常见,而较为浑浊的环境也有助于其躲避天敌[40-41]。此外,似鳊以浮游生物为食,而叶绿素a的含量与浮游植物的丰富度呈正相关[42],因此叶绿素a含量的增加也往往会促进似鳊丰度提升。在夏季和秋季等温暖季节,随着水温升高,似鳊的捕食和繁殖活动更为活跃[43-44],推动了其丰度跟随水温的变化而增长。

    本研究分析了三峡库区不同江段夏季和秋季鱼类群落结构及其环境影响因子,但仅基于1年两季的调查数据,而且传统捕捞方法可能低估或遗漏某些物种,难以准确反映三峡库区蓄水后鱼类群落结构和生物多样性的变化。未来建议持续开展三峡库区生物资源监测,进一步加强监测新技术和新方法的应用,科学评估三峡库区禁捕效果。

  • 图  1   都昌刀鲚2014年 (□) 和2019年 (△) 采样站位

    Figure  1.   Sampling sites of C. nasus caught in Duchang waters in 2014 (□) and 2019 (△)

    图  2   鄱阳湖都昌水域刀鲚耳石锶含量面分布特征以及锶钙比特征

    A. 2014DCCN锶含量面分布;B. 2019DCCN锶含量面分布;a. 2014DCCN锶钙比;b. 2019DCCN锶钙比;a、b中虚线分别为锶钙比3和7,黑色实线为锶钙比平均线,红色实线为锶钙比平均线的趋势转换线,蓝色区域为对应标准差,灰色点为测量点。

    Figure  2.   Characteristics of Sr concentration mapping and Sr/Ca ratio fluctuation in otolith of C. nasus caught from Duchang Waters in Poyang Lake

    A. Sr concentration mapping of 2014DCCN; B. Sr concentration mapping of 2019DCCN; a. Sr/Ca ratio of 2014DCCN; b. Sr/Ca ratio of 2019DCCN; dot line. Sr/Ca ratio of 3 and 7; black line. Mean; red line. Shift; blue region. Standard deviation; grey points. Measurement points.

    图  3   鄱阳湖水域刀鲚洄游履历模式

    Figure  3.   Migration patterns of C. nasus in Poyang Lake

    表  1   鄱阳湖都昌水域刀鲚标本信息

    Table  1   Sampling details of C. nasus caught from Duchang waters in Poyang Lake

    标本
    Sample
    采样时间
    Sampling date
    全长
    Total length/cm
    体长
    Body length/cm
    体质量
    Body mass/g
    头长
    Head length/mm
    14DCCN012014/7/2219.718.024.530.1
    14DCCN022014/7/2226.924.660.740.1
    19DCCN012019/9/730.427.569.943.8
    19DCCN022019/9/734.131.199.248.8
    19DCCN032019/9/727.024.844.538.0
    19DCCN042019/9/727.625.344.039.9
    19DCCN052019/7/128.726.541.340.3
    19DCCN062019/7/134.632.395.649.6
    19DCCN072019/7/132.029.092.446.8
    19DCCN082019/7/134.631.998.750.0
    19DCCN092019/7/132.129.585.545.9
    19DCCN102019/7/132.129.786.746.2
    19DCCN112019/7/127.725.645.339.5
    19DCCN122019/7/130.828.772.539.9
    19DCCN132019/7/130.528.370.744.4
    19DCCN142019/7/127.525.643.336.7
    19DCCN152019/7/129.427.351.141.0
    19DCCN162019/7/129.227.178.641.1
    19DCCN172019/10/2429.027.071.739.1
    标本
    Sample
    采样时间
    Sampling date
    上颌骨长
    Supermaxilla
    length/mm
    上颌骨/头长
    Length ratio of
    supermaxilla to head
    年龄
    Age
    性成熟度
    Gonad maturity
    14DCCN012014/7/2236.91.232♀ III
    14DCCN022014/7/2248.01.203♀ IV
    19DCCN012019/9/748.41.103♀ III
    19DCCN022019/9/749.31.014♀ III
    19DCCN032019/9/744.31.173♂ III
    19DCCN042019/9/744.71.123♂ II
    19DCCN052019/7/143.31.073♂ II
    19DCCN062019/7/153.41.084♂ III
    19DCCN072019/7/154.11.164♂ III
    19DCCN082019/7/154.71.094♀ III
    19DCCN092019/7/150.81.113♀ III
    19DCCN102019/7/154.61.183♀ II
    19DCCN112019/7/143.31.103♂ II
    19DCCN122019/7/151.21.284♂ II
    19DCCN132019/7/146.41.053♂ II
    19DCCN142019/7/141.51.133♂ III
    19DCCN152019/7/145.81.123♂ II
    19DCCN162019/7/145.51.114♂ III
    19DCCN172019/10/2443.21.103♂ II
    下载: 导出CSV

    表  2   鄱阳湖都昌水域刀鲚耳石锶钙比变化

    Table  2   Fluctuation of Sr/Ca ratios in otolith of C. nasus caught from Duchang waters in Poyang Lake

    标本
    Sample
    变化阶段
    Significant
    fluctuation phase
    距核心距离
    Distance from
    core/μm
    测定点数
    Detected
    point
    锶钙比
    Sr/Ca×1 000
    1 0~680 69 1.45±0.79
    14DCCN01 2 680~1 410 74 4.76±0.94
    3 1 410~1 570 17 1.95±0.71
    1 0~370 38 1.67±0.92
    2 370~690 33 3.47±0.94
    14DCCN02 3 690~820 14 2.21±0.60
    4 820~1 620 81 3.53±1.38
    5 1620~1 690 8 1.13±0.88
    1 0~690 70 1.79±0.73
    19DCCN01 2 690~2 050 137 4.54±1.04
    3 2 050~2 140 10 1.28±0.71
    1 0~720 73 1.41±0.73
    19DCCN02 2 720~2 120 141 4.95±1.15
    3 2 120~2 250 14 1.37±0.71
    1 0~1080 109 1.32±0.66
    19DCCN03 2 1 080~1 800 73 4.00±0.90
    3 1 800~1 970 18 1.92±0.68
    1 0~920 93 1.32±0.65
    19DCCN04 2 920~1 700 79 4.62±1.08
    3 1 700~1 960 27 1.15±0.71
    1 0~980 99 1.32±0.71
    19DCCN05 2 980~1 850 88 3.58±0.94
    3 1 850~2 020 18 1.21±0.61
    19DCCN06 1 0~900 91 1.44±0.75
    2 900~1 800 91 4.34±0.88
    3 1 800~2 340 55 3.45±0.81
    4 2 340~2 530 20 1.85±1.17
    1 0~810 82 1.57±0.58
    19DCCN07 2 810~2 310 151 4.67±1.21
    3 2 310~2 430 13 1.29±0.60
    1 0~770 78 1.48±0.60
    2 770~1 860 110 4.45±1.04
    19DCCN08 3 1 860~2 030 18 1.30±0.82
    4 2 030~2 530 51 4.10±0.72
    5 2 530~2 620 10 1.18±0.65
    1 0~970 98 1.17±0.69
    19DCCN09 2 970~2 010 105 3.75±0.85
    3 2 010~2 190 19 1.05±0.78
    1 0~640 65 1.26±0.70
    19DCCN10 2 640~1 890 126 3.19±1.04
    3 1 890~2 080 20 0.78±0.77
    1 0~1 000 101 1.91±0.66
    19DCCN11 2 1 000~2 130 114 5.62±1.11
    3 2 130~2 230 11 1.57±0.67
    1 0~720 73 1.20±0.75
    19DCCN12 2 720~1 690 98 3.50±0.92
    3 1 690~1 850 17 1.54±1.03
    1 0~1 050 106 1.05±0.61
    19DCCN13 2 1 050~1 960 92 3.91±1.07
    3 1 960~2 240 29 1 00±0.76
    1 0~630 64 1.59±0.79
    19DCCN14 2 630~1 760 114 3.63±0.86
    3 1 760~1 880 13 1.16±0.61
    1 0~520 53 1.87±0.57
    19DCCN15 2 520~1 680 117 5.06±1.32
    3 1 680~1 950 28 1.21±0.43
    1 0~840 85 1.21±0.69
    19DCCN16 2 840~2 020 119 4.59±0.95
    3 2 020~2 030 2 1.35±0.61
    1 0~1 100 111 1.08±0.66
    19DCCN17 2 1 100~2 020 93 3.59±0.74
    3 2 020~2 270 26 1.05±0.86
    下载: 导出CSV
  • [1] 郭弘艺, 张旭光, 唐文乔, 等. 长江靖江段刀鲚捕捞量的时间变化及相关环境因子分析[J]. 长江流域资源与环境, 2016, 25(12): 1850-1859.
    [2]

    LI Y X, XIE S G, LI Z J, et al. Gonad development of an anadromous fish Coilia ectenes (Engraulidae) in lower reach of Yangtze River, China[J]. Fish Sci, 2007, 73: 1224-1230. doi: 10.1111/j.1444-2906.2007.01459.x

    [3] 姜涛, 周昕期, 刘洪波, 等. 鄱阳湖刀鲚耳石的两种微化学特征[J]. 水产学报, 2013, 37(2): 239-244.
    [4]

    JIANG T, YANG J, LU M J, et al. Discovery of a spawning area for anadromous Coilia nasus Temminck et Schlegel, 1846 in Poyang Lake, China[J]. J Appl Ichthyol, 2017, 33: 189-192. doi: 10.1111/jai.13293

    [5] 姜涛, 杨健, 轩中亚, 等. 长江禁渔对鄱阳湖溯河洄游型刀鲚资源恢复效果初报[J]. 渔业科学进展, 2022, 43(1): 24-30.
    [6] 卢明杰, 姜涛, 刘洪波, 等. 信江发现溯河洄游型刀鲚的实证研究[J]. 中国水产科学, 2015, 22(5): 978-985.
    [7] 杨一帆, 姜涛, 高小平, 等. 赣江发现溯河洄游型刀鲚 (Coilia nasus)[J]. 湖泊科学, 2021, 33(5): 1595-1606.
    [8] 姜涛, 杨健, 刘洪波, 等. 鄱阳湖饶河口溯河洄游型刀鲚研究[J]. 科学养鱼, 2022, 4: 72-73.
    [9] 姜涛, 刘洪波, 轩中亚, 等. 长江中下游流域刀鲚 (Coilia nasus) 生态表型的划分[J]. 湖泊科学, 2020, 32(2): 518-527.
    [10]

    CHOWDHURY M, BLUST R. Strontium[C]//WOOD C, FARRELL A, BRAUNER C. Homeostasis and toxicology of non-essential metals. San Diego, USA: Elsevier Academic Press Inc, 2012: 351-390.

    [11]

    YANG J, JIANG T, LIU H B. Are there habitat salinity markers of the Sr: Ca ratio in the otolith of wild diadromous fishes? A literature survey[J]. Ichthyol Res, 2012, 58: 291-294.

    [12]

    HEIM-BALLEW H, MOODY K, BLUM M, et al. Migratory flexibility in native Hawaiian amphidromous fishes[J]. J Fish Biol, 2020, 96: 456-468. doi: 10.1111/jfb.14224

    [13]

    HÜSSY K, LIMBURG K E, DE PONTUAL H, et al. Trace element patterns in otoliths: the role of biomineralization[J]. Rev Fish Sci Aquac, 2020, 1: 1-33.

    [14]

    YANG J, ARAI T, LIU H B, et al. Reconstructing habitat use of Coilia mystus and Coilia ectenes of the Yangtze River estuary, and of Coilia ectenes of Taihu Lake, based on otolith strontium and calcium[J]. J Fish Biol, 2006, 69: 1120-1135. doi: 10.1111/j.1095-8649.2006.01186.x

    [15]

    CAMPANA S, THORROLD S. Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations?[J]. Can J Fish Aquat Sci, 2001, 58: 30-38. doi: 10.1139/f00-177

    [16]

    SIH T L, WILLIAMS A J, HU Y, et al. High-resolution otolith elemental signatures in eteline snappers from valuable deepwater tropical fisheries[J]. J Fish Biol, 2022, 100: 1475-1496. doi: 10.1111/jfb.15059

    [17]

    ROHTLA M, MATETSKI L, TAAL I, et al. Quantifying an overlooked aspect of partial migration using otolith microchemistry[J]. J Fish Biol, 2020, 97(5): 1582-1585. doi: 10.1111/jfb.14522

    [18]

    PAN X D, YE Z J, XU B D, et al. Population connectivity in a highly migratory fish, Japanese Spanish mackerel (Scomberomorus niphonius), along the Chinese coast, implications from otolith chemistry[J]. Fish Res, 2020, 231: 105690. doi: 10.1016/j.fishres.2020.105690

    [19]

    WU R, LI J C, ZHANG C, et al. Fine-scale variability in otolith chemistry: application to the life history analysis of Pacific cod (Gadus microcephalus) in the Yellow Sea[J]. Estuar Coast Shelf S, 2021, 257: 107392. doi: 10.1016/j.ecss.2021.107392

    [20]

    XIONG Y, YANG J, JIANG T, et al. Temporal stability in the otolith Sr: Ca ratio of the yellow croaker, Larimichthys polyactis (Actinopterygii, Perciformes, Sciaenidae), from the southern Yellow Sea[J]. Acta Ichthyol Piscat, 2021, 51: 59-65. doi: 10.3897/aiep.51.63245

    [21]

    LI Y, CHEN J H, FENG G P, et al. Otolith microchemistry assessment: evidence of migratory Coilia nasus of Yangtze River living in the Shengsi Sea area[J]. Fishes, 2022, 7: 172. doi: 10.3390/fishes7040172

    [22]

    SOKTA L, JIANG T, LIU H B, et al. Loss of Coilia nasus habitats in Chinese freshwater lakes: an otolith microchemistry assessment[J]. Heliyon, 2020, 6: e04571. doi: 10.1016/j.heliyon.2020.e04571

    [23] 刘洪波, 姜涛, 轩中亚, 等. 日本有明海及周边水域刀鲚耳石微化学研究[J]. 水产科学, 2020, 39(4): 500-507.
    [24]

    ITAKURA H, YOKOUCHI K, KANAZAWA T, et al. Diverse downstream migration patterns of the anadromous Japanese grenadier anchovy Coilia nasus in the Chikugo River estuary and Ariake Sea, Japan[J]. Reg Stud Mar Sci, 2020, 39: 101436.

    [25]

    XUAN Z Y, JIANG T, LIU H B, et al. Otolith microchemical evidence revealing multiple spawning site origination of the anadromous tapertail anchovy (Coilia nasus) in the Changjiang (Yangtze) River Estuary[J]. Acta Ecol Sin. 2023, 42(1): 120-130.

    [26] 姜涛, 刘洪波, 卢明杰, 等. 几种前处理方法所获刀鲚(Coilia nasus)耳石年轮的效果比较[J]. 渔业科学进展, 2016, 37(2): 62-67.
    [27] 姜涛, 刘洪波, 轩中亚, 等. 刀鲚胸鳍条和耳石微化学“指纹”相似性研究[J]. 渔业科学进展, 2021, 42(1): 100-107.
    [28]

    HU Y H, JIANG T, LIU H B, et al. Otolith microchemistry reveals life history and habitat use of Coilia nasus from the Dayang River of China[J]. Fishes, 2022, 7: 306. doi: 10.3390/fishes7060306

    [29] 朱栋良. 长江刀鱼的天然繁殖与胚胎发育观察[J]. 水产科技情报, 1992, 19(2): 49-51.
    [30] 钱新娥, 黄春根, 王亚民, 等. 鄱阳湖渔业资源现状及其环境监测[J]. 水生生物学报, 2002, 26(6): 612-617.
    [31] 张敏莹, 徐东坡, 刘凯, 等. 长江下游刀鲚生物学及最大持续产量研究[J]. 长江流域资源与环境, 2005, 14(6): 694-698.
    [32] 高小平, 吴金明, 孔赤平, 等. 鄱阳湖刀鲚繁殖群体生物学特征[J]. 水产学杂志, 2022, 35(2): 42-46.
    [33] 吴金明, 李乐康, 程佩琳, 等. 鄱阳湖刀鲚的鉴定与资源动态研究[J]. 中国水产科学, 2021, 28(6): 743-750.
    [34] 贺刚, 方春林, 吴斌, 等. 鄱阳湖刀鲚生殖群体特征及状况分析[J]. 水生态学杂志, 2017, 38(3): 83-88.
    [35] 袁传宓. 刀鲚的生殖洄游[J]. 生物学通报, 1987, 12: 1-3.
    [36]

    JIANG T, LIU H B, LU M J, et al. A possible connectivity among estuarine tapertail anchovy (Coilia nasus) populations in the Yangtze River, Yellow Sea, and Poyang Lake[J]. Estuar Coast, 2016, 39: 1762-1768. doi: 10.1007/s12237-016-0107-z

  • 期刊类型引用(5)

    1. 王淑艳,张琥顺,宋大德,杨帆,李国东,熊瑛,仲霞铭. 黄鮟鱇作为生物采集器的指示作用:以辐射沙脊群为例. 生态学杂志. 2025(01): 139-145 . 百度学术
    2. 淡雅婷,刘必林,叶旭昌,刘志良. 基于综合科学调查的中西太平洋菲律宾以东公海渔业资源初步分析. 海洋渔业. 2025(02): 188-201 . 百度学术
    3. 高华晨,宋敏菲,贡艺,陈新军. 长吻帆蜥鱼作为生物采集器探究海洋中深层生物微塑料污染特征. 上海海洋大学学报. 2024(04): 996-1004 . 百度学术
    4. 崔钰莹,林琴琴,朱江峰,陈作志. 热带东太平洋中上层食物网结构指数分析. 上海海洋大学学报. 2022(06): 1533-1541 . 百度学术
    5. 欧利国,顾心雨,王冰妍,刘必林. 6种大型海洋掠食性鱼类胃含物角质颚分类研究. 渔业科学进展. 2022(04): 105-115 . 百度学术

    其他类型引用(2)

推荐阅读
低盐水体so4 2−/cl− 胁迫下凡纳滨对虾生长、肝胰腺与鳃组织结构及酶活力比较
贺铮 et al., 南方水产科学, 2025
大泷六线鱼胃排空规律和摄食消化酶活力变化研究
汪峰 et al., 南方水产科学, 2024
基于轴向特征校准和时间段网络的鱼群摄食强度分类模型研究
徐波 et al., 南方水产科学, 2024
植物乳植杆菌通过抑制蛋白水解改善罗非鱼发酵鱼糜凝胶强度
崔巧燕 et al., 南方水产科学, 2024
虾夷扇贝响应高静水压胁迫的转录组分析
范琛革 et al., 大连海洋大学学报, 2024
低氧胁迫对四角蛤蜊存活、抗氧化指标和呼吸相关酶的影响
于帅 et al., 水产科学, 2024
Systematical investigation on anti-fatigue function and underlying mechanism of high fischer ratio oligopeptides from antarctic krill on exercise-induced fatigue in mice
Mao, Sha-Yi et al., MARINE DRUGS, 2024
Evaluation of the growth-inducing efficacy of various bacillus species on the salt-stressed tomato (lycopersicon esculentum mill.)
Patani, Anil et al., FRONTIERS IN PLANT SCIENCE, 2023
Pexidartinib (plx3397) through restoring hippocampal synaptic plasticity ameliorates social isolation-induced mood disorders
INTERNATIONAL IMMUNOPHARMACOLOGY
Freezing-induced redistribution of fe(ii) species within clay minerals for nonlinear variations in hydroxyl radical yield and contaminant degradation
JOURNAL OF EARTH SCIENCE, 2025
Powered by
图(3)  /  表(2)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  35
  • PDF下载量:  35
  • 被引次数: 7
出版历程
  • 收稿日期:  2023-09-08
  • 修回日期:  2023-11-13
  • 录用日期:  2023-12-24
  • 网络出版日期:  2024-02-25
  • 刊出日期:  2024-06-04

目录

/

返回文章
返回