地西泮在模拟养殖环境中的含量变化及累积特征

黄丽, 高磊, 吴松, 郝其睿, 李晨辉, 汤施展, 白淑艳, 陈中祥, 杜宁宁, 覃东立, 王鹏

黄丽, 高磊, 吴松, 郝其睿, 李晨辉, 汤施展, 白淑艳, 陈中祥, 杜宁宁, 覃东立, 王鹏. 地西泮在模拟养殖环境中的含量变化及累积特征[J]. 南方水产科学, 2024, 20(2): 38-47. DOI: 10.12131/20230128
引用本文: 黄丽, 高磊, 吴松, 郝其睿, 李晨辉, 汤施展, 白淑艳, 陈中祥, 杜宁宁, 覃东立, 王鹏. 地西泮在模拟养殖环境中的含量变化及累积特征[J]. 南方水产科学, 2024, 20(2): 38-47. DOI: 10.12131/20230128
HUANG Li, GAO Lei, WU Song, HAO Qirui, LI Chenhui, TANG Shizhan, BAI Shuyan, CHEN Zhongxiang, DU Ningning, QIN Dongli, WANG Peng. Variation and accumulation characteristics of diazepam in simulated culture environment[J]. South China Fisheries Science, 2024, 20(2): 38-47. DOI: 10.12131/20230128
Citation: HUANG Li, GAO Lei, WU Song, HAO Qirui, LI Chenhui, TANG Shizhan, BAI Shuyan, CHEN Zhongxiang, DU Ningning, QIN Dongli, WANG Peng. Variation and accumulation characteristics of diazepam in simulated culture environment[J]. South China Fisheries Science, 2024, 20(2): 38-47. DOI: 10.12131/20230128

地西泮在模拟养殖环境中的含量变化及累积特征

基金项目: 中央级公益性科研院所基本科研业务费专项资金资助 (HSY202112Q);国家重点研发计划项目 (2020YFD0900301);中央财政经费政府购买服务项目 (ZF2022512400, ZF2023660007);中国水产科学研究院中央级公益性科研院所基本科研业务费专项资金资助 (2023TD60)
详细信息
    作者简介:

    黄 丽 (1990—),女,助理研究员,硕士,研究方向为渔业环境及水产品质量安全。E-mail: huangli@hrfri.ac.cn

    通讯作者:

    覃东立 (1974—),男,研究员,研究方向为渔业环境及水产品质量安全。E-mail: qdl978@163.com

    王 鹏 (1966—),男,研究员,研究方向为渔业环境及水产品质量安全。E-mail: wangpeng@hrfri.ac.cn

  • 中图分类号: X 131.2;X 52

Variation and accumulation characteristics of diazepam in simulated culture environment

  • 摘要:

    为探究地西泮 (Diazepam, DZP) 在模拟养殖环境中的降解特点及累积特征,设置2个浓度胁迫组 (A、C组),并在2个浓度下添加蜈蚣草 (Pteris vittata) 作对照组 (B、D组),共4个试验组;分析水体、底泥和蜈蚣草中DZP浓度随时间的变化特点,探讨蜈蚣草和底泥对水体中DZP的累积特征。结果表明,给药后4组水体中DZP的初始质量浓度分别为A:(0.118±0.002) μg·L−1、B:(0.117±0.004) μg·L−1、C:(1.141±0.078) μg·L−1和D:(1.142±0.039) μg·L−1,给药后第768小时水体中DZP质量浓度下降了29.71%~40.17%;DZP降解半衰期介于65.29~139.11 d。4组底泥中DZP质量分数随时间变化逐渐上升,给药768 h后4组底泥中DZP质量分数分别达到初始质量分数的17.99倍(1.384 μg·kg−1)、14.81倍(0.918 μg·kg−1)、4.77倍 (7.848 μg·kg−1)和5.30倍 (7.763 μg·kg−1),富集系数介于9.79~18.80;B、D组蜈蚣草中DZP浓度峰值出现在给药后第216小时。蜈蚣草和底泥对水体中的DZP具有一定的吸附和富集作用,可明显缩短高浓度DZP在水中降解的半衰期,在低浓度DZP水体中添加蜈蚣草可抑制底泥对DZP的富集。

    Abstract:

    In order to explore the degradation and accumulation characteristics of diazepam (DZP) in simulated culture environment, we set up four experimental groups including two different concentration stress groups (Group A and Group C) and two control groups (Group B and Group D) with addition of Pteris vittata to analyze the changes of DZP content in water, sediment and P. vittata with time, and to investigate the accumulation characteristics of DZP in water by P. vittata and sediment. The results show that the initial DZP mass concentrations in Group A, Group B, Group C and Group D were (0.118±0.002) μg·L−1, (0.117±0.004) μg·L−1, (1.141±0.078) μg·L−1 and (1.142±0.039) μg·L−1, respectively. The DZP concentration had decreased by 29.71%–40.17% after 768 h, and the degradation half-life period of DZP ranged from 65.29 d to 139.11 d. The DZP concentration in the sediment in the four groups increased gradually with time, reaching 17.99 times (1.384 μg·kg−1, dry mass), 14.81 times (0.918 μg·kg−1, dry mass), 4.77 times (7.848 μg·kg−1, dry mass) and 5.30 times (7.763 μg·kg−1, dry mass) of the initial concentration after 768 h of administration, respectively. The enrichment coefficients were 9.79–18.80. The peak concentration of DZP in Group B and Group D appeared after 216 h after administration. The adsorption and enrichment of DZP in water by P. vittata and the sediment can obviously shorten the degradation half-life period of high concentration DZP in water, and addition of P. vittata to low concentration DZP can inhibit the enrichment of DZP in sediment.

  • 美拉德反应 (Maillard reaction, MR),又称“非酶棕色化反应”,主要是指羰基化合物与氨基化合物之间的复杂反应[1]。该反应不仅给食品带来特殊的色泽与风味,还产生大量抗氧化活性物质,能有效延长食品的货架期[2-3]。目前已有关于氨基酸或多肽与不同种类还原糖的美拉德反应产物的抗氧化活性和特定香料的生产研究,但美拉德反应机制尚未明确[4]。方菲等[5]研究了鲷鱼鳞多肽-木糖的美拉德反应产物的结构与抗氧化活性,表明肽链结构发生变化,形成了新的化合物,反应产物抗氧化活性显著增加,且具有多酚氧化酶抑制活性。

    裂壶藻 (Schizochytrium limacinum),又称裂殖壶菌,属单细胞海洋真菌微藻[6]。裂壶藻富含油脂,占干质量的40%以上,目前已实现工业化生产DHA藻油[7],且异养发酵培养时绿色环保无污染。然而,裂壶藻经提取不饱和脂肪酸后会产生蛋白质含量高达干质量40%以上的藻渣,目前该藻渣大多被当作动物饲料或肥料使用,造成该蛋白资源高值化利用程度低。本实验以提取油脂后的裂壶藻渣为原料,采用复合蛋白酶对其进行水解,得到裂壶藻酶解物 (S. limacinum hydrolysate, SLH),加入还原糖对SLH进行美拉德反应修饰,通过单因素实验探究美拉德反应条件对SLH抗氧化活性的影响,再借助超滤、葡聚糖凝胶层析色谱等技术对SLH进行逐级分离纯化,测定不同分子量的美拉德反应产物 (Maillard reaction products, MRPs) 的抗氧化能力,并分析其氨基酸组成,为进一步实现裂壶藻藻渣的高值化和资源再利用提供理论依据和思路。

    裂壶藻渣购自广东润科生物工程有限公司。1,1-二苯基-2-三硝基苯肼 (DPPH, 美国Sigma公司)。复合蛋白酶、核糖、木糖、阿拉伯糖、葡萄糖、果糖、盐酸、无水乙醇、铁氰化钾、磷酸二氢钠、磷酸氢二钠、三氯乙酸、三氯化铁 (广州齐云生物技术有限公司)。

    BS224S型电子精密天平 (德国Sartorius公司);N & DN系列 (LCD) 超声波细胞粉碎机 (宁波新芝生物科技股份有限公司);THZ-82水浴恒温振荡器 (精达仪器制造有限公司);UV2550型紫外可见分光光度计 (日本岛津);SynergyH1型酶标仪 (美国伯腾仪器有限公司);超纯水系统 (德国Milipore公司);凝胶层析柱Sephadex G-25 (Φ=1.6 cm×78 cm, 瑞典Pharmacia);Alpha1-4 型冷冻干燥机 (德国Christ);Labscale TFF system小型切向流超滤系统 (德国Milipore公司);AvantiJ26XP型高速离心机 (美国Beckman Coulter);3K30型高速冷冻离心机 (德国Sigma公司);AKTA purifier UPC100型蛋白质纯化系统 (美国GE Healthcare)。

    按照高颖等[8]的方法制备SLH。称取一定质量的藻渣于烧杯中,按料水质量比1∶12加入蒸馏水,混匀,超声处理25 min (功率调至70%) 后,将pH调至7.5,按酶总量质量分数0.5%加入复合蛋白酶,于50 ℃水浴锅恒温酶解3 h。酶解完成后,将酶解液置于沸水浴中灭酶10 min,冷却后以10 000 r·min−1离心15 min,冷冻干燥上清液后所得粉末即为SLH。

    采用单因素实验分别研究糖种类、糖肽质量比、反应pH、反应温度和反应时间对反应产物的影响,以MRPs褐变程度和抗氧化活性为指标,确定美拉德反应条件;选取核糖、木糖、阿拉伯糖、葡萄糖和果糖作为参与美拉德反应的糖类,反应条件为糖肽质量比1∶1、pH 7.0、反应温度80 ℃、反应时间1 h,探讨单糖的种类对美拉德反应程度及其产物抗氧化活性的影响;以核糖作为美拉德反应修饰物,反应条件为pH 7.0、反应温度80 ℃、反应时间1 h,研究糖肽质量比 (1∶1、2∶1、1∶2) 对美拉德反应程度及其产物抗氧化活性的影响;以核糖作为美拉德反应修饰物,反应条件为糖肽质量比1∶1、反应温度80 ℃、反应时间1 h,研究不同反应pH (4.0、5.0、6.0、7.0、8.0、9.0、10.0) 对美拉德反应程度及其产物抗氧化活性的影响;以核糖作为美拉德反应修饰物,糖肽质量比为1∶1、pH为9.0、反应时间1 h来考察反应温度 (30、40、50、60、70、80、90、100 ℃) 对美拉德反应程度及其产物抗氧化活性的影响;以核糖作为美拉德反应修饰物,糖肽质量比1∶1、pH 9.0、反应温度100 ℃,考察反应时间 (1、2、4、6、8 h) 对美拉德反应程度和抗氧化能力的影响。

    美拉德反应的中间产物随反应的进行不断增加,使溶液颜色逐渐变深。将样品稀释至25~250倍,测定产物在294和420 nm处的吸光值来表示美拉德反应的程度[4]

    参照Zhang等[9]的测定方法加以修改。预实验以确定样品需要稀释的倍数。取0.5 mL样液于10 mL离心管中,再加入0.5 mL 2×10−4 mol·L−1的DPPH乙醇溶液,混匀后室温避光20 min,以10 000 r·min−1离心10 min,用酶标仪测定517 nm处的吸光度。DPPH自由基清除能力的计算公式为:

    $$ {\rm{DPPH}}{\text{清除率}}=\left( {1-\frac{{A}_{i}-{A}_{j}}{{A}_{0}}} \right)\times 100{\text{%}} $$ (1)

    式中Ai为样液与DPPH溶液混合后的吸光值;Aj为样液与乙醇混合后的吸光值;A0为不含样液的DPPH溶液的吸光值。

    参照李瑞杰等[10]的测定方法并略作修改。取1 mL待测样液于10 mL离心管中,分别加入1 mL 0.2 mol·L−1的磷酸盐缓冲液 (pH 6.6),1 mL质量分数1%的铁氰化钾溶液,振荡混匀后于50 ℃水浴保温20 min。取出,加入1 mL质量分数10%三氯乙酸,振荡混匀后以10 000 r·mim−1离心10 min。取1 mL上清液,加入1 mL去离子水和0.2 mL质量分数0.1%的氯化铁溶液,振荡混匀后于50 ℃保温10 min,溶液体系变为蓝色,用酶标仪于700 nm处测定吸光度。以去离子水代替样品作空白对照。

    将SLH依次通过截留分子量为50、10、5 kD的超滤膜,收集过完膜的组分,得到分子量为50 kD以下、10 kD以下及5 kD以下的多肽,经冷冻干燥后于−20 ℃备用。分别比较<5 kD (SLH-1)、<10 kD (SLH-2)、<50 kD (SLH-3) 组在美拉德反应前后的DPPH自由基清除能力及还原力。其中测量DPPH清除能力所用样品质量浓度为5 mg·mL−1,还原力所用样品质量浓度为2 mg·mL−1

    选取SLH-1组通过Sephadex G-25凝胶柱 (Φ=1.6 cm×78 cm) 纯化,将收集到的各峰冷冻干燥,得到不同分子量的多肽,将各个峰组分进行美拉德反应,对其产物DPPH自由基清除率和还原力大小进行测定。其中测量DPPH清除能力所用样品质量浓度为5 mg·mL−1,还原力所用样品质量浓度为2 mg·mL−1

    参考国标GB 5009.124—2016进行。

    在美拉德反应初期,氨羰缩合会产生酮、醛等无色小分子物质,这些小分子在294 nm处会有吸收,吸光值越大,中间产物越多;而美拉德反应最终产物——类黑精在420 nm检测有吸收值,吸光值越大,褐变程度越高[11]。褐变程度用来评价美拉德反应的程度。SLH与核糖的美拉德反应中间产物和终产物的含量最多,与葡萄糖、果糖反应得到的产物含量较少 (图1-a)。SLH与核糖的美拉德反应产物的抗氧化活性高于其他糖类,其还原力 (5 mg·mL−1) 和DPPH自由基清除率 (12.5 mg·mL−1) 分别为1.39和86.73% (图2-a)。还原糖的开链程度对美拉德反应进程和速率起着重要作用[12]。上述结果表明,核糖可能更易于裂解参与美拉德反应,生成更多的类黑精,增加褐变程度,从而产物抗氧化能力较高。这与其他研究结果[13-15]一致。因此,选用核糖作为与SLH进行美拉德反应的糖类。

    图  1  裂壶藻酶解物与不同糖、糖肽质量比、反应pH、反应温度和反应时间对美拉德反应产物吸光值的影响
    Figure  1.  Effect of SLH and different sugars, mass ratio of sugar to peptide, reaction pH, reaction temperature and reaction time on absorbance of Maillard reaction products
    图  2  裂壶藻酶解物与不同糖、糖肽质量比、反应pH、反应温度和反应时间对美拉德反应产物其还原力与1,1-二苯基-2-三硝基苯肼自由基清除率的影响
    Figure  2.  Effect of SLH and different sugars, mass ratio of sugar to peptide, reaction pH, reaction temperature and reaction time on reducing power activity and DPPH free radical scavenging rate of Maillard reaction products

    随着糖肽质量比的增加,SLH发生美拉德反应的程度和抗氧化活性均先增加后下降。糖肽质量比为1∶1时,在294和420 nm处吸光值达到最高值 (图1-b),表明美拉德反应最强烈,此时产物的还原力为1.35,DPPH自由基清除率为86.59% (图2-b)。反应底物的用量不同会影响美拉德反应进程,适当的糖肽用量比例可以减少副反应的发生。核糖分子与SLH之间的有效碰撞随核糖浓度的升高而增加,促进美拉德反应进行。然而,随着比例继续升高,核糖分子与多肽分子会受到空间阻碍,影响了美拉德反应进程,导致各项指标降低[16]。周冬香等[17]控制L-赖氨酸与还原糖质量比分别为1∶1、2∶1和1∶2,测得质量比为1∶1的美拉德反应产物的DPPH自由基清除效果相对最好。因此,美拉德反应时,核糖与SLH的质量比为1∶1较为适宜。

    美拉德产物的吸光值随着pH递增而逐渐上升,当pH>9时变化趋于平缓 (图1-c)。美拉德产物的抗氧化活性随着pH的增加而增强,反应pH为10.0时还原力和DPPH自由基清除率较高 (图2-c),说明pH为10.0时有利于美拉德反应的发生。这可能是由于氨基在酸性条件下以-NH3 +的存在阻碍了羰氨缩合,影响美拉德反应;而在碱性条件下,氨基态氮被游离出来参与反应,pH越高,越有利于美拉德反应[18]。这与康乐和宋焕禄[19]及胡礼等[20]的研究结果一致。由于pH 9.0同pH 10.0的各项指标无显著差异 (P<0.05),因此选择反应 pH为9.0较为适宜。

    反应温度对美拉德反应产物的抗氧化性影响较大,随着温度的升高,美拉德反应产物的吸光值增大,反应越来越强烈,100 ℃时产物在294和420 nm的吸光值分别为0.866、0.995 (图1-d)。随着温度的升高,美拉德反应产物的抗氧化活性增强,温度到达100 ℃时,还原力达1.17,DPPH清除率为88.02% (图2-d),表明高温有利于SLH进行美拉德反应且促进其抗氧化活性。这可能是温度的升高带来了焦糖化和美拉德反应速率的增加,使得褐变程度加深,同时也导致了肽的降解和交联发生[21]。杨璐等[22]在羊骨胶原肽与还原糖的美拉德反应体系中也发现在一定温度范围内,提升温度可使反应产物的抗氧化能力提高。因此在常压条件下,选取反应温度100 ℃较为合适。

    随着反应时间的延长,美拉德反应产物在294和420 nm的吸光值逐渐增加,当反应时间达6 h后吸光值变化缓慢 (图1-e)。产物的抗氧化活性随反应时间的增加而逐渐增强,反应6 h时其还原力和DPPH清除率分别为1.24 (5 mg·mL−1) 和88.62% (12.5 mg·mL−1),继续延长反应时间其抗氧化活性变化不显著 (图2-e)。这可能是由于SLH与核糖反应产生了大量具有还原性的酮类物质,因此随着时间的延长,其反应程度、还原力及清除DPPH自由基的能力迅速提升。当达到一定时间之后反应完全,继续增加反应时间,其反应程度、还原力及清除DPPH自由基的能力不再有太大的变化[23-24]。故选择反应时间为6 h较为合适。

    综上,美拉德反应的最佳条件确定为:SLH与核糖质量比为1∶1,反应pH为9.0,反应温度为100 ℃,反应时间为6 h,在此条件下的美拉德反应产物具有较好的抗氧化活性。

    分别比较其超滤组SLH-1 (<5 kD)、SLH-2 (<10 kD)、SLH-3 (<50 kD) 在美拉德反应前后的抗氧化活性。不同分子量的各组分及其MRPs之间的抗氧化活性存在显著性差异 (P<0.05,图3-a),其中SLH-1组及其MRPs的抗氧化活性均高于其他组。SLH-1组的美拉德反应前的还原力为0.561,DPPH自由基清除率为71.01%,其经过美拉德反应后的还原力为0.591,DPPH自由基清除率为74.81%。分析可知,裂壶藻不同分子量多肽均具有一定的抗氧化能力,小分子量的肽能更易在生物体内运转,可更有效地通过细胞膜,清除自由基,抗氧化能力更高[25],此结论与王传幸和李国英[26]及徐浩等[27]的结果一致;美拉德反应能够提高多肽抗氧化活性,尤指低分子量多肽易于和还原糖结合[28],与韩佳润等[29]对虾夷扇贝 (Patinopecten yessoensis) 生殖腺酶解物与核糖反应生成的MRPs的抗氧化实验的结论相似。为了获得更好的分离效果,本实验对SLH-1组继续分离纯化。

    图  3  不同超滤组分和Sephadex G-25凝胶柱层析组分的美拉德反应产物还原力和1,1-二苯基-2-三硝基苯肼自由基清除率
    Figure  3.  Comparison of reducing power activity and DPPH free radical scavenging rate of Maillard reaction products prepared by different ultrafiltration fractions and Sephadex G-25 gel column separated fraction

    SLH-1组经葡聚糖凝胶分离出4个分离峰,分别记为SLH-1-I、SLH-1-II、SLH-1-III、SLH-1-IV (图4)。根据凝胶层析法原理可知组分SLH-1-I的分子量较大,SLH-1-IV的较小[30]。SLH-1-I组的抗氧化活性远高于其他3组,其对DPPH自由基的清除率为78.95%,还原力为0.715 (图3-b)。SLH-1-IV的抗氧化活性较差,其对 DPPH自由基的清除率为3.84%,还原力为0.198。经美拉德反应后,4个分离组的美拉德反应产物的抗氧化活性在一定程度上得到提升,其中SLH-1-I组的MRPs抗氧化活性最好,其对DPPH自由基的清除率达79.41%,还原力为0.741。肽的抗氧化活性与其分子量分布和氨基酸组成有关[31-32],一般认为小分子肽的抗氧化活性要高于大分子多肽或蛋白质,但Yu等[31]发现分子量较大的大豆多肽 (1~3 kD) 抗氧化活性较高,与本结果一致。同时美拉德反应的修饰提高了抗氧化性,可能是在加热过程中生成呋喃、还原酮、吡嗪等中间产物参与反应增强了其活性。

    图  4  Sephadex G-25 凝胶柱层析图谱
    Figure  4.  Sephadex G-25 gel column chromatography

    裂壶藻蛋白肽经美拉德反应修饰时主要是氨基酸参与反应,这可能会导致氨基酸组成发生较大变化,通过比较美拉德反应前后的氨基酸组成可以反映出各种氨基酸参与美拉德反应的程度[33-34]。美拉德反应会导致裂壶藻蛋白肽中的酪氨酸 (Tyr)、赖氨酸 (Lys)、组氨酸 (His)、精氨酸 (Arg)、色氨酸 (Trp) 等氨基酸含量显著降低 (P<0.05,表1),其中Arg和Lys含量降幅最大,分别减少了71.88%和70.56%,表明Arg和Lys是参与美拉德反应的主要氨基酸,这极有可能是因为在反应过程中,与核糖或其降解产物之间的相互作用 (交联) 大量消耗了体系中的氨基酸[21]。从美拉德反应前后的必需氨基酸含量来看,其含量由反应前的34.97%变为反应后的33.09%,变化不显著 (P>0.05),表明美拉德反应并未明显降低裂壶藻蛋白肽的营养价值。

    表  1  美拉德反应前后的氨基酸含量比较
    Table  1.  Comparison of amino acid content before and after Maillard reaction
    氨基酸种类
    Amino acid type
    含量 Content/%
    美拉德反应前
    Before Maillard reaction
    美拉德反应后
    After Maillard reaction
    天冬氨酸 Asp 10.46±0.61 11.74±0.54
    苏氨酸* Thr 5.12±0.30 5.77±0.38
    丝氨酸 Ser 4.70±0.21 4.78±0.33
    谷氨酸 Glu 20.18±2.13 24.07±2.69
    脯氨酸 Pro 4.32±0.20 6.17±0.39
    甘氨酸 Gly 6.22 ±0.31 6.76±0.27
    丙氨酸 Ala 8.64±0.42 8.75±0.33
    缬氨酸* Val 5.82±0.36 6.76±0.41
    蛋氨酸* Met 2.33±0.24 2.19±0.17
    异亮氨酸* Ile 4.24±0.23 4.78±0.37
    亮氨酸* Leu 7.08±0.44 6.96±0.30
    酪氨酸 Try 3.30±0.28 1.83±0.10
    苯丙氨酸* Phe 4.21±0.32 4.78±0.29
    赖氨酸* Lys 4.45±0.25 1.31±0.08
    组氨酸 His 1.82±0.09 1.29±0.06
    精氨酸 Arg 5.37±0.36 1.51±0.11
    色氨酸* Trp 1.72±0.16 0.54±0.04
    必需氨基酸
    Essential amino acids
    34.97±2.31 33.09±2.05
    注:*. 必需氨基酸Note: *. Essential amino acids
    下载: 导出CSV 
    | 显示表格

    本研究采用单因素实验分别考察了还原糖种类、糖肽质量比、pH、反应温度和反应时间对SLH发生美拉德反应的影响。研究表明当参与反应的糖为核糖、糖肽质量比为1∶1、pH为9、反应温度为100 ℃、反应时间为6 h时,MRPs生成量较多,其还原力和DPPH清除率分别为1.24 (5 mg·mL−1) 和88.62% (12.5 mg·mL−1)。此外,采用超滤与葡聚糖凝胶柱对SLH-1超滤组进行分离纯化后发现SLH-1-I组的抗氧化活性最好,且该组的MRPs抗氧化活性也最高,其还原力 (2 mg·mL−1) 为0.741、DPPH自由基清除率 (5 mg·mL−1) 为79.41%。由于在美拉德反应过程中会产生呋喃、噻唑和噻吩等杂环类挥发性物质,SLH-1-I组的电子转移能力 (DPPH自由基清除活性) 和还原铁氰化钾的能力 (还原力) 均得到了提升。对比美拉德反应前后的氨基酸含量发现,美拉德反应导致了裂壶藻蛋白肽中的Tyr、Lys、His、Arg、Trp等氨基酸的含量降低,但对其必需氨基酸总含量的影响不大,未明显降低其营养价值。本研究结果可为裂壶藻渣蛋白资源的高值化利用以及抗氧化产品的开发提供一定参考。

  • 图  1   水体中地西泮质量浓度变化特点

    注:不同字母表示差异显著,后图同此。

    Figure  1.   Variation characteristics of diazepam mass concentration in water

    Note: Different letters represent significant differences. The same case in the following figures.

    图  2   底泥中地西泮质量分数变化特点

    Figure  2.   Variation characteristics of diazepam mass fraction in sediment

    图  3   蜈蚣草中地西泮质量分数变化特点

    Figure  3.   Variation characteristics of diazepam mass fraction in P. vittata

    表  1   流动相梯度洗脱程序

    Table  1   Mobile phase gradient elution procedure

    时间 t/minA/%B/%
    095.005.00
    1.0095.005.00
    2.505.0095.00
    3.905.0095.00
    3.9195.005.00
    5.0095.005.00
    下载: 导出CSV

    表  2   地西泮及内标物的质谱参数

    Table  2   Mass spectrum parameters of diazepam and internal standard

    化合物
    Compound
    定性离子对
    Qualitative
    ion pair/
    (m·z−1)
    定量离子对
    Quantitative
    ion pair/
    (m·z−1)
    碰撞能量
    Collision
    energy/
    (eV)
    地西泮
    Diazepam
    285.2>193.1 285.2>193.1 35
    285.2>154.1 37
    地西泮-D5
    Diazepam-D5
    290.2>154.1 290.2>154.1 37
    下载: 导出CSV

    表  3   不同基质中地西泮加标回收率和相对标准偏差

    Table  3   Adding standard recovery and relative standard deviation of diazepam in different substrates

    基质
    Substrate
    加标水平
    Spiked level
    实测结果
    Measurement result
    回收率
    Recovery rate/%
    相对标准偏差
    RSDs/%
    水体 Water 0.100 μg·L−1 0.092 μg·L−1 92.0 3.831
    0.600 μg·L−1 0.527 μg·L−1 87.8 3.542
    1.000 μg·L−1 0.954 μg·L−1 95.4 1.555
    底泥 Sediment 0.500 μg·kg−1 0.484 μg·kg−1 96.8 1.614
    2.000 μg·kg−1 1.909 μg·kg−1 95.5 1.059
    4.000 μg·kg−1 4.335 μg·kg−1 108.4 2.967
    蜈蚣草 P. vittata 0.100 μg·kg−1 0.092 μg·kg−1 92.0 3.262
    0.500 μg·kg−1 0.431 μg·kg−1 86.2 4.028
    0.900 μg·kg−1 0.894 μg·kg−1 99.3 1.468
    下载: 导出CSV

    表  4   水体中地西泮降解动力学拟和参数

    Table  4   Fitting parameters of degradation kinetics of diazepam in water

    理论浓度
    Theoretical concentration/
    (μg·L−1)
    模拟养殖环境
    Simulated culture
    environment
    方程式
    Equation
    R2C0/
    (μg·L−1)
    kT1/2/d反应级数
    Order of reaction
    0.1 μg·L−1 底泥
    Sediment
    y=0.001 0x+0.014 7 0.918 8 0.118 零级
    y=−0.011 3x−0.127 8 0.926 3 一级
    y=0.129 0x+1.085 8 0.932 0 0.129 0 65.69 二级
    底泥-蜈蚣草
    Sediment-P. vittata
    y=0.009 0x+0.020 9 0.950 4 0.117 零级
    y=−0.010 8x−0.191 5 0.959 3 一级
    y=0.130 9x+1.729 9 0.965 5 0.130 9 65.29 二级
    1.0 μg·L−1 底泥
    Sediment
    y=0.004 7x+0.213 7 0.835 3 1.141 零级
    y=−0.0054x−0.2069 0.842 9 一级
    y=0.006 3x+0.200 8 0.850 3 0.006 3 139.11 二级
    底泥-蜈蚣草
    Sediment-P. vittata
    y=0.006 9x+0.231 9 0.922 5 1.142 零级
    y=−0.008 5x−0.224 2 0.933 7 一级
    y=0.010 5x+0.216 2 0.942 2 0.010 5 83.40 二级
    下载: 导出CSV

    表  5   底泥对不同浓度地西泮的富集系数

    Table  5   Bioconcentration factors of diazepan at different concentrations in sediment

    组别
    Group
    给药时间 Time of administration/h
    024487296216264360600768
    A组 Group A 0.65 4.46 4.73 4.93 5.38 5.87 6.92 13.26 14.54 18.80
    B组 Group B 0.53 2.95 4.85 4.99 5.15 5.34 5.95 8.66 9.28 13.19
    C组 Group C 1.44 5.93 6.02 6.17 6.32 6.46 7.25 7.56 9.56 9.79
    D组 Group D 1.28 5.95 6.22 6.30 6.48 6.81 7.28 7.99 8.12 11.05
    下载: 导出CSV

    表  6   蜈蚣草对不同浓度地西泮的富集系数

    Table  6   Bioconcentration factors of diazepan at different concentrations in P. vittata

    组别
    Group
    给药时间 Time of administration/h
    024487296216264360600768
    B组 Group B 0.79 3.07 3.23 3.41 3.57 3.78 2.67 2.86 1.67 1.54
    D组 Group D 0.21 0.55 0.60 0.63 0.70 0.81 0.83 0.87 0.63 0.63
    下载: 导出CSV
  • [1]

    WANG L L, WANG R L, ZHENG Q, et al. Simulating dynamic interaction between diazepam and ethanol targeting the GABAA receptor via in silico model[J]. Neurotoxicology, 2023, 95(1): 136-143.

    [2]

    BRODIN T, FICK J, JONSSON M, et al. Dilute concentrations of a psychiatric drug alter behavior of fish from natural populations[J]. Science, 2013, 339(6121): 814-815. doi: 10.1126/science.1226850

    [3]

    BROOKS B W, CHAMBLISS C K, STANLEY J K, et al. Determinations of select antidepressant in fish from an effuent-dominated stream[J]. Environ Toxicol Chem, 2005, 24: 464-469. doi: 10.1897/04-081R.1

    [4]

    JAMES S, JENNIFER J D, CUNNINGHAM C S, et al. Zebrafish behavior in novel environments effects of acute exposure to anxiolytic compounds and choice of Danio rerio line[J]. Int J Comp Psychol, 2010, 23(1): 43-61.

    [5]

    LAURA M, ROBERTO M, CARMELINA I, et al. Simultaneous analysis of diazepam and its metabolites in rat plasma and brain tissue by HPLC-UV and SPE[J]. Talanta, 2009, 80(1): 279-285. doi: 10.1016/j.talanta.2009.06.074

    [6] 吴敏. 地西泮药物污染对斑马鱼神经行为毒性及机制研究[D]. 镇江: 江苏大学, 2021: 2-4.
    [7] 易小翠, 易伟, 雷霖, 等. 液质联用同时测定大鼠尿液中6种苯二氮卓类药物[J]. 应用化学, 2022, 39(2): 340-348.
    [8] 何连军, 王鼎南, 张宜明, 等. 通过型固相萃取-高效液相色谱-串联质谱法同时测定水产品中的5种硝基咪唑和地西泮[J]. 核农学报, 2021, 35(8): 1865-1874.
    [9] 张璇, 杨光昕, 孔聪, 等. 高效液相色谱-串联质谱法测定水产品中镇静剂及其代谢物残留[J]. 分析化学, 2021, 49(3): 460-469.
    [10] 原帅, 于治国, 王海峰, 等. 城市生活污水中阿片类、苯丙胺类以及苯二氮卓类滥用物质的高分辨质谱筛选及确证[J]. 质谱学报, 2021, 42(6): 1080-1090.
    [11] 张彪, 敖沛尧, 靳浩然, 等. SPE−UPLC测定血液中苯二氮卓类药物[J]. 锦州医科大学学报, 2019, 40(5): 15-17, 116-117.
    [12] 徐越, 吴永富, 邹波, 等. 自动固相萃取-气相色谱-串联质谱法分析血液中的2'-氯地西泮[J]. 刑事技术, 2021, 46(3): 269-272.
    [13] 刘燕, 李蒙, 高静, 等. HPLC法测定地西泮直肠凝胶剂的药物含量及有关物质[J]. 国际药学研究杂志, 2020, 47(4): 312-317, 322.
    [14] 徐佳雯, 李尚, 张彦卓, 等. HPLC法同时测定地西泮直肠凝胶中地西泮、苯甲酸、苯甲醇含量[J]. 药学与临床研究, 2020, 28(2): 97-100.
    [15] 桑丽雅, 陈笑笑, 王扬, 等. 基于免疫磁珠的胶体金免疫层析法快速检测水产品中地西泮残留[J]. 食品工业科技, 2020, 41(20): 255-260, 284.
    [16] 沈可伊, 邹晓霜, 王军. 高效液相色谱−串联质谱测定虾肉中四种兽药残留及其热稳定性分析[J]. 食品与发酵工业, 2022, 48(22): 263-268.
    [17]

    AITOR S S, ALBERT E T F, ARMENTA S, et al. Molecularly imprinted polymerstir bar sorptive extraction of diazepam from natural water[J]. Microchem J, 2023, 186: 108354. doi: 10.1016/j.microc.2022.108354

    [18] 中华人民共和国农业农村部. 农业农村部关于监督抽查发现的27批次问题农产品情况的通告(2022年3号)[EB/OL]. [2022-07-13]. http://www.moa.gov.cn/xw/bmdt/202207/t20220713_6404619.Htm.
    [19]

    LAGESSON A, BRODIN T, FAHLMAN J, et al. No evidence of increased growth or mortality in fish exposed to oxazepam in semi-natural ecosystems[J]. Sci Total Environ, 2018, 615: 608-614. doi: 10.1016/j.scitotenv.2017.09.070

    [20]

    KE C L, LIU Q, LI L, et al. Residual levels and risk assessment of eugenol and its isomers in fish from China markets[J]. Aquaculture, 2018, 484: 338-342. doi: 10.1016/j.aquaculture.2017.07.034

    [21] 徐鹏, 张紫英, 李文红, 等. 绿狐尾藻和空心菜对模拟池塘养殖尾水的净化效果分析[J]. 南方农业学报, 2022, 53(10): 2812-2820.
    [22] 黄晓丽, 白淑艳, 黄丽, 等. 空心菜浮床栽培对寒冷地区养殖水体的净化效果[J]. 贵州农业科学, 2021, 49(1): 83-87.
    [23] 黄晓丽, 黄丽, 高磊, 等. 空心菜对水中3种除草剂的去除作用[J]. 生态毒理学报, 2020, 15(6): 334-343.
    [24] 刘抗旱, 郑刘根, 张理群, 等. 复合型植物源活化剂强化蜈蚣草修复砷污染土壤的效应研究[J]. 生态环境学报, 2023, 32(3): 635-642.
    [25]

    MA L Q, KOMAR K M, TU C, et al. A fern that hyperaccumulates arsenic[J]. Nature, 2001, 409(6820): 579. doi: 10.1038/35054664

    [26]

    OGGIER D M, WEISBROD C J, STOLLER A M, et al. Effects of diazepam on gene expression and link to physiological effects in different life stages in zebrafish Danio rerio[J]. Environ Sci Technol, 2010, 44(19): 7685-7691. doi: 10.1021/es100980r

    [27] 孙翔. 六种水生植物对水体重金属的净化能力研究[D]. 淮南: 安徽理工大学, 2020: 6-8.
    [28] 孙世东, 赵文红, 任顺成. 直链淀粉-番茄红素复合物的光稳定性及降解动力学研究[J]. 河南工业大学学报(自然科学版), 2023, 44(4): 26-34.
    [29] 宋延斌, 王喜宽, 夏炎, 等. 河南洛阳市土壤和农作物中硒分布及富集特征[J]. 岩矿测试, 2022, 41(4): 652-662.
    [30] 丁洋. 青藏高原东缘土壤中典型持久性有机污染物的来源与迁移转化机制[D]. 武汉: 中国地质大学, 2021: 4.
    [31] 方龙香, 宋超, 范立民, 等. 基于正交实验设计的磺胺甲恶唑在渔业水体中的消解动态规律[J]. 中国农学通报, 2019, 35(27): 146-152.
    [32]

    CHARLES E W, STEVEN J R. Aqueous photo transformation of diazepam and related human metabolites under simulated sunlight[J]. Environ Sci Technol, 2012, 46(9): 4749-4756. doi: 10.1021/es203529z

    [33]

    LIU Q Z, WANG L, XU X, et al. Antiepileptic drugs in aquatic environments: occurrence, toxicity, transformation mechanisms and fate. [J] Crit Rev Env Sci Tec, 2023, 407: 1-25.

    [34]

    ROSSI I B, ADRIANA C V, PUPO R F N. Zero valent iron mediated degradation of the pharmaceutical diazepam[J]. Chemosphere, 2012, 88(6): 688-692. doi: 10.1016/j.chemosphere.2012.03.077

    [35] 张超莹, 郑西来, 陈蕾, 等. 水库沉积物中铁、锰季节性释放的实验研究[J]. 水资源保护, 2013, 29(3): 79-82, 86.
    [36] 孙楠, 蔡振兴, 祁博伟, 等. 稻蟹共作模式下生物对多环芳烃的富集机制[J]. 东北农业大学学报, 2022, 53(9): 80-89.
    [37] 张淑琴. 月季根系分泌物促进根际土壤有机氯农药降解研究[J]. 环境科学与技术, 2022, 45(1): 145-153.
    [38] 郭思宇. 蜈蚣草、龙葵与玉米不同间作距离对镉砷复合污染农田土壤修复的影响[D]. 昆明: 昆明理工大学, 2021: 25-63.
    [39] 陈同斌, 韦朝阳, 黄泽春, 等. 砷超富集植物蜈蚣草及其对砷的富集特征[J]. 科学通报, 2002(3): 207-210.
    [40] 刘吉. 锑胁迫下蜈蚣草根系分泌物对其吸收累积锑的影响研究[D]. 贵阳: 贵州大学, 2021: 12-48.
    [41] 马生健, 宗久明, 曾富华, 等. 高羊茅、假俭草对除草剂与真菌病抗性研究[J]. 湛江师范学院学报, 2006(3): 78-82.
    [42] 周品成, 刘希强, 康兴生, 等. 4种水生植物对兽用抗生素去除效果比较[J]. 华南农业大学学报, 2019, 40(6): 67-73.
    [43] 郭金鹏, 卢少勇, 杨海燕, 等. 不同湿地植物多环芳烃含量及其对湿地多环芳烃去除量的贡献研究[J]. 环境工程, 2023, 41(S1): 503-508.
  • 期刊类型引用(5)

    1. 李瑶瑶,金圣涵,翟瑞意,李英美,李婷婷,韩玲钰. 不同海参糖肽的制备及其对鲅鱼鱼糜凝胶品质的影响. 食品科技. 2024(05): 115-124 . 百度学术
    2. 魏登枭,车丹丹,陈必链,何勇锦,周志华. 三相分离法提取裂殖壶藻中油脂、蛋白质和多糖的工艺优化. 中国油脂. 2023(03): 123-129 . 百度学术
    3. 牛秋云. 小麦胚芽蛋白糖基化产物抗氧化特性研究. 食品与机械. 2023(05): 32-37 . 百度学术
    4. 郭浩彬,李敏杰,张陆燕,章银良. 美拉德反应优化藜麦多肽抗氧化活性的研究. 中国调味品. 2023(12): 59-68 . 百度学术
    5. 董烨,张益奇,张晓頔,胡学佳,戴志远. 鳙鱼皮水解物美拉德反应产物抗氧化活性研究. 核农学报. 2022(11): 2199-2209 . 百度学术

    其他类型引用(2)

图(3)  /  表(6)
计量
  • 文章访问数:  164
  • HTML全文浏览量:  30
  • PDF下载量:  47
  • 被引次数: 7
出版历程
  • 收稿日期:  2023-06-30
  • 修回日期:  2023-10-08
  • 录用日期:  2023-11-02
  • 网络出版日期:  2023-11-15
  • 刊出日期:  2024-04-04

目录

/

返回文章
返回