牙鲆mstn基因SNPs位点多态性与生长性状的关联分析

李兵部, 王桂兴, 张晓彦, 刘玉峰, 何忠伟, 曹巍, 任建功, 任玉芹, 张祎桐, 伞利择, 王玉芬, 侯吉伦

李兵部, 王桂兴, 张晓彦, 刘玉峰, 何忠伟, 曹巍, 任建功, 任玉芹, 张祎桐, 伞利择, 王玉芬, 侯吉伦. 牙鲆mstn基因SNPs位点多态性与生长性状的关联分析[J]. 南方水产科学, 2024, 20(2): 119-128. DOI: 10.12131/20230165
引用本文: 李兵部, 王桂兴, 张晓彦, 刘玉峰, 何忠伟, 曹巍, 任建功, 任玉芹, 张祎桐, 伞利择, 王玉芬, 侯吉伦. 牙鲆mstn基因SNPs位点多态性与生长性状的关联分析[J]. 南方水产科学, 2024, 20(2): 119-128. DOI: 10.12131/20230165
LI Bingbu, WANG Guixing, ZHANG Xiaoyan, LIU Yufeng, HE Zhongwei, CAO Wei, REN Jiangong, REN Yuqin, ZHANG Yitong, SAN Lize, WANG Yufen, HOU Jilun. Association analysis of SNPs polymorphisms in mstn gene of Paralichthys olivaceus with growth traits[J]. South China Fisheries Science, 2024, 20(2): 119-128. DOI: 10.12131/20230165
Citation: LI Bingbu, WANG Guixing, ZHANG Xiaoyan, LIU Yufeng, HE Zhongwei, CAO Wei, REN Jiangong, REN Yuqin, ZHANG Yitong, SAN Lize, WANG Yufen, HOU Jilun. Association analysis of SNPs polymorphisms in mstn gene of Paralichthys olivaceus with growth traits[J]. South China Fisheries Science, 2024, 20(2): 119-128. DOI: 10.12131/20230165

牙鲆mstn基因SNPs位点多态性与生长性状的关联分析

基金项目: 河北省自然科学基金面上项目 (C2022107003);中国水产科学研究院中央级公益性科研院所基本科研业务费专项资金资助 (2023-TD43);国家现代农业产业技术体系 (CARS-47)
详细信息
    作者简介:

    李兵部 (1997—),男,研究实习员,硕士,研究方向为水产遗传育种。E-mail: libb@bces.ac.cn

    通讯作者:

    王桂兴 (1982—),男,副研究员,博士,研究方向为水产遗传育种。E-mail: wanggx@bces.ac.cn

  • 中图分类号: S 917.4

Association analysis of SNPs polymorphisms in mstn gene of Paralichthys olivaceus with growth traits

  • 摘要:

    为研究牙鲆 (Paralichthys olivaceus) 肌肉生长抑制基因 (mstn) 多态性,开发其分子辅助育种新标记,采用重测序方法对120尾牙鲆 (3个双克隆杂交家系:60 尾;3个雌核发育家系:60 尾) 的mstn基因进行单核苷酸多态性 (Single nucleotide polymorphism, SNP) 位点筛选,并对不同基因型个体的生长性状进行多重比较及SNP标记验证。结果显示,共检测到7个SNPs位点,均为颠换型突变;外显子区3个 (Exonl 1: G2063A; Exonl 3: C3883T, C4009A),为同义突变;内含子区3个 (Intron 1: A2444T; Intron 2: T3816C, A3832C);3'端非编码区1个 (3'UTR: C4564A)。SNPs与生长性状关联分析结果表明,A3832C和C4564A标记位点与牙鲆体质量、体长、体高等生长性状显著相关 (P<0.05),其中A3832C 位点AA基因型和C4564A位点AC基因型在生长上表现出优势,A3832C位点CC和C4564A位点AA、CC基因型在生长上表现出劣势,其他5个SNPs位点对牙鲆生长性状影响不显著 (P>0.05)。将A3832C和C4564A标记位点在牙鲆生长快速群体 (F: 60 尾) 和生长缓慢群体 (S: 60 尾) 中验证,验证结果与多重比对结果一致,表明2个SNPs位点具有较高的稳定性。综上所述,研究筛选出了牙鲆mstn基因中与生长性状显著相关的A3832C和C4564A两个标记位点,为牙鲆分子辅助育种提供了理论参考。

    Abstract:

    In order to study the polymorphism of mstn gene in Japanese flounder (Paralichthys olivaceus) and develop new markers for its molecular assisted breeding, we srceened 120 individuals of Japanese flounder (Three double clone hybrid families: 60, three Gynogenesis families: 60) mstn genes for single nucleotide polymorphisms (SNP), and conducted multiple comparisons and SNPs markers validation on the growth traits with different genotypes. The results detected seven SNPs loci, all of which were transposition type mutation; three Exon regions (Exonl 1: G2063A; Exonl 3: C3883T, C4009A) were synonymous mutations; three Intron regions (Intron I: A2444T; Intron II: T3816C, A3832C); and one non Coding region at 3' end (3' UTR: C4564A). The correlation analysis between SNPs and growth traits show that A3832C and C4564A were significantly correlated with growth traits such as body mass, body length and body height (P<0.05). Among them, A3832C AA genotype and C4564A AC genotype showed advantages in growth; A3832C CC, C4564A AA and CC genotype showed disadvantages in growth, while the other SNPs loci had no significant impact on growth traits (P>0.05). A3832C and C4564A markers were validated in fast-growing population (F: 60) and slow-growing population (S: 60), and the validation results are consistent with the results of multiple alignments, indicating that the two SNPs loci have high stability. In summary, this study screened two marker loci (A3832C, C4564A) in the mstn gene of Japanese flounder, which are significantly related to growth traits, providing theoretical references for its molecular assisted breeding.

  • 图  1   牙鲆mstn基因SPNs的连锁不平衡分析

    注:方块中数字表示SNPs之间的连锁程度 (R2),D' 值越高方块颜色越深。

    Figure  1.   Linkage disequilibrium analysis of SNPs in mstn gene of P. olivaceus

    Note: The number in the block represents the linkage degree (R2) between SNPs; the higher the D' value is, the darker the color of the block is.

    图  2   A3832C位点不同基因型对应生长性状分布

    注:性状参数中间的线为中位线。

    Figure  2.   Distribution of growth traits corresponding to different genotypes at A3832C locus

    Note: The line in the middle of the trait parameter is the median line.

    图  3   C4564A位点不同基因型对应生长性状分布

    注:性状参数中间的线和点分别为中位线和平均值。

    Figure  3.   Distribution of growth traits corresponding to different genotypes at C4564A locus

    Note: The lines and points in the middle of the trait parameters are the median and mean values, respectively.

    表  1   测序用引物序列

    Table  1   Primer sequences used for sequencing

    引物
    Primer
    序列 (5'—3')
    Primer sequence (5'–3')
    扩增区域
    Product position
    退火温度
    Temperature/℃
    产物大小
    Product size/bp
    mstn1 F: AGTCCTGTATGATTGAAACTG 1513—3317 55 1 800
    R: TGAAACCTCTGGAGGCCTGAAG
    mstn2 F: GTGAATAGTGTGGGTGCATGC 3157—4263 56 1 102
    R: ACGCTCTCCGTCCCAACTCAAG
    mstn3 F: CATGCACTTGCAGAAGTATCC 4064—5530 55 1 456
    R: CAGCAAACAAGCTAGAAACTT
    下载: 导出CSV

    表  2   牙鲆mstn基因的SNPs引物及延伸引物信息

    Table  2   SNPs primer and extended primer information of mstn gene of P. olivaceus

    引物
    Primer
    序列 (5'—3')
    Primer sequence (5'–3')
    多态性
    Polymorphism
    延伸引物
    Extended primer
    方向
    Direction
    产物
    Production
    大小
    Size/bp
    SNP 1 F: TGTCTCACATTGTGCTCTATC
    R: CTTCATTCGCAGTTTGCTCAG
    [G/A] TGCGACCAAGAGACGCACCATCA 正向 AG 23
    SNP 2 F: CCACAGAGACAATCATGATGAT
    R: TGTACTGATTCCTGTACAATC
    [A/T] TTTTTTTTTTATCTAGCGTCTCCCGTGCGCTC 反向 AT 32
    SNP 3 F: CTGTGGTTAACCAACCGTCAG
    R: CTTCTGCAAGTGCATGTACTC
    [T/C] GACTGCTGTCATCCCACTCT 正向 CT 20
    A3832C F: CTGTGGTTAACCAACCGTCAG
    R: CTTCTGCAAGTGCATGTACTC
    [A/C] TTTTATGAATGGTTGCTGAA
    ATGACAAAAATGAAAT
    反向 GT 36
    SNP 5 F: CTGTGGTTAACCAACCGTCAG
    R: CTTCTGCAAGTGCATGTACTC
    [C/T] CTCTCCTGACTCGCTTTGGGCC 反向 AG 22
    SNP 6 F: CTGTGGTTAACCAACCGTCAG
    R: CTTCTGCAAGTGCATGTACTC
    [A/G] TTTTTTTTAATAGTTGGCCTTGTAGCGCTT 反向 CT 30
    C4564A F: ATGCACACATGCTGGACGTTG
    R: AGCTTAGCGAAACGTGTATTAG
    [C/A] CGTATAAATGGAGAGAACAC
    GGTAACGATGGAGAAAAAAG
    反向 GT 40
    下载: 导出CSV

    表  3   牙鲆数量性状的正态分布检验

    Table  3   Test of normal distribution of quantitative traits of P. olivaceus

    性状
    Trait
    平均值±标准差
    $ \overline { x}\pm s$
    最大值
    Max.
    最小值
    Min.
    偏度
    Skewness
    峰度
    Kurtosis
    体质量 Body mass/g 422.02±212.94 950.30 117.40 0.396 −1.101
    全长 Total length/mm 343.89±58.49 483.43 228.03 0.292 −0.801
    体长 Body length/mm 300.03±55.37 436.88 194.53 0.312 −0.842
    头长 Head length/mm 82.56±12.94 118.12 56.59 0.37 −0.692
    体高 Body height/mm 107.14±3.98 179.80 15.58 −1.029 0.032
    尾柄长Tail shank length/mm 40.99±2.21 103.12 15.23 1.558 1.042
    尾柄高 Tail shank height/mm 27.87±0.49 39.29 16.25 0.213 −0.94
    下载: 导出CSV

    表  4   牙鲆mstn基因位点信息

    Table  4   Information on mstn gene loci in P. olivaceus

    序号
    No.
    SNP 位点
    SNP site
    位置
    Mutation area/bp
    类别
    Mutation type
    所在区域
    Region
    1G2063A2 063G转化为AExonl 1
    2A2444T2 444A转化为TIntrol 1
    3T3816C3 816T转化为CIntrol 2
    4A3832C3 832A转化为CIntrol 2
    5C3883T3 883C转化为TExonl 3
    6C4009A4 009C转化为AExonl 3
    7C4564A4 564C转化为A3'UTR
    下载: 导出CSV

    表  5   牙鲆mstn基因中SNP位点的等位基因和基因型频率

    Table  5   Allele and genotype frequencies of SNP loci in mstn gene of P. olivaceus

    位点
    Site
    等位基因
    Allele
    等位基因频率
    Allele frequency
    基因型
    Genotype
    个体数
    Number
    基因型频率
    Genotype frequency
    哈温平衡
    Hardy-weinberg
    A3832C A
    C
    0.74
    0.26
    AA 69 0.58 χ2=16.09
    P=0.000321
    AC 40 0.33
    CC 11 0.09
    C4564A A
    C
    0.35
    0.65
    AA 3 0.03 χ2=37.69
    P=6.53×10−9
    AC 78 0.64
    CC 39 0.33
    下载: 导出CSV

    表  6   牙鲆mstn基因的2个SNPs标记位点不同基因型个体生长性状的多重比较

    Table  6   Multiple comparisons of growth traits among individuals with different genotypes at two SNPs marker loci of mstn gene of P. olivaceus

    位点
    Site
    基因型
    Genotype
    样本数
    n/尾
    体质量
    Body mass/g
    体长
    Body length/mm
    体高
    Body height/mm
    头长
    Head length/mm
    尾柄长
    Tail shank
    length/mm
    尾柄高
    Tail shank
    height/mm
    A3832C AA 69 467.25±211.16a 310.73±55.66a 114.75±41.34a 85.03±13.43a 39.95±20.41a 28.88±5.58a
    AC 40 393.70±216.69b 295.25±54.00a 100.20±47.31ab 81.70±11.69ab 44.46±28.80a 27.47±4.92a
    CC 11 225.77±66.07c 250.30±21.00b 84.75±33.95b 70.17±4.62b 34.99±28.90a 23.02±2.92b
    C4564A AA 3 223.80±97.85a 243.45±59.42a 78.88±53.58a 68.8±12.0a 41.71±27.21a 22.73±5.92a
    AC 78 498.68±210.44b 318.21±54.85b 115.10±45.45b 87.09±12.76b 43.78±24.30a 29.76±5.35b
    CC 39 279.57±136.42a 268.02±36.55a 93.41±35.15a 74.56±8.03a 35.38±24.25a 24.48±3.26a
    注:不同小写字母表示不同基因型生长性状存在差异显著 (P<0.05)。 Note: Different lowercase letters represent significant differences in growth traits of different genotypes (P<0.05).
    下载: 导出CSV

    表  7   生长快速 (F: 60尾) 和生长缓慢 (S: 60尾) 牙鲆的生长性状表型数据

    Table  7   Phenotypic data of growth traits in P. olivaceus with fast growth (F: 60 individuals) and slow growth (S: 60 individuals)

    家系
    Family
    体质量
    Body mass/g
    体长
    Body length/cm
    体高
    Body height/cm
    头长
    Head length/cm
    尾柄长
    Tail shank length/cm
    尾柄高
    Tail shank height/cm
    F 605.66±133.19a 34.53±3.66a 13.86±1.46a 9.62±0.95a 3.52±0.61a 3.21±0.38a
    S 235.54±74.10b 25.48±2.53b 7.57±3.98b 7.25±0.63b 2.29±0.39b 2.36±0.27b
    注:不同小写字母表示不同群体牙鲆生长性状间差异显著。 Note: Different lowercase letters represent significant differences in growth traits among different populations of P. olivaceus.
    下载: 导出CSV

    表  8   牙鲆mstn基因SNPs标记 (A3832C、C4564A) 验证

    Table  8   Verification of SNPs markers (A3832C, C4564A) for mstn gene of P. olivaceus

    SNP标记基因型
    Genotype
    FSG-testP
    A3832C AA 43 17 40.557 P<0.001
    AC 17 14
    CC 0 29
    C4564A AA 0 3 42.462 P<0.001
    AC 56 22
    CC 4 35
    下载: 导出CSV
  • [1] 赵浩斌, 彭扣, 王玉凤, 等. 鱼类肌肉生长抑制素研究进展[J]. 水生生物学报, 2006, 30(2): 227-231. doi: 10.3321/j.issn:1000-3207.2006.02.017
    [2]

    McPHERRON A C, LAWLAR A M, LEE S J. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member[J]. Nature, 1997, 387(6628): 83-90. doi: 10.1038/387083a0

    [3]

    WANG K K, OUYANG H S, XIE Z C, et al. Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system[J]. Sci Rep, 2015, 5: 16623. doi: 10.1038/srep16623

    [4] 李兴美, 范巍, 张彬, 等. 鲤鱼肌肉生长抑制素基因(MSTN)的克隆及其组织表达特征[J]. 水生生物学报, 2007, 31(5): 643-648. doi: 10.3321/j.issn:1000-3207.2007.05.005
    [5] 濮剑威, 孙成飞, 蒋霞云, 等. 草鱼两个肌肉生长抑制素cDNA克隆、表达及过量表达对胚胎发育的影响[J]. 生物技术通报, 2011(8): 153-160, 166.
    [6] 彭扣, 陈伟伟, 胡炜, 等. 泥鳅肌肉生长抑制素基因片断的克隆及其表达[J]. 水产学报, 2007, 31(2): 145-151.
    [7]

    RESCAN P Y, JUTEL I, RALLIERE C. Two myostatin genes are differentially expressed in myotomal muscles of the trout (Oncorhynchus mykiss)[J]. J Exp Biol, 2001, 204(20): 3523-3529. doi: 10.1242/jeb.204.20.3523

    [8]

    ØSTBYE T K, GALLOWARY T F, NIELSEN C, et al. The two myostatin genes of Atlantic salmon (Salmo salar) are expressed in a variety of tissues[J]. Eur J Med Chem, 2001, 268(20): 5249-5257.

    [9]

    RODGERS B D, WEBER G M, SULLIVAN C V, et al. Isolation and characterization of myostatin complementary deoxyribonucleic acid clones from two commercially important fish: Oreochromis mossambicus and Morone chrysops[J]. Endocrinology, 2001, 142(4): 1412-1418. doi: 10.1210/endo.142.4.8097

    [10]

    KO C F, CHIOU T T, CHEN T T, et al. Molecular cloning of myostatin gene and characterization of tissue-specific and developmental stage-specific expression of the gene in orange spotted grouper, Epinephelus coioides[J]. Mar Biotechnol, 2007, 9(1): 20-32. doi: 10.1007/s10126-006-6059-8

    [11]

    WANG C, CHEN Y L, BIAN W P, et al. Deletion of mstna and mstnb impairs the immune system and affects growth performance in zebrafish[J]. Fish Shellfish Immunol, 2018, 72: 572-580. doi: 10.1016/j.fsi.2017.11.040

    [12]

    YEH Y C, KINOSHITA M, NG T H, et al. Using CRISPR/Cas9-mediated gene editing to further explore growth and trade-off effects in myostatin-mutated F4 medaka (Oryzias latipes)[J]. Sci Rep, 2017, 7(1): 11435. doi: 10.1038/s41598-017-09966-9

    [13]

    KIM J, CHO J Y, KIM J W, et al. CRISPR/Cas9-mediated myostatin disruption enhances muscle mass in the olive flounder Paralichthys olivaceus[J]. Aquaculture, 2019, 512: 734336. doi: 10.1016/j.aquaculture.2019.734336

    [14] 李仰真, 杨英明, 刘洋, 等. 牙鲆“鲆优2号”不同养殖地点生长和存活性状的基因型与环境互作分析[J]. 水产学报, 2020, 44(3): 429-435.
    [15] 唐立群, 肖层林, 王伟平. SNP 分子标记的研究及其应用进展[J]. 中国农学通报, 2012, 28(12): 154-158.
    [16]

    LI R Q, LI Y R, FANG X D, et al. SNP detection for massively parallel whole-genome resequencing[J]. Genome Res, 2009, 19(6): 1124-1132. doi: 10.1101/gr.088013.108

    [17] 高风英, 卢迈新, 曹建萌, 等. 尼罗罗非鱼 NOD1 基因 SNP 位点和单倍型与抗无乳链球菌感染的关联分析[J]. 农业生物技术学报, 2018, 26(11): 1949-1961.
    [18] 陈义培, 吴廉, 陈晓雯, 等. 中华绒螯蟹MSTN基因SNPs多态性及与生长性状的关联分析[J]. 水生生物学报, 2018, 42(2): 293-299. doi: 10.7541/2018.037
    [19] 王桂兴, 刘永新, 王玉芬, 等. 牙鲆 GH 基因的 SNPs 与生长性状关系的初步研究[J]. 中国水产科学, 2015, 22(2): 347-352.
    [20] 徐建勇, 陈松林. 牙鲆肌肉生长抑制素(MSTN)基因克隆[J]. 水产学报, 2008, 32(4): 497-560.
    [21]

    CHATTERJI S, PACHTER L. Reference based annotation with gene mapper[J]. Genome Biol, 2006, 7(4): R29. doi: 10.1186/gb-2006-7-4-r29

    [22]

    YEH F C, BOYLE T J B. Population genetic analysis of co-dominant and dominant markers and quantitative traits[J]. Belg J Bot, 1997, 129: 157.

    [23]

    BARRETT J C, FRY B, MALLER J, et al. Haploview: analysis and visualization of LD and haplotype maps[J]. Bioinformatics, 2005, 21(2): 263-265. doi: 10.1093/bioinformatics/bth457

    [24]

    GRADE C V C, MANTOVANI C S, ALVARES L E. Myostatin gene promoter: structure, conservation and importance as a target for muscle modulation[J]. J Anim Sci Biotechnol, 2019, 10(32): 1-19.

    [25]

    RAZA Z H, NADEEM A, JAVED M, et al. Polymorphic status and phylogenetic analysis of Myostatin gene in Pak-Thoroughbred[J]. Genetika-Belgrade, 2020, 52(3): 1281-1290. doi: 10.2298/GENSR2003281R

    [26]

    YANG S P, LI X, LIU X F, etal. Parallel comparative proteomics and phosphoproteomics reveal that cattle myostatin regulates phosphorylation of key enzymes in glycogen metabolism and glycolysis pathway[J]. Oncotarget, 2018, 9(13): 11352-11370. doi: 10.18632/oncotarget.24250

    [27]

    KOSTUSIAK P, SLOSARZ J, GOLEBIEWSKI M, et al. Polymorphism of genes and their impact on Beef quality[J]. Curr Issues Mol Biol, 2023, 45(6): 4749-4762. doi: 10.3390/cimb45060302

    [28]

    XIN X B, YANG S P, LI X, et al. Proteomics insights into the effects of MSTN on muscle glucose and lipid metabolism in genetically edited cattle[J]. Gen Comp Endocrinol, 2020, 291: 113237. doi: 10.1016/j.ygcen.2019.113237

    [29]

    CHAIBI S, DETTORI M L, DJEMAIL M, et al. Haplotype structure of MSTN, IGF1, and BMP2 genes in Tunisian goats (Capra hircus) and their association with morphometric traits[J]. Trop Anim Health Prod, 2023, 55(1): 1-9. doi: 10.1007/s11250-022-03416-z

    [30] 桂建芳, 周莉, 张晓娟. 鱼类遗传育种发展现状与展望[J]. 中国科学院院刊, 2018, 33(9): 932-939.
    [31] 杨慧荣, 曾泽乾, 杨炎, 等. 鱼类肌肉生长抑制素myostatin研究进展[J]. 中山大学学报 (自然科学版), 2022, 61(5): 1-8.
    [32]

    GOCEK E D, LSIK R, KARAHAN B, et al. Characterisation of single nucleotide polymorphisms and haplotypes of MSTN associated with growth traits in European sea bass (Dicentrarchus labrax)[J]. Mar Biotechnol, 2023, 25(3): 347-357.

    [33] 朱媛媛, 梁宏伟, 李忠, 等. 黄颡鱼 MSTN 基因多态性及其与生长性状的相关性分析[J]. 遗传, 2012, 34(1): 72-78.
    [34] 张世勇, 王明华, 钟立强, 等. 斑点叉尾鮰MSTN基因4个SNP位点及其生长性状的相关性[J]. 江苏农业科学, 2017, 45(1): 30-33.
    [35] 于爱清, 施永海, 徐嘉波. 刀鲚MSTN 基因遗传多态性与生长性状的关联分析[J]. 水产科技情报, 2021, 48(2): 69-76.
    [36]

    KLOSOWSKA D, KURYL J, ELMINOWSKA-WENDA G, et al. An association between genotypes at the porcine loci MSTN (GDF8) and CAST and microstructural characteristics of M. longissimus lumborum: a preliminary study[J]. Arch Tierz, 2005, 48(1): 50-59.

    [37]

    ESMAILIZADEH A K, BOTTEMA C D K, SELLICK G S, et al. Effects of the myostatin F94L substitution on beef traits[J]. J Anim Sci, 2008, 86(5): 1038-1046. doi: 10.2527/jas.2007-0589

    [38]

    MENG X Y, WANG H Y, QIU X M, et al. SNPs of myostatin (MSTN) gene and their association with growth traits in three bay scallop (Argopecten irradians) populations[J]. Aquac Res, 2017, 48: 531-536. doi: 10.1111/are.12900

    [39]

    WANG Y, WANG X L, MENG X Y, et al. Identification of two SNPs inmyostatin (MSTN) gene of Takifugu rubripes and their association with growth traits[J]. Mol Cell Probes, 2014, 28(4): 200-203. doi: 10.1016/j.mcp.2014.03.006

    [40] 唐永凯, 李建林, 陈雪峰, 等. 吉富罗非鱼 MSTN 基因结构及其多态性与生长性状的相关性[J]. 中国水产科学, 2010, 17(1): 44-51.
    [41]

    SAMBROOK J. Adenovirus amazes at Cold Spring Harbor[J]. Nature, 1977, 268: 102-104.

    [42]

    LONG M, SOUZA S J, GILBERT W. Evolution of the intron-exon structure of eukaryotic genes[J]. Curr Opin Genet Dev, 1995, 5(6): 774-778. doi: 10.1016/0959-437X(95)80010-3

    [43]

    MANIATIS T, TASIC B. Alternative pre-mRNA splicing and proteome expansion in metazoans[J]. Nature, 2002, 418(6894): 236-243. doi: 10.1038/418236a

    [44]

    LAXA M. Intron-Mediated enhancement: a tool for heterologous gene expression in plants?[J]. Front Plant Sci, 2017, 7: 1977.

    [45]

    MOABBI A M, AGARWAL N, EI KADERI B, et al. Role for gene looping in intron-mediated enhancement of transcription[J]. Proc Natl Acad Sci USA, 2012, 109(22): 8505-8510. doi: 10.1073/pnas.1112400109

    [46]

    JIANG L, HUANG C L, SUN Q, et al. The 5'-UTR intron of the midgut-specific BmAPN4 gene affects the level and location of expression in transgenic silkworms[J]. Insect Biochem Mol Biol, 2015, 63: 1-6. doi: 10.1016/j.ibmb.2015.05.005

    [47]

    FREDERICK P M, SIMARD M J. Regulation and different functions of the animal microRNA-induced silencing complex[J]. Wiley Interdiscip Rev RNA, 2021, 13(4): e1701.

    [48]

    da SACCO L, MASOTTI A. Recent insights and novel bioinformatics tools to understand the role of microRNAs binding to 5' untranslated region[J]. Int J Mol Sci, 2013, 14(1): 480-495.

    [49]

    CUI S Y, WANG R, CHEN L B. MicroRNA-145: a potent tumour suppressor that regulates multiple cellular pathways[J]. J Cell Mol Med, 2014, 18(10): 1913-1926. doi: 10.1111/jcmm.12358

    [50]

    SLATKIN M. Linkage disequilibrium-understanding the evolutionary past and mapping the medical future[J]. Nat Rev Genet, 2008, 9(6): 477-485. doi: 10.1038/nrg2361

    [51]

    HOHENLOHE P A, BASSHAM S, CURREY M, et al. Extensive linkage disequilibrium and parallel adaptive divergence across threespine stickleback genomes[J]. Philos Trans R Soc Lond B Biol Sci, 2012, 367(1587): 395-408. doi: 10.1098/rstb.2011.0245

    [52] 孙雪, 李胜杰, 杜金星, 等. 草鱼GHRH基因SNPs的筛选及其与生长性状的关联分析[J]. 农业生物技术学报, 2021, 29(5): 936-972.
    [53] 于爱清, 施永海, 徐嘉波, 等. 长江刀鲚GHRH基因遗传多态性及其与生长性状的关联分析[J]. 西北农业学报, 2023, 32(11): 1-11.
推荐阅读
基于基尔霍夫近似模型的南海大黄鱼声学目标强度研究
王文卓 et al., 南方水产科学, 2024
广西银滩南部海域海洋牧场渔业资源评估
牛麓连 et al., 南方水产科学, 2024
珠海外伶仃海洋牧场春季渔业资源生物碳储量初探
魏文迪 et al., 南方水产科学, 2024
广西银滩南部海域海洋牧场鱼类群落结构特征及其与环境因子的关系
于杰 et al., 南方水产科学, 2024
中西太平洋主要金枪鱼产量回顾性分析
ZHENG Linbin et al., JOURNAL OF SHANGHAI OCEAN UNIVERSITY, 2025
基于node-gam模型的太平洋中部大眼金枪鱼cpue时空分布及其与环境因子的关系
周淑婷 et al., 广东海洋大学学报, 2025
Temperature induced biological alterations in the major carp, rohu (labeo rohita): assessing potential effects of climate change on aquaculture production
Mridul, Md. Monirul Islam et al., AQUACULTURE REPORTS, 2024
Time series prediction of sea surface temperature based on bilstm model with attention mechanism
Zrira, Nabila et al., JOURNAL OF SEA RESEARCH, 2024
Dependence of daily precipitation and wind speed over coastal areas: evidence from china's coastline
HYDROLOGY RESEARCH, 2023
Hybrid model approach for hilly sub-watershed prioritization using morphometric parameters: a case study from bakkhali river watershed in cox’s bazar, bangladesh
GEOLOGY, ECOLOGY, AND LANDSCAPES, 2024
Powered by
图(3)  /  表(8)
计量
  • 文章访问数:  185
  • HTML全文浏览量:  26
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-24
  • 修回日期:  2023-11-04
  • 录用日期:  2023-12-03
  • 网络出版日期:  2023-12-06
  • 刊出日期:  2024-04-04

目录

    /

    返回文章
    返回