Nursery and adult culture experiments of Tapes dorsatus in Beihai, Fangchenggang and Qinzhou sea areas
-
摘要:
为探究钝缀锦蛤 (Tapes dorsatus) 在广西北部湾海域的适宜养殖密度和高效养殖模式,2021年5月—2023年1月在北海、防城港、钦州海区滩涂进行筐式中培、筐式养成和网笼吊养实验。结果显示:1) 钝缀锦蛤在北海、防城港、钦州海区的适宜中培密度分别为2 000、1 500、1 500 粒·筐−1,随着中培密度的增加,其生长指标和成活率均呈下降趋势;北海海区各密度组的成活率均优于防城港和钦州海区且差异显著 (P<0.05),除d5组 (3 000 粒·筐−1) 的生长指标 (壳长、壳宽及体质量) 小于防城港和钦州海区外,其他组生长指标均大于防城港和钦州海区。2) 养成期钝缀锦蛤在北海、防城港、钦州海区适宜养殖密度分别为40、40、20 粒·筐−1,各生长指标与成活率均为北海>防城港>钦州,且成活率随养成密度的增加呈下降趋势。防城港海区的网笼吊养密度为30 粒·笼−1时的各生长指标均为最大,50 粒·笼−1时的成活率最高;网笼吊养模式下,各个密度组的生长指标和成活率均无显著性差异 (P>0.05)。海区环境因子调查结果显示:北海海区的年平均水温、滩温、盐度、透明度、pH、溶解氧 (DO) 略高于防城港和钦州海区,水质较为稳定,钦州、防城港海区的水质环境变化较大且较不稳定;北海滩涂底质粒径以粗砂为主 (49.00%),防城港以中砂为主 (59.28%),钦州以细砂为主 (77.33%)。海区浮游植物调查显示,浮游植物藻属种类和数量以北海最多,防城港次之,钦州最少。研究表明,钝缀锦蛤适宜在北海、防城港、钦州3个海区进行筐式中培和养成,北海的养殖效果优于防城港和钦州,且1.5 龄贝适宜在防城港海区进行网笼吊养。
Abstract:In order to explore the suitable breeding density and effective culture mode of Tapes dorsatus in three sea areas of Beibu Gulf, Guangxi, we had carried out basket nursery culture, basket adult culture and net cage hanging experiments of T. dorsatus in mudflat of three sea areas in Qingzhou, Beihai and Fangchenggang from May 2021 to January 2023. The results show that: 1) The suitable nursery culture density for T. dorsatus were 2 000, 1 500 and 1 500 grains·basket−1, respectively, and the growth indexes and survival rate of T. dorsatus decreased with the increase of nursery culture density. The survival rates of all density groups in Beihai were significantly better than those in Fangchenggang and Qinzhou (P<0.05). Except that the growth indexes (Shell length, shell width and body mass) in d5 group (3 000 grains·basket−1) in Beihai were lower than that in Fangchenggang, the growth indexes of other groups were all higher than those of Fangchenggang and Qinzhou. 2) The suitable culture densities of T. dorsatus in Beihai, Fangchenggang and Qinzhou were 40, 40 and 20 grains·basket−1, respectively. The growth indexes and survival rate of T. dorsatus at adult stage were Beihai>Fangchenggang>Qinzhou, and the survival rate decreased with the increase of cultivation density. When the density of net cage suspension in Fangchenggang was 30 grains· cage−1, all growth indexes were the highest. There were no significant differences in shell length, shell width, shell height, body mass and survival rate among different density groups in net cage suspension (P>0.05). The results of environmental factors show that the water temperature, beach temperature, salinity, transparency, pH and DO in Beihai were slightly higher than those in Fangchenggang and Qinzhou, with relatively stable water quality. The water quality environment in Qinzhou and Fangchenggang changed greatly and was unstable. The diameter of plasmid at the bottom of Beihai mudflat was mainly coarse sand (49.00%), Fangchenggang was mainly composed of medium sand (59.28%), and Qinzhou was mainly composed of fine sand (77.33%). The results of phytoplankton quantity show that the species and quantity of phytoplankton algae in Beihai were the largest, and the least species and quantity of phytoplankton algae were in Qinzhou. The research indicates that T. dorsatus is suitable for nursery and adult culture in three sea areas of Beibu Gulf, and the breeding effect in Beihai is better than that in Fangchenggang and Qinzhou. Besides, 1.5-year-old T. dorsatus is suitable for net cage hanging culture in Fangchenggang sea area.
-
Keywords:
- Tapes dorsatus /
- Culture density /
- Basket culture /
- Net cage hanging culture /
- Growth /
- Survival rate /
- Beibu Gulf
-
气候的变化、异常以及振荡驱动着海洋环境因子的变化,从而影响海洋生态系统的生命活动及过程[1]。厄尔尼诺南方涛动 (El Niño Southern Oscillation, ENSO) (包括厄尔尼诺和拉尼娜事件) 起源于赤道太平洋,是太平洋海域气候变化的最强信号,具有年际变动周期[2],其基本特征是西太平洋暖池的地带性位移以及大气对流,导致了整个太平洋海盆物理性质和生态系统的改变;具体表现为对各种海洋环境参数的影响,包括海表面温度 (Sea surface temperature, SST)、叶绿素a浓度 (Chl-a) 等,以及对由海洋顶级捕食者 (如金枪鱼) 共同构成的相互关联的海洋生态系统的影响[1,3-4]。
鲣 (Katsuwonus pelamis) 广泛分布于各大洋的热带、亚热带海域[5],中西太平洋热带海域是世界上最大的鲣渔场[6-7]。因而,研究中西太平洋鲣资源的时空分布对掌握渔业生产规律和开发鲣资源尤为重要。鲣种群按集群特点进行划分,可分为自由鱼群 (Free swimming school, FSC) (亦称起水群)、流木鱼群 (Log school) 以及鲸豚附随群 (Marine mammal associated school) 3类[8];流木鱼群中亦包括人工集鱼装置 (Fish aggregation device, FAD) 鱼群。自20世纪80年代以来,FAD开始被广泛运用于鲣的围网作业中,是一种高效的捕捞模式[9],但捕捞副渔获物 [非目标种类的幼年大眼金枪鱼 (Thunnus obesus) 以及黄鳍金枪鱼 (T. albacares)等] 严重的问题随之而来[10]。为此,中西太平洋海域的瑙鲁协定方 (Parties to nauru agreement, PNA) 制定了相关海洋管理政策以限制和减少FAD的使用[11]。相较于前者,自由鱼群的个体较大,偏好聚集于浅水层[12],且围网渔获物中兼捕物种少,但由于其高速游动的特性,捕捞难度较大[13]。因此,掌握围网鲣自由鱼群的时空分布特性,对于集中捕捉该种群以降低对漂浮物鱼群捕捉的依赖,从而并提高渔业生产效率具有积极作用,对保护金枪鱼的栖息环境与种群结构也具有重要意义[14]。
海洋鱼类资源的时空分布极易受海洋环境因子影响,掌握其时空分布有利于鱼类资源的合理开发和利用。鲣的分布模式受海表面温度影响显著[15],已有研究普遍发现鲣资源主要分布在海表温度28~30 ℃的海域[16-17],因而该温度区间可作为研究鲣资源时空分布变动的一项参考指标[18]。Lehodey等 [19]研究发现鲣作业渔场随暖池边缘(即与29 ℃等温线重合)发生了空间偏移。同时,气候变化在时空尺度上影响着海洋鱼类的分布模式,李政纬[17]指出,29 ℃等温线东界会受厄尔尼诺与南方涛动影响,进而影响鲣围网渔场的经向分布。受ENSO影响,鲣渔场与暖池的时空分布变动具有相同趋势[19-20]:即厄尔尼诺事件时,渔场重心随暖池东移;拉尼娜事件时,渔场重心随暖池西移[21]。因此,将暖池变动作为研究围网鲣自由鱼群时空分布的参考指标,能够探究鲣渔场的时空分布特性,更好地进行集中、高效的渔业生产活动,为其资源开发提供科学依据。已有研究仅对历史渔场重心与极端气候指标(如南方涛动指数、海表温异常指数)的关系进行了探讨[22-24],而忽略了暖池相关物理海洋指标空间变动而导致的渔场重心变化,其中包括暖池重心处多出现高产量的鲣围网渔场[25],以及暖池右边缘经向扩展而具有的潜在东部栖息地[26]。本研究以29 ℃等温线作为暖池边界,针对围网鲣自由鱼群的渔场重心与暖池相关指标进行相关性分析,并基于不同的气候模式下探究其时空分布变动之间的关系。
1. 材料与方法
1.1 数据来源
中西太平洋围网鲣渔业生产数据来源于中西太平洋渔业委员会 (Western and Central Fisheries Commission,WCPFC),数据包括作业日期、作业位置 (经纬度)、捕捞努力量、自由鱼群的渔获量等信息。其中时间跨度为1995—2019年,空间范围为120°E—150°W、20°S—20°N,空间分辨率为5°×5°,样本数共计7 721个。海洋环境数据为SST,来自哥伦比亚大学气候数据实验室网站 (http://iridl.ldeo.columbia.edu),空间分辨率为0.5º×0.5°,时间分辨率为月。同时选取1995—2019 年美国国家海洋与大气管理局气候预测中心 (https://origin.cpc.ncep.noaa.gov) 的Nino 3.4区域 (170°W—120°W、5°N—5°S) 的平均海温距平作为海洋尼诺指数 (OceanicNiño Index, ONI),其中ONI值介于 ±0.5为正常气候模式,大于0.5发生厄尔尼诺事件,小于 −0.5发生拉尼娜事件。
1.2 研究方法
1.2.1 重心计算
渔业研究中,资源丰度指数通常用于量化渔业中种群丰度的时空变化,如单位捕捞努力量渔获量 (Catch per unit effort, CPUE) 和渔获量[27]。由于现代商业渔业的复杂性,常用的CPUE可能无法作为所有物种资源丰度指数的合理表征[28],因此将二者均纳入考虑来量化围网鲣自由鱼群的时空分布,进而与暖池相关指标进行比较分析,为围网鲣自由鱼群的渔业生产和资源开发提供借鉴。渔获量大小常用于直接表示渔业的资源丰度,而CPUE大小常被认为与渔业资源丰度成正比[29],因而可作为表示其局部资源丰度的指标[30]。
本研究对1995—2019年间的渔场重心进行分析计算,作为研究其渔场时空分布变化的描述标准,通过使用渔场重心法来描述中西太平洋围网鲣自由鱼群 (以下简称自由鱼群) 的时空分布变化,环境因子SST的重心计算同理。由于鲣渔场与暖池变动间多为经向变化,因而仅对经向维度进行考虑,渔场重心计算范围与原始数据的空间范围 (120°E—150°W、20°S—20°N) 一致,同时为更准确地说明中西太平洋暖池的重心变化,在计算各项指标的重心时,本研究中的海域范围聚焦于110°E—80°W、45°S—45°N,公式如下[31]:
$$ {G}_{{\rm{CPUE}}}=\frac{\sum _{i}^{n}({{{E}}}_{i}\times {{{L}}}_{i})}{\sum _{i}^{n}{{{E}}}_{i}} $$ (1) $$ {G}_{{\rm{Catch}}}=\frac{\sum _{i}^{n}({{{C}}}_{i}\times {{{L}}}_{i})}{\sum _{i}^{n}{{{C}}}_{i}} $$ (2) $$ {G}_{{\rm{SST}}}=\frac{\sum _{i}^{n}({{{S}}}_{i}\times {{{L}}}_{i})}{\sum _{i}^{n}{{{S}}}_{i}} $$ (3) 式中:GCPUE、GCatch分别为自由鱼群渔场两种资源丰度指标的重心经度 (以下简称CPUE重心和Catch重心);GSST为 SST重心的经度 (以下简称暖池重心经度);
$ {{E}}_{i} $ 为单位捕捞努力量渔获量;$ {{C}}_{i} $ 为捕捞产量渔获重心;$ i $ 表示经度,$ {{L}}_{i} $ 为第$ i $ 经度的重心经度;Si为第i经度的温度重心。暖池的右边缘通过自中西太平洋西部海盆起选取连续的29 ℃等温线右边缘的经度,记作RSST。
1.2.2 统计方法
采用皮尔森相关性分析[32],对暖池指标 (暖池重心经度、暖池右边缘经度) 与渔场资源丰度重心经度以及气候环境指标ONI指数进行相关性分析。相关性在0.1~0.3为弱相关性,0.3~0.5间为中度相关性,大于0.5为强相关性;P<0.05表示相关,P<0.01为显著相关,P<0.001为极显著相关,P>0.05则表示相关性不显著。
1.2.3 不同气候模式下鲣资源空间分布
建立不同气候模式 (正常气候模式、厄尔尼诺年份、拉尼娜年份等) 下自由鱼群与暖池间的时空分布图,进一步说明不同气候模式下二者之间的空间相对位置及关系。
2. 结果
2.1 气候变化下暖池指标与鲣资源重心的关系
通过ONI指数对气候变化进行量化,并且采用皮尔森检验对暖池相关指标重心及右边缘、渔场资源丰度重心以及ONI指数进行相关性检验,发现其在统计学上均呈极显著相关性 (图1)。结果显示,渔场资源丰度重心指标,包括渔获量经向重心GCatch与单位捕捞努力量渔获量经向重心GCPUE,二者与暖池经向重心呈中度相关性,其中GCPUE的相关性值略高于GCatch。而在与暖池右边缘进行相关性检验时,GCatch与GCPUE同其呈弱相关性,GCPUE表现仍稍高于GCatch。在渔场资源丰度重心指标与海洋尼诺指数的相关性检验上,GCatch、GCPUE与之均呈中度相关性,此时GCatch表现略高于GCPUE。除主要研究渔场经向重心外,将暖池指标与海洋尼诺指数进行相关性检验,结果表明暖池经向重心GSST和暖池右边缘RSST与之呈强相关性,其中GSST与之相关性值达0.79,RSST为0.68。所有指标间的P均小于0.001,表现为极显著相关性。
资源丰度的表征在渔业研究中尤为重要[28],经皮尔森相关性检验得出,CPUE与暖池指标间在相关性表现上相较Catch更优。此外,CPUE的计算避免了直接使用渔获量,而未纳入捕捞努力量的影响[33];因此,可选用CPUE作为围网鲣自由鱼群与暖池指标关系研究的资源丰度指标。
2.2 暖池指标与鲣资源重心的年际变化趋势
将各项指标的经向变化随年月变化进行对比,探究在不同气候条件下,渔场重心经向与暖池指标变动的时空分布变化 (图2)。结果表明,渔场重心指标间的经向年际变化基本一致,GCPUE与暖池指标的相关性表现优于GCatch,因而以下研究均以GCPUE的经向变动进行探究。各项重心经向指标大多集中分布于140°E 以东、180°以西海域,其中GCPUE与GSST主要分布在160°E经线两端,而RSST大多分布在180°以东 (图2-a)。GCPUE、GSST与RSST随海洋尼诺指数的变动而发生变化 (图2-b)。多数情况下,当发生厄尔尼诺事件 (ONI>0.5)时,GCPUE与GSST东移越过160°E,同时RSST向东移动,如1997年的6—10月等;发生拉尼娜事件 (ONI<−0.5)时,GCPUE 与GSST则分布在160°E以西海域,同时RSST向西移动,如1995年8月—1996年3月等。暖池指标GSST与RSST间的经向变动关系随时间变化基本呈相同趋势。
GCPUE与GSST在经向上的变动趋势不完全相同。1995年1—4月、2003年1—4月、2007年1—5月和2016年1—5月等均为GSST在GCPUE以东,且经向变动趋势显著相反,而此时均为由发生厄尔尼诺事件向正常气候模式 (−0.5<ONI<0.5) 转变的月份。当GSST在GCPUE以西且经向变动趋势相反时,如1998年6—12月、1999年5—12月和a2010年6—12月等,此时正发生强烈的拉尼娜事件,受厄尔尼诺事件影响,GSST多位于GCPUE以东,但此时经向的变动趋势基本相同,如1997年6月—1998年4月、2015年6—12月等。GCPUE与RSST之间关系和GSST一致。
2.3 不同气候模式下自由鱼群的分布
为探明上述不同气候模式下,自由鱼群与暖池间的时空分布关系,选取其中个别月建立时空分布 (图3)。拉尼娜事件选取2010年的11—12月,正常气候模式选取2013年11—12月,厄尔尼诺事件选取2015年11—12月,而厄尔尼诺事件转变为正常年份事件的特殊气候模式选取2016年4—5月。
图 3 不同气候模式下CPUE与暖池的时空分布注:a、b为拉尼娜气候模式;c、d为正常气候模式;e、f为厄尔尼诺气候模式;g、h为厄尔尼诺气候模式向正常气候模式转变。Figure 3. Spatial-temporal distribution of CPUE and warm pool under different climate modesNote: (a) and (b) are the La Niña climate modes; (c) and (d) are the normal climate modes; (e) and (f) are the El Niño climate modes; (g) and (h) are the climate modes shifting from the El Niño to the normal.与ENSO相关的指标的位移发生在整个中西太平洋,发生拉尼娜事件时 (2010年11—12月),暖池面积最小,右边缘东部抵达距离最短,接近于180°经线,此时CPUE的分布均位于180°经线以西,且集中于太平洋西部美拉尼西亚群岛海域。当正常年份时 (2013年11—12月),暖池右边缘的位置相较拉尼娜事件时向东偏移,CPUE越过180°以东且少量分布。发生厄尔尼诺事件时 (2015年11—12月),CPUE的分布随暖池右边缘位置的东移而向东扩展。此外,一个特殊的气候模式变化应当被纳入考虑,即厄尔尼诺事件转变为正常年份事件 (2016年4—5月),此时暖池右边缘向西收缩,但CPUE的分布仍向东扩展,而相较于厄尔尼诺事件时在热带海域的均匀分布,此时仅在180°以东少量分布,且CPUE的大小和数量均下降。在所有的气候模式下,暖池右边缘均位于自由鱼群以东位置,自由鱼群基本均匀分布于暖池范围内,也同样说明了二者之间的紧密联系。
3. 讨论
不同类型的ENSO事件通过驱动暖池的空间位移从而改变区域内的海洋环境因子,进一步驱动海洋生态系统及其内部物种资源的响应[34]。 位于中西太平洋的暖池是ENSO的基本构成要素[15],其表面积及位置随ENSO事件的变化而改变[13,35];即厄尔尼诺事件时,暖池的面积增大,东移到达太平洋中部海域;拉尼娜事件时,暖池的面积减小,西移到西太平洋海盆区域。从暖池指标(本研究中指暖池重心与暖池右边缘)的时空变化入手,可为研究围网鲣自由群对ENSO事件的响应提供依据。鲣的资源丰度以及空间分布受海洋环境因子影响[36],而海表温度对鲣资源状态的时空分布具有更显著的影响[37],在本研究中具体表现为资源丰度的大小及重心的空间分布随29 ℃海表温度场的影响而变化。由于ENSO驱动海表温度变化,受其影响,具有高度洄游的鲣自由鱼群会在沿海生态系统和公海海域之间移动[38]。Williams和Ruaia[39]指出,ENSO事件对鲣围网活动空间分布的影响表现为,在厄尔尼诺年份,捕捞活动通常进一步向东扩展,在拉尼娜期间,捕捞活动向西部地区收缩,与本研究的发现(图3)基本一致。捕捞作业活动的变动同暖池变动规律相同,而渔场重心可以表征捕捞作业活动空间的集中分布程度,但渔场重心与暖池间的协同关系也存在着特异性。受ENSO影响,暖池重心的空间变异程度 (变异系数Coefficient of variation,CV= 5.012) 要强于渔场重心 (CV = 2.523)的变化 (图2),即表现为厄尔尼诺事件时暖池重心位于渔场重心东部,而当拉尼娜事件时暖池重心位于渔场重心西部。这可能是由于受捕捞作业方式影响,围网鲣自由鱼群的渔场重心相较于暖池受气候以及环境变化影响小[40]。此外,自由鱼群多是体型较大的成年鲣,需寻求适宜的温度环境作为首选栖息地和合适的产卵地,厄尔尼诺事件会导致海表温度升高,温跃层变浅(温跃层是富含营养物质的混合层上下界之间交换的障碍),营养物质更容易向混合层转移,从而促使深层营养盐在海表扩散,形成具有良好饵料的栖息环境[41]。然而强烈厄尔尼诺事件时,温度过高导致暖池的长距离东扩,抑制了鲣在热带中西太平洋的产卵活动[21];但并未导致渔场范围相应东扩,反而此时在太平洋中部的岛国 (如基里巴斯群岛) 的围网渔获量更高,分布更集中。
而对于厄尔尼诺转变为正常年份这一特殊气候模式的变化,即暖池重心与渔场重心的变化趋势显著相反 (暖池重心向西移动而渔场重心仍向东),可能由于暖池场的西移,导致了适宜的温度范围增大,以便于鲣适宜栖息地的形成。陈洋洋和陈新军 [23]研究得出,Nino3.4海区指数对CPUE的影响滞后0~2个月,这可能也是造成渔场重心和暖池重心之间变化不同步的原因。此外,暖池的东扩也与温跃层变浅,以及更强于平时的西太平洋信风有关,从而导致赤道西太平洋的初级生产力增加[42]。因此,位于140°E—160°E的所罗门群岛和巴布亚新几内亚的资源丰度在厄尔尼诺现象结束后有所增加,以应对鲣捕捞量的增加以及栖息地收缩的现象,这也进一步解释了渔场重心与暖池重心之间变化的不同步。
本研究对围网鲣自由鱼群的渔场指标,以及暖池指标在不同气候模式下的时空分布变化进行探究发现,通过研究暖池重心的变化可以很好地探索及预测渔场重心变化的规律。而通过构建暖池场与自由鱼群资源丰度的时空分布关系发现,暖池右边缘的范围能够很好地与自由鱼群的空间分布联系起来,可为商业性捕捞围网鲣自由鱼群提供渔场边界的指示,也可为今后研究鲣渔场的分布范围提供一项有利参考。
本研究对不同资源丰度指标对围网鲣自由鱼群的表征的影响进行了研究,但选取的均为名义上的资源丰度指标 (名义的CPUE),而未对CPUE进行标准化 (以消除人为捕捞等因素对资源丰度的影响),可能会造成研究结果具有一定误差。且仅研究了自由鱼群对暖池指标的响应关系,未与由人工集鱼装置捕捞获得的流木鱼群进行对比。在未来研究中,将对不同集群种类的鲣对暖池响应的差异性进行更细致的研究,以期为中西太平洋的鲣围网作业提供更丰富详尽的科学依据。
-
图 3 钝缀锦蛤在广西北部湾3个海区中培期的生长和成活率
注:同一密度、不同海区大写字母不同表示组间差异显著(P<0.05),相同表示组间差异不显著 (P>0.05);同一海区、不同密度,小写字母不同表示组间差异显著(P<0.05),相同表示组间差异不显著 (P>0.05)。图4同此。
Figure 3. Growth and survival rate of nursery culture T. dorsatus in three sea areas of Beibu Gulf, Guangxi
Note: Different capital letters for the same density and different sea areas represent significant differences between groups (P<0.05), while the same capital letters represents no significant differences between groups (P>0.05). Different lowercase letters for the same sea area, different densities represent significant differences between groups (P<0.05), while the same lowercase letters represents no significant differences between groups (P>0.05). The same case in Fig. 4.
表 1 防城港海区钝缀锦蛤网笼吊养模式的生长和成活率
Table 1 Growth and survival rate of net cage culture of T. dorsatus in Fangchenggang sea area
密度 Density/
(grains·cage−1)壳长
Final SL/mm壳宽
Final SW/mm壳高
Final SH/mm体质量
Final BG/g成活率
Survival rate/%产量
Yield/gC1 (30) 52.00±2.72a 20.67±1.23a 34.34±1.78a 22.13±3.73a 95.56±3.85a 634.42 C2 (40) 51.97±3.95a 20.39±1.64a 33.69±2.61a 21.77±4.96a 94.17±1.44a 901.20 C3 (50) 51.57±2.39a 20.67±1.29a 33.66±1.94a 21.98±3.46a 96.00±2.00a 1020.96 注:同列上标小写字母不同表示组间差异显著(P<0.05),相同表示组间差异不显著 (P>0.05)。 Note: Different and the same lowercase letters within the same column represent significant differences (P<0.05) and insignificant differences (P>0.05) between groups, respectively. 表 2 不同海区滩涂底质粒径组成比例
Table 2 Composition of sand beach sediment particles size in different sea areas
% 海区
Sea area砾
Gravel粗砂
Coarse sand中砂
Medium sand细砂
Fine sand粉砂质黏土
Silty clay> 2.00 mm 2.00~0.50 mm 0.50~0.25 mm 0.25~0.063 mm < 0.063 mm 钦州 Qinzhou 3.70 10.15 6.35 77.33 2.45 北海 Beihai 0.75 49.00 29.05 21.00 0.20 防城港 Fangchenggang 0.32 3.51 59.28 36.17 0.72 -
[1] 庄启谦. 中国动物志 软体动物门 双壳纲 帘蛤科[M]. 北京: 科学出版社, 2001, 63-64. [2] 黄洋, 杜涛, 杨世平. 钝缀锦蛤生态习性的初步研究[J]. 水产科学, 2008, 27(4): 175-178. doi: 10.3969/j.issn.1003-1111.2008.04.004 [3] 杨家林, 邹杰, 彭慧婧. 温度、盐度和体质量对钝缀锦蛤滤食率和同化率的影响[J]. 水产科学, 2019, 38(1): 104-108. doi: 10.16378/j.cnki.1003-1111.2019.01.016 [4] 巫旗生, 祁剑飞, 宁岳, 等. 盐度、pH、氨氮对钝缀锦蛤稚贝生长及存活的影响[J]. 渔业研究, 2021, 43(6): 621-627. [5] 张柯馨, 曹楚畑, 刘志刚, 等. 钝缀锦蛤 (Tapes dorsatus) 稚贝的温度和盐度耐受性研究[J]. 海洋学报, 2022, 44(4): 57-64. [6] NELL J A. Salinity studies on the clams Katelysia rhytiphora (Lamy) and Tapes dorsatus (Lamarck)[J]. Aquac Res, 1997, 28(2): 115-119. doi: 10.1111/j.1365-2109.1997.tb01023.x
[7] 陈道海, 李洪英, 吴秋颖, 等. 10种帘蛤科贝类COI基因序列分析及系统发育研究[J]. 生物资源, 2018, 40(3): 277-284. [8] 巫旗生, 曾志南, 宁岳, 等. 钝缀锦蛤形态性状对活体质量的影响[J]. 水产科学, 2018, 37(1): 110-114. doi: 10.16378/j.cnki.1003-1111.2018.01.017 [9] 巫旗生, 文宇, 曾志南, 等. 钝缀锦蛤繁殖周期和胚胎发育[J]. 中国水产科学, 2017, 24(3): 488-496. [10] 连昌朋, 王超奇, 杨凌, 等. 广西北部湾钝缀锦蛤精巢发育、精子发生及超微结构研究[J]. 海洋科学, 2022, 46(6): 80-89. [11] 连昌朋, 吴韬, 王超奇, 等. 广西北海营盘海域钝缀锦蛤(Tapes conspersus)卵巢发育、卵子和卵黄发生的研究[J]. 热带海洋学报, 2022, 41(5): 170-179. doi: 10.11978/2021185 [12] 张柯馨, 杨尚松, 罗泽鑫, 等. 钝缀锦蛤胚胎、幼虫及稚贝发育观察[J]. 水产科学, 2023, 42(4): 682-689. doi: 10.16378/j.cnki.1003-1111.21125 [13] NELL J A, O'CONNOR W A, HAND R E, et al. Hatchery production of diploid and triploid clams, Tapes dorsatus (Lamarck 1818): a potential new species for aquaculture[J]. Aquaculture, 1995, 130(4): 389-394. doi: 10.1016/0044-8486(95)92761-Q
[14] 张柯馨, 罗泽鑫, 张元, 等. 钝缀锦蛤规模化人工育苗技术研究[J]. 南方水产科学, 2023, 19(3): 51-59. doi: 10.12131/20220262 [15] PATERSON K J, NELL J A. Effect of different growing techniques and substrate types on the growth and survival of the clams Tapes dorsatus (Lamarck) and Katelysia rhytiphora (Lamy)[J]. Aquac Res, 1997, 28(9): 707-715. doi: 10.1111/j.1365-2109.1997.tb01093.x
[16] 杨凌, 曾尚伟, 韦朝民, 等. 钝缀锦蛤海区中培筐式养殖及马氏珠母贝吊养养殖防风浪模式分析[J]. 渔业信息与战略, 2023, 38(1): 52-59. doi: 10.13233/j.cnki.fishis.2023.01.007 [17] 田园, 金燕, 陈炜, 等. 菲律宾蛤仔(Ruditapes philippinarum)“斑马蛤2号”筏式和底播养殖模式比较研究[J]. 海洋与湖沼, 2021, 52(6): 1496-1505. doi: 10.11693/hyhz20210500125 [18] 范斌朋, 王梅芳, 刘永, 等. 吊养和底播两种养殖方式对扁平钳蛤生长的影响[J]. 基因组学与应用生物学, 2016, 35(7): 1725-1730. doi: 10.13417/j.gab.035.001725 [19] 赵东波. 常用沉积物粒度分类命名方法探讨[J]. 海洋地质动态, 2009, 25(8): 41-44, 46. doi: 10.3969/j.issn.1009-2722.2009.08.009 [20] 刘志刚, 刘建勇, 刘付少梅. 不同潮位、密度及季节对皱肋文蛤中间培育效果的影响[J]. 海洋科学, 2011, 35(10): 34-41. [21] 李永仁, 梁健, 郭永军, 等. 天津沿海菲律宾蛤仔适养密度研究[J]. 海洋通报, 2015, 34(4): 470-474. doi: 10.11840/j.issn.1001-6392.2015.04.016 [22] 潘渊博, 孙秀俊, 郭贺, 等. 围隔生境下养殖密度对菲律宾蛤仔生长的影响[J]. 中国海洋大学学报(自然科学版), 2023, 53(1): 53-65. doi: 10.16441/j.cnki.hdxb.20220021 [23] 于佐安, 谭克非, 张明, 等. 筏式虾夷扇贝养成期不同密度生长与经济效益分析[J]. 水产学报, 2016, 40(10): 1624-1633. [24] 刘德经, 张克存, 李正华. 放养密度对西施舌稚贝生长的影响[J]. 特产研究, 2008, 30(4): 14-16, 37. doi: 10.3969/j.issn.1001-4721.2008.04.004 [25] 何毛贤, 张红玉, 袁涛. 养殖密度、水层和养殖地点对马氏珠母贝选育群体生长存活的影响[J]. 热带海洋学报, 2009, 28(6): 68-71. doi: 10.3969/j.issn.1009-5470.2009.06.009 [26] 栗志民, 刘志刚, 刘付少梅, 等. 中培期和养成期墨西哥湾扇贝(Argopecten irradians concentricus)新品系养殖密度的研究[J]. 海洋与湖沼, 2013, 44(6): 1557-1565. doi: 10.11693/hyhz20130306002 [27] 廖锐, 区又君, 勾效伟. 养殖密度对鱼类福利影响的研究进展I. 死亡率、生长、摄食以及应激反应[J]. 南方水产, 2006, 2(6): 76-80. [28] 王超奇, 徐炳杰, 吴韬, 等. 广西北部湾滩涂施氏獭蛤中培及养成期养殖密度比较研究[J]. 南方水产科学, 2023, 19(4): 105-115. doi: 10.12131/20230046 [29] 蔡德建, 蒋艳, 杨家林, 等. 大獭蛤人工苗种浅海沉箱式中间培育试验研究[J]. 广西科学, 2010, 17(3): 263-266, 270. doi: 10.3969/j.issn.1005-9164.2010.03.022 [30] 陈瑞芳, 刘海娟, 董兰芳, 等. 织锦巴非蛤海区悬挂养殖新模式[J]. 中国水产, 2022(7): 87-88. doi: 10.3969/j.issn.1002-6681.2022.7.zhongguosc202207030 [31] CHAUDHURI K, MANNA S, SARMA K S, et al. Physicochemical and biological factors controlling water column metabolism in Sundarbans estuary, India[J]. Aquat Biosyst, 2012, 8(1): 1-16. doi: 10.1186/2046-9063-8-1
[32] 李亚芳, 杜飞雁, 王亮根, 等. 底质类型对三亚湾潮间带大型底栖动物生态功能的影响[J]. 水产学报, 2018, 42(10): 1559-1571. [33] 刘亦涵, 李由明, 付湘粤, 等. 基质粒径对缀锦蛤 (Taper literatus) 生长影响的分析[J]. 畜牧与饲料科学, 2018, 39(4): 15-17. doi: 10.12160/j.issn.1672-5190.2018.04.004 [34] 黄亚楠, 王文杰, 魏钰恒, 等. 墨西哥湾扇贝(Argopecten irradians concentricus) 选育系F7在广西北部湾海区的生长比较研究[J]. 海洋与湖沼, 2020, 51(5): 1222-1231. doi: 10.11693/hyhz20191200284 [35] 邱清波, 李由明, 吴丽云, 等. 干露对缀锦蛤、文蛤、美女蛤和织锦巴非蛤耗氧率的影响[J]. 海南热带海洋学院学报, 2018, 25(2): 20-24. -
期刊类型引用(2)
1. 巫旗生,宁岳,祁剑飞,郭香,罗辉玉,曾志南,葛辉. 和蔼巴非蛤人工育苗及稚贝培育技术. 福建农业科技. 2024(10): 9-14 . 百度学术
2. 杨凌,刘一鸣,徐炳杰,王超奇,吴韬,邢清淦,裴琨,韦朝民,曾尚伟,潘英. 钝缀锦蛤在北海、防城港、钦州海区的中培与养成实验. 南方水产科学. 2023(06): 38-50 . 本站查看
其他类型引用(1)