Analysis of microbiammunl coity structure and potential pathogens in mucus, intestinal content of Acipenser dabryanus and culture water
-
摘要:
长江鲟 (Acipenser dabryanus) 为中国特有鱼类,已被国际自然保护联盟 (IUCN) 列为极危级 (CR) 物种。通过Illumina高通量测序技术,探究了长江鲟幼鱼黏液、肠道内容物及其养殖水体的微生物菌群组成、多样性及动态变化,以期为长江鲟幼鱼健康养殖和病害分析提供参考依据。结果显示:养殖水体微生物多样性最高,黏液次之,肠道内容物最低。黏液和肠道内容物微生物菌群结构更为相似,且可与养殖水体微生物菌群区分开来。在门水平,黏液和肠道内容物均以放线菌门、变形菌门和厚壁菌门为主;养殖水体则以变形菌门、拟杆菌门和厚壁菌门为主。研究还发现7种可能的病原菌在养殖水体和黏液中富集,当鱼体处于应激状态或养殖环境恶化时,可能导致病害发生。BugBase表型预测分析发现,长江鲟幼鱼黏液、肠道内容物及其养殖水体中存在革兰氏阴性菌和阳性菌。其中肠道内容物的优势菌群为革兰氏阳性菌,占比超过60%;黏液和养殖水体的优势菌群均为革兰氏阴性菌,占比分别为60%和70%。在氧气需求方面,黏液和肠道内容物以好氧菌为主,养殖水体以好氧菌和兼性厌氧菌为主。
Abstract:Yangtze sturgeon (Acipenser dabryanus) is an endemic fish in China and has been listed as a critically endangered (CR) species by the International Union for Conservation of Nature (IUCN). In order to provide a reference basis for healthy breeding and disease analysis of juvenile Yangtze sturgeon, we analyzed the composition, diversity and dynamic changes of microbial flora between its surface mucus, intestinal content and culture water by using Illumina high-throughput sequencing technology. The results show the diversity of microorganisms in culture water was higher than that in mucus and intestinal content. The microbial community structure of mucus and intestinal content were more similar, and could be clearly distinguished from the microbial community of culture water. On phylum level, mucus and intestinal content were mainly composed of Actinobacteria, Proteobacteria and Firmicutes, while the culture water was mainly composed of Proteobacteria, Bacteroidetes and Firmicutes. Seven potential pathogenic genera were found, mainly in culture water and mucus which might lead to the occurrence of diseases under certain circumstances. BugBase phenotype prediction analysis reveals that both Gram negative and Gram positive bacteria were present in the mucus, intestinal content and culture water of juvenile Yangtze sturgeon. The dominant microbiota of intestinal content was Gram positive bacteria, accounting for over 60%. The dominant microbial communities in mucus and culture water were both Gram negative bacteria, accounting for 60% and 70%, respectively. In terms of oxygen demand, mucus and intestinal content were mainly composed of aerobic bacteria, while culture water was mainly composed of aerobic and facultative anaerobic bacteria.
-
斑节对虾(Penaeus monodon) 是养殖对虾中体形最大、经济价值较高的一种,也是我国南方传统养殖对虾种类之一,在半咸淡水或海水、淡水资源丰富的对虾养殖区都适合养殖,特别适合大规格虾养殖[1-2]。在“十一五”、“十二五”期间,中国水产科学研究院南海水产研究所在国家和省部级项目资助下,已开展了斑节对虾育种研究,培育出了生长快的斑节对虾新品种“南海1号”和生长快、成活率高的杂交新品种“南海2号”,此外还培育了多个具有不同遗传性状差异的育种材料。但是,仅仅改善生长性状、瞄准产量目标是远远不够的,对抗逆性状以及与养殖生态环境相适应的性状的选育,成为当前斑节对虾产业可持续发展亟待解决的重要问题。盐度和氨氮含量是斑节对虾养殖过程中非常重要的环境因子,对其生长、呼吸代谢、免疫防御、存活都有着非常重要的影响[3-5]。培育抗逆性状得到明显改良的斑节对虾品种(耐氨氮品系和低盐品系)是其产业的迫切需要。
估计遗传参数是开展育种工作的重要依据,对选择育种方案的制定具有非常重要的指导意义[6]。目前,水产动物遗传参数的研究主要集中在数量性状遗传力的估计,如草鱼(Ctenopharyngodon idellus)[7]、鳜(Siniperca chuatsi)[8]、日本囊对虾(Marsupenaeus japonicus)[9]、斑点叉尾鮰 (Ictalurus punctatus)[10]、文蛤(Meretrix meretrix)[11]、凡纳滨对虾(Litopenaeus vannmei)[12]、脊尾白虾(Exopalaemon carincauda)[13]、缢蛏(Sinonovacula constricta)[14]、中间球海胆(Strongylocentrotus intermedius)[15]等生长性状的遗传力估计,以及长牡蛎(Crassostrea gigas)肉质和壳色性状的遗传力分析[16]等。目前,关于水产动物抗逆性状的遗传参数估计研究不多。已报道的有虹鳟(Oncorhynchus mykiss)耐低溶解氧等性状[17-18],凡纳滨对虾存活和耐低氧性状[19-20],大黄鱼(Larimichthys crocea)耐低氧、低盐、低pH等抗逆性状[21],三疣梭子蟹(Portunus trituberculatus)耐低盐性状[22],以及中国明对虾(Fenneropenaeus chinensis)耐高氨氮、高pH遗传力[23]等。
目前,有关斑节对虾遗传参数的估计主要集中在生长和存活性状方面。Sun等[24]估计了6月龄斑节对虾体长、体质量等生长性状的遗传力。Macbeth等[25]对斑节对虾繁殖性状的遗传力进行了估计。Kenway等[26]对池塘养殖斑节对虾生长性状的遗传力和遗传相关进行了估计。Benzie等[27]对斑节对虾幼虾生长性状的遗传力进行了估计。Krishna等[28]对斑节对虾生长和存活性状的遗传力进行了估计。有关斑节对虾抗逆性状遗传参数的研究尚未见报道。
本研究利用定向交尾技术建立斑节对虾全同胞(半同胞)家系,分别以高氨氮和淡水胁迫致死时间为衡量指标,采用方差分析法估计了斑节对虾氨氮耐受性和淡水应激性状的遗传参数,首次对斑节对虾抗逆性状进行了遗传评估,为其抗逆良种选育提供理论基础。
1. 材料与方法
1.1 实验材料
以保存在斑节对虾遗传育种中心(中国水产科学研究院南海水产研究所深圳试验基地)的斑节对虾“南海1号”和非洲品系亲虾构建家系,用于氨氮和淡水应激性状的遗传参数估计。雌性和雄性亲虾分池暂养并用眼柄数字环对其标记。已经自然交配成熟的雌虾,单独对其进行产卵和苗种培育,构建家系。未自然交配的雌虾蜕壳后,参照杨其彬等[29]方法,用挤压或解剖法将雄虾精荚取出,并移植到雌虾纳精囊中,完成定向交尾,构建家系。
2014年4月,成功建立了全同胞家系27个,其中包括5个父系半同胞家系。27个家系虾苗培育到P15后,随机取1 000尾移入标粗车间水泥池,分别单独培育30 d后用于耐氨氮和淡水应激实验。
1.2 实验方法
1.2.1 氨氮胁迫
实验在斑节对虾遗传育种中心进行。在正式氨氮胁迫实验前,需进行预实验,确定氨氮胁迫浓度。预实验共设计了5个氨氮浓度梯度(50 mg·L–1、90 mg·L–1、110 mg·L–1、130 mg·L–1和150 mg·L–1),氨氮浓度用氯化铵(分析纯)来调节。实验结果表明,氨氮质量浓度为90 mg·L–1时实验虾96 h全部死亡,因此确定本次实验用此浓度进行耐氨氮性状遗传参数估计。
从标粗池中每个家系挑选100尾大小均匀的幼虾[(3.46±0.10) g]进行荧光标记,并暂养24 h,然后将100尾个体随机分成2组,每组50尾,分别混养于2个6 m3水体的水泥池中,采用高浓度氨氮(90 mg·L–1)进行胁迫实验。实验期间不充气,每12 h换1次实验用水,每次全部换掉。每隔2 h统计1次每个水泥池的对虾死亡数据,捞取死虾,并记录死亡对虾对应的家系,直至全部对虾死亡,实验结束。
1.2.2 淡水应激胁迫
从标粗池中每个家系挑选100尾大小均匀的幼虾(3.5±0.10) g进行荧光标记,并暂养24 h,然后每个家系分成2份,每份50尾,混养于2个6 m3水体的水泥池中,进行淡水应激胁迫实验。实验期间,每隔10 min统计1次每个水泥池的对虾死亡数据,捞取死虾,并记录死亡对虾对应的家系,直至全部对虾死亡,实验结束。
1.3 统计分析
采用SPSS 19.0 软件一般线性模型(general linear model,GLM),检验家系间在耐氨氮和淡水应激性状上是否存在显著性差异。
统计模型为单性状动物模型和ASReml软件进行方差组分估计,具体模型形式:
$$ y = \mu + {t_{i} + {\alpha _{{j}}} + {e_{{{ij}}}}} $$ 式中y为高氨氮或淡水应激胁迫中的个体存活时间,μ为总体均值,ti为池子固定效应,αj为个体加性遗传效应,eij为随机残差。
家系全同胞效应包括环境效应、非加性遗传效应和母本效应。已有的研究表明,应用动物模型分析方差组分时,加入和未加入家系全同胞效应,遗传力估计值差异较大[30-32]。当模型加入和未加入家系全同胞效应时,似然比率检验(likelihood ratio test,LRT)差异不显著,则模型中不应加入家系全同胞效应,遗传力估值更为准确[10, 32]。本研究在收获高氨氮或淡水应激性状方差组分估计时,模型加入和未加入家系全同胞效应,似然比率检验差异不显著,因此在模型中剔除了家系全同胞效应。
收获高氨氮或淡水应激的遗传力(h2)计算公式为:
$$ {{{h}}^2} = \frac{{{\rm{\sigma }}_{\rm{\alpha }}^2}}{{{\rm{\sigma }}_{\rm{\alpha }}^2 + {\rm{\sigma }}_{{e}}^2}} $$ 式中
${\rm{\sigma }}_{\rm{\alpha }}^2 $ 为加性遗传方差组分,$ \sigma _e^2$ 为残差方差组分。因为高氨氮或淡水应激胁迫实验是分开进行的,故无法在个体水平上估计性状间的表型相关,因此,本研究进行了性状间家系表型值和育种值的相关分析。通过ASReml V4.1软件的单性状动物模型,估计出收获高氨氮和淡水应激性状间的表型相关系数和育种值相关系数。
2. 结果
2.1 氨氮耐受性和淡水应激性状的描述性统计量
27个家系幼虾阶段的耐氨氮存活平均时间为35.66 h,变异系数达到68.26%;27个家系耐淡水应激存活平均时间为122.56 min,变异系数达到43.63% (表1)。图1以箱线图的形式给出了斑节对虾27个家系耐氨氮和淡水应激存活时间的平均值、最小值、最大值、异常值、中位数、第一四分位数以及第三四分位数。家系间耐氨氮和淡水应激存活时间的中位数存在较大差异,且一般线性模型分析表明家系间耐氨氮和淡水应激性状差异极显著(P<0.01)。
表 1 斑节对虾27个家系耐氨氮耐和淡水应激存活时间的表型参数Table 1. Phenotypic parameters of ammonia nitrogen tolerance and freshwater tolerance for 27 families of P. monodon性状
trait平均值
mean标准差
standard deviation变异系数/%
coefficient of variation最大值
maximum最小值
minimum耐氨氮存活/h
survival for ammonia nitrogen tolerance35.66 24.34 68.26 98 2 耐淡水应激存活/min
survival for freshwater tolerance122.56 53 43.63 330 15 图 1 斑节对虾家系耐氨氮 (a) 和淡水应激 (b) 存活时间的箱线图盒子包含了中位数、第一四分位数和第三四分位数;×、−、△和○依次表示平均值、最小值、最大值和异常值Figure 1. Box plots of ammonia nitrogen tolerance (a) and freshwater tolerance (b) survival time for P. monodon familiesThe boxes contain median, 25th and 75th percentiles; ×, −, △ and ○ represent mean, minimum, maximum and outliers, respectively.2.2 氨氮耐受性和淡水应激性状的方差组分、遗传力和遗传相关
斑节对虾耐氨氮性状的遗传力为0.11±0.04,属于低遗传力(表2)。耐淡水应激的遗传力为0.29±0.08,属于中等遗传力。通过LRT检验分析表明,耐氨氮性状和耐淡水应激性状的遗传力达到显著水平。
表 2 斑节对虾耐氨氮和淡水应激性状的方差组分和遗传力Table 2. Variance components, heritabilities of ammonia nitrogen tolerance and freshwater tolerance for P. monodon性状
trait方差 variance 表型方差 (σp 2)
phenotypic variance加性方差 (σα 2)
additive genetic variance残差方差 (σe 2)
residual variance遗传力 (h2)
heritability遗传力显著性
significantly different heritability耐氨氮/h
ammonia nitrogen tolerance588.27 66.30 521.97 0.11±0.04 * (P<0.05) 耐淡水应激/min
freshwater tolerance2 663.50 783.48 1 880.00 0.29±0.08 * (P<0.05) 斑节对虾耐氨氮和淡水应激家系表型值相关系数为0.15,遗传相关系数为0.57。统计检验分析表明,家系表型相关系数不显著(P>0.05),家系遗传相关系数达到了极显著水平(P<0.01)。根据本研究构建的散点图(图2),各个家系的耐氨氮和淡水应激性状育种值的数据点分布分散,但有明显的直线关系。各个家系的耐氨氮和淡水应激性状表型值的数据点分布分散,且无明显的直线关系。
3. 讨论
本研究显示,利用斑节对虾“南海1号”和非洲品系群体构建的27个家系耐氨氮性状和耐淡水应激性状变异系数较大,分别为68.26%和43.63%(表1),且一般线性模型分析表明家系间耐氨氮和淡水应激性状差异极显著(P<0.01),因此,本研究认为斑节对虾“南海1号”和非洲品系群体耐氨氮性状和耐淡水应激性状具有较大的选育潜力。
在进行抗逆性状遗传力分析时,成活率或存活时间常被作为动物抗性大小的指标[33-35],成活率为阈性状,其遗传参数估计有多种,在水产动物中应用的有线性动物模型[22, 36-37]和公母畜阈模型[10, 21, 38]等方法。有学者认为采用常规性线性模型估计阈性状的遗传参数,结果不是很理想[39],而利用广义线性混合模型(GLMM)方法或公母畜阈模型对阈性状的遗传参数进行估计更为合适[40]。当把存活时间作为动物抗性大小的指标时,抗逆性状为连续性状,对其遗传参数进行估计时,应用常规线性模型分析能得到理想的结果[35]。本研究在进行氨氮耐受性和淡水应激性状遗传力分析时,存活时间被作为斑节对虾抗性大小的指标。因此,本研究采用一般线性动物模型估计了斑节对虾氨氮耐受性和淡水应激性状遗传力。有关水产动物抗逆性状遗传力的报道较少,且都属于中低遗传力,如九孔鲍(Haliotis diversicolor supertexta)养殖群体耐低盐性状遗传力估计值为0.056±0.022[38];大黄鱼耐低盐、低溶解氧和低pH值遗传力估计值分别为0.23、0.10和0.23[21];大菱鲆(Scophthalmus maximus)耐高温性状遗传力为0.026[32];三疣梭子蟹Ⅱ期幼蟹和80日龄稚蟹耐低盐性状的遗传力为0.18~0.20[22]等。本研究与上述结果类似,斑节对虾耐氨氮性状的遗传力为低遗传力(0.11±0.04),耐淡水应激性状的遗传力为中遗传力(0.29±0.08)。性状遗传力水平是选择育种的重要依据,一般认为高遗传力性状,通过个体选育或群体选育的方法能够达到较好的选育效果,对于中低遗传力的性状,采用家系选育或家系内选育效果会更好[41]。因此,在开展斑节对虾耐氨氮或淡水应激性状选育时,家系选育更为合适。
育种工作中,性状间的相关参数是制定目标性状的重要依据。有的性状可通过与其他相关性较高性状的选育达到间接选育的目的[42]。研究发现,生长与抗逆性状的相关性较小或不相关,如斑节对虾收获体质量与成活率的育种值相关系数为0.05 (P>0.05)[28],大菱鲆生长和耐高温性状的相关系数仅为0.04 (P>0.05)[32],斑点叉尾鮰基础群体家系收获体质量和存活性状育种值相关系数为0.065 (P>0.05)[10],九孔鲍生长性状与耐低盐性状无显著相关[38]。因此,在开展斑节对虾等上述物种的良种选育时,育种目标只考虑生长性状,育种核心群体经过多代选育后,其抗逆性状(存活、耐高温或耐低盐性状)不会得到有效改良,甚至可能会衰退。因此,在育种规划时有必要采用经济加权系数或百分比赋值方式,对抗逆性状进行一定的加权。目前有关抗逆性状之间的相关性分析很少,栾生等[35]研究表明中国对虾抗WSSV存活时间与成活率之间为负相关。本研究中斑节对虾耐氨氮和淡水应激性状的家系表型值相关系数较小,表现为低度线性正相关(R=0.15,P>0.05)。斑节对虾耐氨氮和淡水应激性状的家系育种值相关系数表现为中高度线性正相关(R=0.57,P<0.01)。因此在进行耐氨氮选育时,核心育种群体多代选育后,其耐淡水应激性状也能得到一定的改良。
-
-
[1] ELLIS A E. Immunity to bacteria in fish[J]. Fish Shellfish Immunol, 1999, 9(4): 291-308. doi: 10.1006/fsim.1998.0192
[2] GUARDIOLA F A, CUESTA A, ARIZCUN M, et al. Comparative skin mucus and serum humoral defence mechanisms in the teleost gilthead seabream (Sparus aurata)[J]. Fish Shellfish Immunol, 2014, 36(2): 545-551. doi: 10.1016/j.fsi.2014.01.001
[3] LYONS P P, TURNBULL J F, DAWSON K A, et al. Effects of low-level dietary microalgae supplementation on the intestinal microbiome of farmed rainbow trout Oncorhnchus mykiss (Walbaum)[J]. Aquac Res, 2017, 48(5): 2438-2452. doi: 10.1111/are.13080
[4] GUPTA V K, KIM M, BAKSHI U, et al. A predictive index for health status using specieslevel gut microbiome profiling[J]. Nat Commun, 2020, 11(1): 4635. doi: 10.1038/s41467-020-18476-8
[5] GADOIN E, DURAND L, GUILLOU A, et al. Does the composition of the gut bacteriome change during the growth of tuna?[J]. Microorganisms, 2021, 9(6): 1157. doi: 10.3390/microorganisms9061157
[6] GIATSIS C, SIPKEMA D, SMIDT H, et al. The impact of rearing environment on the development of gut microbiota in tilapia larvae[J]. Sci Rep, 2015(5): 18206.
[7] 丁红秀, 李忠莹, 刘俊, 等. 不同生境草鱼肠道微生物组成和群落特征分析[J]. 微生物学报, 2021, 61(3): 729-739. [8] 樊英, 于晓清, 李乐, 等. 基于16S rRNA 高通量测序分析大泷六线鱼表皮粘液及肠道内容物微生物多样性[J]. 生物技术进展, 2021, 11(1): 79-90. [9] 郝佳慧, 蔡伟杰, 李柯懋, 等. 高通量测序分析小头裸裂尻鱼皮肤和肠道的微生物多样性[J]. 微生物学报, 2023, 63(1): 233-250. [10] 陈奇, 宋协法, 周广军, 等. 鲟鱼循环水养殖系统中生物滤池的水质变化及微生物群落结构响应[J]. 中国海洋大学学报, 2022, 52(11): 56-66. [11] 苟妮娜, 钟明智, 王开锋. 基于16S rRNA高通量测序的野生和养殖多鳞白甲鱼肠道微生物群落组成研究[J]. 西北农业学报, 2021, 30(7): 963-970. [12] 叶建勇, 唐金玉, 丁辰龙, 等. 基于高通量测序的克氏原螯虾肠道及其养殖环境菌群结构分析[J]. 青岛农业大学学报 (自然科学版), 2020, 37(2): 129-134. [13] 孙立元, 危起伟, 张辉, 等. 基于水声学的长江上游向家坝至宜宾江段鱼类空间分布特征[J]. 淡水渔业, 2014, 44(1): 53-58. doi: 10.3969/j.issn.1000-6907.2014.01.010 [14] 翟万营. 南极鱼亚目鱼类肠道、皮肤黏液及其生存水环境微生物结构和功能研究[D]. 上海: 上海海洋大学, 2020: 7-121. [15] STEPHENS W Z, BURANS A R, STAGAMAN K, et al. The composotion of the zebrafish intestinal microbial community varies across development[J]. ISME J, 2016, 10(3): 644-654. doi: 10.1038/ismej.2015.140
[16] LIU Q F, LAI Z N, GAO Y, et al. Connection between the gut microbiota of largemouth bass (Micropterus salmoides) and microbiota of the pond culture environment[J]. Microorganisms, 2021, 9(8): 1770. doi: 10.3390/microorganisms9081770
[17] 李革雷, 陈昌福, 高宇, 等. 3种养殖模式水体中细菌多样性研究[J]. 华中农业大学学报, 2012, 31(3): 381-390. doi: 10.3969/j.issn.1000-2421.2012.03.021 [18] 熊向英, 赵艳飞, 王志成, 等. 斑点叉尾鮰肠道及其养殖环境菌群结构分析[J]. 水产科学, 2022, 41(4): 589-596. [19] 吴欢欢, 王伟继, 吕丁. 应用高通量测序技术分析大菱鲆幼鱼肠道及其养殖环境的微生物群落结构[J]. 渔业科学进展, 2019, 40(4): 84-94. [20] 张琛, 王岩, 郑峡飞, 等. 海水网箱养殖花鲈和日本黄姑鱼肠道细菌的多样性[J]. 中国水产科学, 2020, 27(9): 1113-1124. [21] LOWREY L, WOODHAMS D C, TACCHI L, et al. Topographical mapping of the rainbow trout (Oncorhynchus mykiss) microbiome reveals a diverse bacterial community with antifungal properties in the skin[J]. Appl Environ Microb, 2015, 81(19): 6915-6925. doi: 10.1128/AEM.01826-15
[22] 但言, 余凤琴, 李双, 等. 不同生长阶段大口黑鲈肠道微生物多样性研究[J]. 西南农业学报, 2021, 34(12): 2798-2802. [23] 刘妮, 彭作刚. 玫瑰高原鳅肠道微生物多样性研究[J]. 水生生物学报, 2021, 45(1): 118-124. doi: 10.7541/2020.2019.169 [24] HUANG Q, SHAM R C, DENG Y, et al. Diversity of gut microbiomes in marine fishes is shaped by host-related factors[J]. Mol Ecol, 2020, 29(24): 5019-5034. doi: 10.1111/mec.15699
[25] 谭八梅, 王荦, 裴泓霖, 等. 不同季节刺参养殖池塘水样菌群结构与功能特征研究[J]. 渔业科学进展, 2021, 42(3): 77-88. [26] 高远, 李甍, 董登攀, 等. 凡纳滨对虾养殖系统中异养和自养型生物絮团的微生物特性及其与养殖水环境的关系[J]. 中国水产科学, 2022, 29(6): 864-873. doi: 10.12264/JFSC2021-0356 [27] 黄薇, 周华书, 刘兰英, 等. 鲟鳇鱼网箱养殖环境微生物菌群结构及潜在病原菌分析[J]. 水生生物学报, 2021, 45(6): 1255-1263. [28] COTTRELLl M T, KIRCHMAN D L. Nature assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low-molecular and high-molecular weight dissolved organic matter[J]. Appl Environ Microb, 2000, 66(4): 1692-1697. doi: 10.1128/AEM.66.4.1692-1697.2000
[29] KLASE G, LEE S, LIANG S, et al. The microbiome and antibiotic resistance in integrated fishfarm water: implications of environmental public health[J]. Sci Total Environ, 2019, 649: 1491-1501. doi: 10.1016/j.scitotenv.2018.08.288
[30] 施云芬, 郑蕾, 马慧, 等. 脉冲水解酸化-A/O生物反应器处理石化废水的中试研究及微生物群落结构解析[J]. 科技导报, 2017, 35(23): 39-45. [31] CHEN J, ROBB C S, UNFRIED F, et al. Alpha- and beta-mannan utilization by marine Bacteroidetes[J]. Environ Microbiol, 2018, 20(11): 4127-4140. doi: 10.1111/1462-2920.14414
[32] 高晓华, 张海强, 安伟. 凡纳滨对虾急性肝胰腺坏死病致病菌的分离鉴定、药敏特性及其组织病理学观察[J]. 淡水渔业, 2022, 52(3): 82-90. [33] 徐春霞. 网箱养殖大黄鱼内脏白点病病原菌分离鉴定及致病性研究[J]. 水产科学, 2021, 40(5): 670-678. [34] 张建明, 田甜, 张德志. 中华鲟幼鱼细菌性烂鳃病的诊断与治疗[J]. 水产科技情报, 2017, 44(5): 245-247. [35] DI J, ZHANG S H, HUANG J, et al. Isolation and identification of pathogens causing haemorrhagic septicaemia in cultured Chinese sturgeon (Acipenser sinensis)[J]. Aquac Res, 2018, 49(11): 3624-3633. doi: 10.1111/are.13830
[36] 王文龙. 嗜水气单胞菌在西伯利亚鲟体内的分布及其引起的病理学变化[D]. 成都: 四川农业大学, 2010: 28-35. [37] 刘亚, 杨锐, 陈叶雨, 等. 达氏鲟维氏气单胞菌的分离鉴定及病理组织学观察[J]. 南方农业学报, 2018, 49(6): 1235-1241. doi: 10.3969/j.issn.2095-1191.2018.06.28 [38] YANG R, LIU Y, WANG Y, et al. Pathogenesis and pathological analysis of Edwardsiella tarda from Dabry's sturgeon (Acipenser dabryanus) in China[J]. Aquaculture, 2018, 495: 637-642. doi: 10.1016/j.aquaculture.2018.04.010
[39] 杨移斌, 夏永涛, 赵蕾, 等. 鲟源弗氏柠檬酸杆菌分离鉴定及药敏特性研究[J]. 水生生物学报, 2013, 37(4): 766-771. [40] 杨圆圆, 杨移斌, 曹海鹏, 等. 杂交鲟源恶臭假单胞菌的分离鉴定及药敏特性研究[J]. 浙江农业学报, 2017, 29(12): 1978-1985. doi: 10.3969/j.issn.1004-1524.2017.12.04 [41] 杨移斌, 杨秋红, 刘永涛, 等. 俄罗斯鲟停乳链球菌停乳亚种分离、鉴定及其药敏特性研究[J]. 中国预防兽医学报, 2017, 39(9): 717-721. [42] SHARIFPOUR I, SOLTANI M, MAZANDARAN M. Histopathological features of infection by Streptococcus iniae in Persian sturgeon, Acipenser persicus[J]. J Aquat Anim Health, 2020, 6(2): 39-48. doi: 10.52547/ijaah.6.2.39
[43] PATE M, JENCIC V, ZOLNIR-DOVC M, et al. Detection of mycobacteria in aquarium fish in Slovenia by culture and molecular methods[J]. Dis Aquat Organ, 2005, 64(1): 29-35.
[44] ANTUOFERMO E, PAIS A, NUVOLI S, et al. Mycobacterium chelonae associated with tumor-like skin and oral masses in farmed Russian sturgeons (Acipenser gueldenstaedtii)[J]. BMC Vet Res, 2014, 10: 18. doi: 10.1186/1746-6148-10-18
[45] ZHANG Q Q, WANG X H, ZHANG D F, et al. De novo assembly and analysis of Amur sturgeon (Acipenser schrenkii) transcriptome in response to Mycobacterium marinum infection to identify patative genes involved in immunity[J]. J Microbiol Biontechn, 2019, 29(8): 1324-1334. doi: 10.4014/jmb.1903.03034
[46] 阮瑞, 吴金平, 李营, 等. 人工养殖下达氏鰉幼鱼肠道菌群组成分析[J]. 淡水渔业, 2018, 48(5): 93-98. doi: 10.3969/j.issn.1000-6907.2018.05.015 [47] 樊英, 王友红, 姬广磊, 等. 基于宏基因组测序技术揭示大泷六线鱼肠道微生物特征[J]. 微生物学报, 2023, 63(1): 357-375. doi: 10.13343/j.cnki.wsxb.20220338 [48] KIM M, QIE Y, PARK J, et al. Gut microbial metabolites fuel host antibody responses[J]. Cell Host Microbe, 2016, 20(2): 202-214. doi: 10.1016/j.chom.2016.07.001
[49] SPOR A, KOREN O, LEY R. Unravelling the effects of the environment and host genotype on the gut microbiome[J]. Nat Rev Micribiol, 2011, 9(4): 279-290. doi: 10.1038/nrmicro2540
[50] 王艳芳. 滇黄精多糖改善大鼠脂代谢紊乱的作用研究[D]. 昆明: 云南中医学院, 2017: 41-52. [51] LOUIS P, FLINT H J. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine[J]. FEMS Microbiol Lett, 2009, 294(1): 1-8. doi: 10.1111/j.1574-6968.2009.01514.x
-
期刊类型引用(17)
1. 姚坤志,黄雪颖,李峰,何林文,许强. 野生刺枝紫菜(Pyropia acanthophora)的营养成分分析与评价. 食品与发酵工业. 2024(06): 208-214 . 百度学术
2. 姚坤志,李峰,黄雪颖,何林文,许强,孙春阳. 不同盐度和光强对刺枝紫菜自由丝状体生长的影响. 水产学杂志. 2024(03): 50-57 . 百度学术
3. 白仁奥. 紫菜作为替代蛋白质可持续来源研究进展. 绿色科技. 2024(18): 257-264+276 . 百度学术
4. 吴晓雯,王铁杆,陶伟丽,张鹏,陈星星,薛峰,刘颖,陈继浓. 坛紫菜新品系和传统养殖品系花水菜营养成分差异分析. 食品安全质量检测学报. 2024(24): 218-225 . 百度学术
5. 王玉本,王伟伟,纪德华,孙娟,梁广津,赵楠,史良,孙建晓,李晓捷. 坛紫菜北方海区养殖试验. 水产科技情报. 2023(02): 87-92 . 百度学术
6. 张梦雪,叶静静,高子鑫,沈祥皓,胡金雨,盘赛昆. 双酶法制备条斑紫菜酶解液工艺优化及抗氧化、抗疲劳活性研究. 中国调味品. 2023(07): 7-13 . 百度学术
7. 张梦雪,李苏,叶静静,李志伟,陈洋,胡金雨,盘赛昆. 条斑紫菜蛋白质、多糖及牛磺酸提取工艺. 江苏海洋大学学报(自然科学版). 2023(03): 15-22 . 百度学术
8. 刘宇璇,汪芷因,林振士,李昌达,朱姚镓,李丹,吴嘉平. 洞头羊栖菜不同部位的营养成分和物化性质分析. 现代食品科技. 2022(01): 216-223+133 . 百度学术
9. 吕芳,詹冬梅,丁刚,刘玮,唐柳青,吴海一. 氮磷加富对山东长岛养殖坛紫菜的生长及营养成分的影响. 广西科学. 2022(01): 168-175 . 百度学术
10. 葛蒙蒙,沈建东,唐小航,夏文水,许艳顺. 低酸性和酸化即食紫菜热杀菌工艺优化研究. 南方水产科学. 2022(06): 127-136 . 本站查看
11. 刘星,范楷,钱群丽,姚春霞,饶钦雄,宋卫国. 基于近红外光谱技术的坛紫菜产地溯源研究. 农产品质量与安全. 2021(01): 51-55 . 百度学术
12. 张梅. 基于干燥参数优化的浮式紫菜干燥机的设计. 食品工业. 2021(04): 305-308 . 百度学术
13. 田雨,江艳华,郭莹莹,赵艳芳,李娜,姚琳,尹大芳,王联珠. 紫菜营养品质及食用价值研究进展. 食品安全质量检测学报. 2021(12): 4929-4936 . 百度学术
14. 黄海潮,王锦旭,潘创,杨贤庆,戚勃,李来好,赵永强. 超声波辅助过氧化氢法降解坛紫菜多糖及其抗氧化活性的研究. 南方水产科学. 2020(01): 110-119 . 本站查看
15. 杨贤庆,黄海潮,潘创,王锦旭,赵永强,戚勃. 紫菜的营养成分、功能活性及综合利用研究进展. 食品与发酵工业. 2020(05): 306-313 . 百度学术
16. 李继伟,杨贤庆,潘创,陈胜军,戚勃,许加超. 琼枝麒麟菜的营养成分分析与评价. 食品与发酵工业. 2020(15): 265-269 . 百度学术
17. 李水根. 福建省不同海域坛紫菜营养成分及重金属含量分析. 渔业研究. 2020(05): 453-462 . 百度学术
其他类型引用(4)