Morphological development of embryos and larvae of Mystus macropterus
-
摘要:
大鳍鳠 (Mystus macropterus) 是一种亟待开发的优质养殖品种。探明养殖大鳍鳠早期发育阶段的特征和规律,可为其人工催产和苗种培育提供理论依据。采用显微镜观察法,对其胚胎及仔稚鱼发育各时期的形态特征和发育特点进行了研究,并对其形态学指标进行了测量,推算出仔稚鱼阶段生长特性的回归方程。结果表明:大鳍鳠受精卵呈椭圆形、黄褐色,卵径为 (3.46±0.3) mm;平均水温26.2 ℃下,大鳍鳠胚胎发育历时79 h,积温为2065.26 h·℃,根据发育时胚胎的典型外部形态特征,将其分为受精卵、胚盘期、卵裂期、囊胚期、原肠期、神经胚期、器官分化期和出膜期共8个阶段28个时期;初孵仔鱼全长 (7.31±0.52) mm,仔鱼期历时10 d,仔鱼前期卵黄囊大部分被吸收,全长特定生长率 (SGRL) 为9.79%,体质量特定生长率 (SGRm) 为12.31%,出膜后7~8 d仔鱼大部分开口,9 d卵黄囊消失,仔鱼后期SGRL为4.15%,SGRm为12.25%。稚鱼期历时11 d,各鳍基本长成,体型和体色接近成鱼,SGRL为4.30%,SGRm为13.17%,全长22~24 mm。统计模型显示,大鳍鳠仔稚鱼的生长属于异速生长类型。
Abstract:Mystus macropterus is a high-quality aquaculture variety that urgently needs to be developed. Exploring the characteristics and patterns of early developmental stages of cultured M. macropterus can provide basic data for its seedling cultivation and large-scale efficient seed production. We studied the morphological characteristics and developmental features of its embryos and juveniles by microscopic observation, and measured the morphological indicators to derive regression equations for the growth characteristics of juveniles. The results show that the fertilized eggs of the fish were oval and yellowish brown, with a diameter of (3.46±0.3) mm. At incubation temperature of 26.2 ℃, the embryos took 79 h to develop for eight stages with 28 periods, including fertilization, cleavage, blastocyst, gastrula, neuroembryo, organ differentiation and hatching, and the total accumulative temperature was 2065.26 h·℃. The total length of the larvae was (7.31±0.52) mm, the larvae stage lasted for 10 d, and most of the yolk sac was absorbed at early stage of larvae. The full-length specific growth rate (SGRL) was 9.79%, and the weight-specific growth rate (SGRm) was 12.31%. Most of the larvae opened 7–8 d after membrane emergence, and the yolk sac disappeared on 9th day. The SGRL and SGRm were 4.15% and 12.25% at later stage of larvae, respectively. The juvenile stage lasted for 11 d. The fins were basically mature, and the body size and body color were close to those of adult fish. SGRL was 4.30%, SGRm was 13.17%, and the total length was 22–24 mm. The statistical model shows that the growth of the larvae and juveniles is of allometric type.
-
气候的变化、异常以及振荡驱动着海洋环境因子的变化,从而影响海洋生态系统的生命活动及过程[1]。厄尔尼诺南方涛动 (El Niño Southern Oscillation, ENSO) (包括厄尔尼诺和拉尼娜事件) 起源于赤道太平洋,是太平洋海域气候变化的最强信号,具有年际变动周期[2],其基本特征是西太平洋暖池的地带性位移以及大气对流,导致了整个太平洋海盆物理性质和生态系统的改变;具体表现为对各种海洋环境参数的影响,包括海表面温度 (Sea surface temperature, SST)、叶绿素a浓度 (Chl-a) 等,以及对由海洋顶级捕食者 (如金枪鱼) 共同构成的相互关联的海洋生态系统的影响[1,3-4]。
鲣 (Katsuwonus pelamis) 广泛分布于各大洋的热带、亚热带海域[5],中西太平洋热带海域是世界上最大的鲣渔场[6-7]。因而,研究中西太平洋鲣资源的时空分布对掌握渔业生产规律和开发鲣资源尤为重要。鲣种群按集群特点进行划分,可分为自由鱼群 (Free swimming school, FSC) (亦称起水群)、流木鱼群 (Log school) 以及鲸豚附随群 (Marine mammal associated school) 3类[8];流木鱼群中亦包括人工集鱼装置 (Fish aggregation device, FAD) 鱼群。自20世纪80年代以来,FAD开始被广泛运用于鲣的围网作业中,是一种高效的捕捞模式[9],但捕捞副渔获物 [非目标种类的幼年大眼金枪鱼 (Thunnus obesus) 以及黄鳍金枪鱼 (T. albacares)等] 严重的问题随之而来[10]。为此,中西太平洋海域的瑙鲁协定方 (Parties to nauru agreement, PNA) 制定了相关海洋管理政策以限制和减少FAD的使用[11]。相较于前者,自由鱼群的个体较大,偏好聚集于浅水层[12],且围网渔获物中兼捕物种少,但由于其高速游动的特性,捕捞难度较大[13]。因此,掌握围网鲣自由鱼群的时空分布特性,对于集中捕捉该种群以降低对漂浮物鱼群捕捉的依赖,从而并提高渔业生产效率具有积极作用,对保护金枪鱼的栖息环境与种群结构也具有重要意义[14]。
海洋鱼类资源的时空分布极易受海洋环境因子影响,掌握其时空分布有利于鱼类资源的合理开发和利用。鲣的分布模式受海表面温度影响显著[15],已有研究普遍发现鲣资源主要分布在海表温度28~30 ℃的海域[16-17],因而该温度区间可作为研究鲣资源时空分布变动的一项参考指标[18]。Lehodey等 [19]研究发现鲣作业渔场随暖池边缘(即与29 ℃等温线重合)发生了空间偏移。同时,气候变化在时空尺度上影响着海洋鱼类的分布模式,李政纬[17]指出,29 ℃等温线东界会受厄尔尼诺与南方涛动影响,进而影响鲣围网渔场的经向分布。受ENSO影响,鲣渔场与暖池的时空分布变动具有相同趋势[19-20]:即厄尔尼诺事件时,渔场重心随暖池东移;拉尼娜事件时,渔场重心随暖池西移[21]。因此,将暖池变动作为研究围网鲣自由鱼群时空分布的参考指标,能够探究鲣渔场的时空分布特性,更好地进行集中、高效的渔业生产活动,为其资源开发提供科学依据。已有研究仅对历史渔场重心与极端气候指标(如南方涛动指数、海表温异常指数)的关系进行了探讨[22-24],而忽略了暖池相关物理海洋指标空间变动而导致的渔场重心变化,其中包括暖池重心处多出现高产量的鲣围网渔场[25],以及暖池右边缘经向扩展而具有的潜在东部栖息地[26]。本研究以29 ℃等温线作为暖池边界,针对围网鲣自由鱼群的渔场重心与暖池相关指标进行相关性分析,并基于不同的气候模式下探究其时空分布变动之间的关系。
1. 材料与方法
1.1 数据来源
中西太平洋围网鲣渔业生产数据来源于中西太平洋渔业委员会 (Western and Central Fisheries Commission,WCPFC),数据包括作业日期、作业位置 (经纬度)、捕捞努力量、自由鱼群的渔获量等信息。其中时间跨度为1995—2019年,空间范围为120°E—150°W、20°S—20°N,空间分辨率为5°×5°,样本数共计7 721个。海洋环境数据为SST,来自哥伦比亚大学气候数据实验室网站 (http://iridl.ldeo.columbia.edu),空间分辨率为0.5º×0.5°,时间分辨率为月。同时选取1995—2019 年美国国家海洋与大气管理局气候预测中心 (https://origin.cpc.ncep.noaa.gov) 的Nino 3.4区域 (170°W—120°W、5°N—5°S) 的平均海温距平作为海洋尼诺指数 (OceanicNiño Index, ONI),其中ONI值介于 ±0.5为正常气候模式,大于0.5发生厄尔尼诺事件,小于 −0.5发生拉尼娜事件。
1.2 研究方法
1.2.1 重心计算
渔业研究中,资源丰度指数通常用于量化渔业中种群丰度的时空变化,如单位捕捞努力量渔获量 (Catch per unit effort, CPUE) 和渔获量[27]。由于现代商业渔业的复杂性,常用的CPUE可能无法作为所有物种资源丰度指数的合理表征[28],因此将二者均纳入考虑来量化围网鲣自由鱼群的时空分布,进而与暖池相关指标进行比较分析,为围网鲣自由鱼群的渔业生产和资源开发提供借鉴。渔获量大小常用于直接表示渔业的资源丰度,而CPUE大小常被认为与渔业资源丰度成正比[29],因而可作为表示其局部资源丰度的指标[30]。
本研究对1995—2019年间的渔场重心进行分析计算,作为研究其渔场时空分布变化的描述标准,通过使用渔场重心法来描述中西太平洋围网鲣自由鱼群 (以下简称自由鱼群) 的时空分布变化,环境因子SST的重心计算同理。由于鲣渔场与暖池变动间多为经向变化,因而仅对经向维度进行考虑,渔场重心计算范围与原始数据的空间范围 (120°E—150°W、20°S—20°N) 一致,同时为更准确地说明中西太平洋暖池的重心变化,在计算各项指标的重心时,本研究中的海域范围聚焦于110°E—80°W、45°S—45°N,公式如下[31]:
$$ {G}_{{\rm{CPUE}}}=\frac{\sum _{i}^{n}({{{E}}}_{i}\times {{{L}}}_{i})}{\sum _{i}^{n}{{{E}}}_{i}} $$ (1) $$ {G}_{{\rm{Catch}}}=\frac{\sum _{i}^{n}({{{C}}}_{i}\times {{{L}}}_{i})}{\sum _{i}^{n}{{{C}}}_{i}} $$ (2) $$ {G}_{{\rm{SST}}}=\frac{\sum _{i}^{n}({{{S}}}_{i}\times {{{L}}}_{i})}{\sum _{i}^{n}{{{S}}}_{i}} $$ (3) 式中:GCPUE、GCatch分别为自由鱼群渔场两种资源丰度指标的重心经度 (以下简称CPUE重心和Catch重心);GSST为 SST重心的经度 (以下简称暖池重心经度);
$ {{E}}_{i} $ 为单位捕捞努力量渔获量;$ {{C}}_{i} $ 为捕捞产量渔获重心;$ i $ 表示经度,$ {{L}}_{i} $ 为第$ i $ 经度的重心经度;Si为第i经度的温度重心。暖池的右边缘通过自中西太平洋西部海盆起选取连续的29 ℃等温线右边缘的经度,记作RSST。
1.2.2 统计方法
采用皮尔森相关性分析[32],对暖池指标 (暖池重心经度、暖池右边缘经度) 与渔场资源丰度重心经度以及气候环境指标ONI指数进行相关性分析。相关性在0.1~0.3为弱相关性,0.3~0.5间为中度相关性,大于0.5为强相关性;P<0.05表示相关,P<0.01为显著相关,P<0.001为极显著相关,P>0.05则表示相关性不显著。
1.2.3 不同气候模式下鲣资源空间分布
建立不同气候模式 (正常气候模式、厄尔尼诺年份、拉尼娜年份等) 下自由鱼群与暖池间的时空分布图,进一步说明不同气候模式下二者之间的空间相对位置及关系。
2. 结果
2.1 气候变化下暖池指标与鲣资源重心的关系
通过ONI指数对气候变化进行量化,并且采用皮尔森检验对暖池相关指标重心及右边缘、渔场资源丰度重心以及ONI指数进行相关性检验,发现其在统计学上均呈极显著相关性 (图1)。结果显示,渔场资源丰度重心指标,包括渔获量经向重心GCatch与单位捕捞努力量渔获量经向重心GCPUE,二者与暖池经向重心呈中度相关性,其中GCPUE的相关性值略高于GCatch。而在与暖池右边缘进行相关性检验时,GCatch与GCPUE同其呈弱相关性,GCPUE表现仍稍高于GCatch。在渔场资源丰度重心指标与海洋尼诺指数的相关性检验上,GCatch、GCPUE与之均呈中度相关性,此时GCatch表现略高于GCPUE。除主要研究渔场经向重心外,将暖池指标与海洋尼诺指数进行相关性检验,结果表明暖池经向重心GSST和暖池右边缘RSST与之呈强相关性,其中GSST与之相关性值达0.79,RSST为0.68。所有指标间的P均小于0.001,表现为极显著相关性。
资源丰度的表征在渔业研究中尤为重要[28],经皮尔森相关性检验得出,CPUE与暖池指标间在相关性表现上相较Catch更优。此外,CPUE的计算避免了直接使用渔获量,而未纳入捕捞努力量的影响[33];因此,可选用CPUE作为围网鲣自由鱼群与暖池指标关系研究的资源丰度指标。
2.2 暖池指标与鲣资源重心的年际变化趋势
将各项指标的经向变化随年月变化进行对比,探究在不同气候条件下,渔场重心经向与暖池指标变动的时空分布变化 (图2)。结果表明,渔场重心指标间的经向年际变化基本一致,GCPUE与暖池指标的相关性表现优于GCatch,因而以下研究均以GCPUE的经向变动进行探究。各项重心经向指标大多集中分布于140°E 以东、180°以西海域,其中GCPUE与GSST主要分布在160°E经线两端,而RSST大多分布在180°以东 (图2-a)。GCPUE、GSST与RSST随海洋尼诺指数的变动而发生变化 (图2-b)。多数情况下,当发生厄尔尼诺事件 (ONI>0.5)时,GCPUE与GSST东移越过160°E,同时RSST向东移动,如1997年的6—10月等;发生拉尼娜事件 (ONI<−0.5)时,GCPUE 与GSST则分布在160°E以西海域,同时RSST向西移动,如1995年8月—1996年3月等。暖池指标GSST与RSST间的经向变动关系随时间变化基本呈相同趋势。
GCPUE与GSST在经向上的变动趋势不完全相同。1995年1—4月、2003年1—4月、2007年1—5月和2016年1—5月等均为GSST在GCPUE以东,且经向变动趋势显著相反,而此时均为由发生厄尔尼诺事件向正常气候模式 (−0.5<ONI<0.5) 转变的月份。当GSST在GCPUE以西且经向变动趋势相反时,如1998年6—12月、1999年5—12月和a2010年6—12月等,此时正发生强烈的拉尼娜事件,受厄尔尼诺事件影响,GSST多位于GCPUE以东,但此时经向的变动趋势基本相同,如1997年6月—1998年4月、2015年6—12月等。GCPUE与RSST之间关系和GSST一致。
2.3 不同气候模式下自由鱼群的分布
为探明上述不同气候模式下,自由鱼群与暖池间的时空分布关系,选取其中个别月建立时空分布 (图3)。拉尼娜事件选取2010年的11—12月,正常气候模式选取2013年11—12月,厄尔尼诺事件选取2015年11—12月,而厄尔尼诺事件转变为正常年份事件的特殊气候模式选取2016年4—5月。
图 3 不同气候模式下CPUE与暖池的时空分布注:a、b为拉尼娜气候模式;c、d为正常气候模式;e、f为厄尔尼诺气候模式;g、h为厄尔尼诺气候模式向正常气候模式转变。Figure 3. Spatial-temporal distribution of CPUE and warm pool under different climate modesNote: (a) and (b) are the La Niña climate modes; (c) and (d) are the normal climate modes; (e) and (f) are the El Niño climate modes; (g) and (h) are the climate modes shifting from the El Niño to the normal.与ENSO相关的指标的位移发生在整个中西太平洋,发生拉尼娜事件时 (2010年11—12月),暖池面积最小,右边缘东部抵达距离最短,接近于180°经线,此时CPUE的分布均位于180°经线以西,且集中于太平洋西部美拉尼西亚群岛海域。当正常年份时 (2013年11—12月),暖池右边缘的位置相较拉尼娜事件时向东偏移,CPUE越过180°以东且少量分布。发生厄尔尼诺事件时 (2015年11—12月),CPUE的分布随暖池右边缘位置的东移而向东扩展。此外,一个特殊的气候模式变化应当被纳入考虑,即厄尔尼诺事件转变为正常年份事件 (2016年4—5月),此时暖池右边缘向西收缩,但CPUE的分布仍向东扩展,而相较于厄尔尼诺事件时在热带海域的均匀分布,此时仅在180°以东少量分布,且CPUE的大小和数量均下降。在所有的气候模式下,暖池右边缘均位于自由鱼群以东位置,自由鱼群基本均匀分布于暖池范围内,也同样说明了二者之间的紧密联系。
3. 讨论
不同类型的ENSO事件通过驱动暖池的空间位移从而改变区域内的海洋环境因子,进一步驱动海洋生态系统及其内部物种资源的响应[34]。 位于中西太平洋的暖池是ENSO的基本构成要素[15],其表面积及位置随ENSO事件的变化而改变[13,35];即厄尔尼诺事件时,暖池的面积增大,东移到达太平洋中部海域;拉尼娜事件时,暖池的面积减小,西移到西太平洋海盆区域。从暖池指标(本研究中指暖池重心与暖池右边缘)的时空变化入手,可为研究围网鲣自由群对ENSO事件的响应提供依据。鲣的资源丰度以及空间分布受海洋环境因子影响[36],而海表温度对鲣资源状态的时空分布具有更显著的影响[37],在本研究中具体表现为资源丰度的大小及重心的空间分布随29 ℃海表温度场的影响而变化。由于ENSO驱动海表温度变化,受其影响,具有高度洄游的鲣自由鱼群会在沿海生态系统和公海海域之间移动[38]。Williams和Ruaia[39]指出,ENSO事件对鲣围网活动空间分布的影响表现为,在厄尔尼诺年份,捕捞活动通常进一步向东扩展,在拉尼娜期间,捕捞活动向西部地区收缩,与本研究的发现(图3)基本一致。捕捞作业活动的变动同暖池变动规律相同,而渔场重心可以表征捕捞作业活动空间的集中分布程度,但渔场重心与暖池间的协同关系也存在着特异性。受ENSO影响,暖池重心的空间变异程度 (变异系数Coefficient of variation,CV= 5.012) 要强于渔场重心 (CV = 2.523)的变化 (图2),即表现为厄尔尼诺事件时暖池重心位于渔场重心东部,而当拉尼娜事件时暖池重心位于渔场重心西部。这可能是由于受捕捞作业方式影响,围网鲣自由鱼群的渔场重心相较于暖池受气候以及环境变化影响小[40]。此外,自由鱼群多是体型较大的成年鲣,需寻求适宜的温度环境作为首选栖息地和合适的产卵地,厄尔尼诺事件会导致海表温度升高,温跃层变浅(温跃层是富含营养物质的混合层上下界之间交换的障碍),营养物质更容易向混合层转移,从而促使深层营养盐在海表扩散,形成具有良好饵料的栖息环境[41]。然而强烈厄尔尼诺事件时,温度过高导致暖池的长距离东扩,抑制了鲣在热带中西太平洋的产卵活动[21];但并未导致渔场范围相应东扩,反而此时在太平洋中部的岛国 (如基里巴斯群岛) 的围网渔获量更高,分布更集中。
而对于厄尔尼诺转变为正常年份这一特殊气候模式的变化,即暖池重心与渔场重心的变化趋势显著相反 (暖池重心向西移动而渔场重心仍向东),可能由于暖池场的西移,导致了适宜的温度范围增大,以便于鲣适宜栖息地的形成。陈洋洋和陈新军 [23]研究得出,Nino3.4海区指数对CPUE的影响滞后0~2个月,这可能也是造成渔场重心和暖池重心之间变化不同步的原因。此外,暖池的东扩也与温跃层变浅,以及更强于平时的西太平洋信风有关,从而导致赤道西太平洋的初级生产力增加[42]。因此,位于140°E—160°E的所罗门群岛和巴布亚新几内亚的资源丰度在厄尔尼诺现象结束后有所增加,以应对鲣捕捞量的增加以及栖息地收缩的现象,这也进一步解释了渔场重心与暖池重心之间变化的不同步。
本研究对围网鲣自由鱼群的渔场指标,以及暖池指标在不同气候模式下的时空分布变化进行探究发现,通过研究暖池重心的变化可以很好地探索及预测渔场重心变化的规律。而通过构建暖池场与自由鱼群资源丰度的时空分布关系发现,暖池右边缘的范围能够很好地与自由鱼群的空间分布联系起来,可为商业性捕捞围网鲣自由鱼群提供渔场边界的指示,也可为今后研究鲣渔场的分布范围提供一项有利参考。
本研究对不同资源丰度指标对围网鲣自由鱼群的表征的影响进行了研究,但选取的均为名义上的资源丰度指标 (名义的CPUE),而未对CPUE进行标准化 (以消除人为捕捞等因素对资源丰度的影响),可能会造成研究结果具有一定误差。且仅研究了自由鱼群对暖池指标的响应关系,未与由人工集鱼装置捕捞获得的流木鱼群进行对比。在未来研究中,将对不同集群种类的鲣对暖池响应的差异性进行更细致的研究,以期为中西太平洋的鲣围网作业提供更丰富详尽的科学依据。
-
图 1 大鳍鳠胚胎发育各时期
注:a. 受精卵;b. 胚盘期;c. 2细胞期;d. 4细胞期;e. 8细胞期;f. 16细胞期;g. 32细胞期;h. 多细胞期;i. 囊胚早期;j. 囊胚中期;k. 囊胚晚期;l. 原肠早期;m. 原肠中期;n. 原肠晚期;o. 神经胚期;p. 胚孔封闭期;q. 体节出现期;r. 原肾出现期;s. 耳囊形成期;t. 尾芽分离期;u. 肌肉效应期;v. 心脏跳动期;w. 眼囊形成期;x. 耳石出现期;y. 第二对须原基出现期;z. 胸鳍原基出现期;aa. 眼色素出现期;ab. 出膜仔鱼;标尺=500 μm。
Figure 1. Embryonic development of M. macropterus
Note: a. Fertilized egg; b. Blastodisc stage; c. 2-cell stage; d. 4-cell stage; e. 8-cell stage; f. 16-cell stage; g. 32-cell stage; h. Multicellular stage; i. Early blastula stage; j. Middle blastula stage; k. Late blastula stage; l. Early gastrula stage; m. Middle gastrula stage; n. Late gastrula stage; o. Neurula stage; p. Blastopore closed stage; q. Appearance of myomere; r. Proto-renal stage; s. Appearance of otic capsule; t. Tail bud separation period; u. Muscular effect stage; v. Heart pulsation; w. Optic capsule stage; x. Otolith formation stage; y. The second pair of whisker primordia; z.Thoracic fin primordium; aa. Occupation of ocular pigment; ab. Hatching stage; Bar=500 μm.
图 2 大鳍鳠仔稚鱼发育
注:a. 出膜1 d;b. 出膜2 d;c. 出膜3 d;d. 出膜4 d;e. 出膜5 d;f. 出膜6 d;g. 出膜7d;h. 出膜8 d;i. 出膜9 d;j. 出膜10 d;k. 出膜 11 d;l. 出膜12 d;m. 出膜13 d;n. 出膜14 d;o. 出膜16 d;p. 出膜17 d;q. 出膜18 d;r. 出膜19 d;s. 出膜20 d;t. 出膜21 d;标尺=1 mm。
Figure 2. Development of M. macropterus larva and juvenile
Note: a. 1 d post hatching; b. 2 d post hatching; c. 3 d post hatching; d. 4 d post hatching; e. 5 d post hatching; f. 6 d post hatching; g. 7 d post hatching; h. 8 d post hatching; i. 9 d post hatching; j. 10 d post hatching; k. 11 d post hatching; l. 12 d post hatching; m. 13 d post hatching; n. 14 d post hatching; o. 16 d post hatching; P. 17 d post hatching; q. 18 d post hatching; r. 19 d post hatching; s. 20 d post hatching; t. 21 d post hatching; Bar=1 mm.
表 1 大鳍鳠胚胎发育时序
Table 1 Process of embryonic development of M. macropterus
发育时期
Developmental stage受精后时间
Time after
fertilization/
h持续时间
Duration/
h平均卵径
Average egg
diameter/
mm平均水温
Average
temperature/
℃积温
Accumulative
temperature/
(h·℃)图1
Fig. 1受精卵
Fertilized egg受精卵
Fertilized egg0 2.00 3.46±0.30 26.1 52.20 a 胚盘期
Blastodisc stage胚盘期
Blastodisc stage2.00 1.35 3.44±0.16 26.2 35.37 b 卵裂期
Cleavage stage2 细胞期
2-cell stage3.35 3.15 3.52±0.12 26.3 82.85 c 4 细胞期
4-cell staged 8 细胞期
8-cell stagee 16 细胞期
16-cell stagef 32 细胞期
32-cell stageg 多细胞期
Multicellular stageh 囊胚期
Blastula stage囊胚早期
Early blastula stage6.50 12.65 3.53±0.17 26.3 332.70 i 囊胚中期
Middle blastula stagej 囊胚晚期
Late blastula stagek 原肠期
Gastrula stage原肠早期
Early gastrula stage19.15 7.05 3.42±0.18 26.3 185.42 l 原肠中期
Middle gastrula stagem 原肠晚期
Late gastrula stagen 神经胚期
Neurula stage神经胚期
Neurula stage26.20 13.47 3.40±0.05 26.0 350.22 o 胚孔封闭期
Blastopore closed stagep 器官形成期
Organogenesis stage体节出现期
Appearance of myomere39.67 32.25 3.57±0.28 26.1 841.73 q 原肾出现期
Proto-renal stager 耳囊形成期
Appearance of otic capsules 尾芽分离期
Tail bud separation periodt 肌肉效应期
Muscular effect stageu 心脏跳动期
Heart pulsationv 眼囊形成期
Optic capsule stagew 耳石出现期
Otolith formation stagex 第二对须原基出现
The second pair of whisker primordiay 胸鳍原基出现期
Thoracic fin primordiumz 眼色素出现期
Occupation of ocular pigmentaa 出膜期
Hatching stage出膜仔鱼
Hatching stage71.90 7.08 26.1 184.79 ab 表 2 大鳍鳠不同日龄仔、稚鱼生长变化情况
Table 2 Growth variation of larval and juvenile M. macropterus at different time
日龄
Days post
hatching/d全长
Total
length/mm体质量
Body
mass/g全长特定
增长率
SGRL/%体质量特定
增长率
SGRm/%1 7.31±0.52 0.011±0.005 9.79 12.31 2 10.01±0.96 0.013±0.001 3 10.19±0.42 0.016±0.001 4 10.85±1.76 0.018±0.003 5 11.58±0.22 0.018±0.003 6 11.93±1.19 0.020±0.001 7 12.96±1.80 0.021±0.001 4.15 12.25 8 13.74±3.45 0.021±0.002 9 13.92±0.45 0.024±0.003 10 14.68±1.08 0.030±0.001 11 15.81±2.16 0.033±0.002 4.30 13.17 12 17.00±3.87 0.034±0.013 13 18.26±2.95 0.037±0.011 14 18.38±3.72 0.055±0.003 15 19.19±2.60 0.056±0.013 16 21.65±2.25 0.061±0.001 17 22.65±3.79 0.062±0.007 18 23.06±2.93 0.089±0.004 19 23.11±4.08 0.100±0.011 20 24.11±0.21 0.115±0.032 21 24.32±0.05 0.122±0.019 22 25.00±0.23 0.125±0.001 2.28 12.13 23 25.32±1.23 0.127±0.007 24 26.02±0.78 0.130±0.004 25 27.28±2.55 0.140±0.011 26 27.98±0.56 0.163±0.032 27 28.36±1.78 0.189±0.019 28 29.50±2.21 0.227±0.005 29 29.72±0.66 0.227±0.019 30 30.02±1.68 0.230±0.035 表 3 大鳍鳠与其他鲶形目鱼类胚胎发育比较
Table 3 Comparison of embryonic developmental characteristics between M. macropterus and other Siluriformes fish
种类
Specis卵径
Egg diameter/
mm吸水后卵径
Egg diameter
after water
absorption/
mm出膜方式
Hatching
pattern出膜长度
Hatching
length/mm胚胎发育水温
Temperature/
℃胚胎发育历时
Embryonic
development文献
Reference大鳍鳠
M. macropterus2.72±0.2 3.46±0.30 尾部破膜 7.31±0.52 26 79 h 本文 黄颡鱼
Pelteobagrus fulvidraco1.86~2.26 尾部破膜 4.8~5.5 24~27.5 62 h 50 min [18] 长吻鮠
Leiocassis longirostris2.18~2.35 2.51~2.58 尾部破膜 5.33~6.62 21~27 59 h 5 min [19] 瓦氏黄颡鱼
Pelteobagrus vachelli1.67 2.04 尾部破膜 4.2~4.35 20~24.5 49 h 15 min [20] 24~28 64 h 乌苏里鮠
Pseudobagrus ussuriensis2.0 2.5 尾部破膜 7 25.5~26 49 h 26 min [21] 斑鳠
Mystus guttatus3.1~3.8 4.0~4.2 尾部破膜 27.5±0.5 55 h [22] 兰州鲶
Silurus lanzhouensis2.07~2.4 3.44~3.46 尾部破膜 4.5 21.5~22.5 53 h 10 min [23] 24~25 39 h 37 min 27~28 30 h 20 min 南方大口鲶
S. soldatovi meridionalis2.089 3.055 尾部破膜 5.0~7.05 16.5~18.5 53 h 25 min [24] 鲶
S. asotus1.4~1.7 4.05~5.7 尾部破膜 4.64~5.32 27.5~31 29.5 h [25] 胡子鲶
Claris fuscus1.7~1.9 1.9~2.1 腹部卵黄囊破膜 4.8~5.1 28.5~31 28 h 25 min [26] 革胡子鲶
C. gariepinus1.23~1.36 1.34~1.43 尾部破膜 3.12~3.62 26.4~29.2 23 h 45 min [27] -
[1] 葛玲瑞, 刘金凤, 刘科均, 等. 大鳍鳠流水养殖技术要点[J]. 水产养殖, 2022, 43(11): 51-52. doi: 10.3969/j.issn.1004-2091.2022.11.013 [2] 杨德国, 周剑光, 吴国犀, 等. 长江大鳍鳠的人工繁殖[J]. 中国水产科学, 1998, 5(2): 27-31. [3] 朱成科, 郑永华, 高元彧, 等. 大鳍鳠的生物学特性和人工繁养殖前景研究[J]. 水利渔业, 2007, 27(5): 86-89. doi: 10.3969/j.issn.1003-1278.2007.05.037 [4] 许倩, 刘良国, 黄文轩, 等. 沅水五强溪水库大鳍鳠的遗传多样性分析[J]. 四川农业大学学报, 2019, 37(2): 253-258. [5] 杨德国, 吴国犀, 周剑光, 等. 大鳍鳠亲鱼池塘驯养和培育技术[J]. 淡水渔业, 1996, 26(2): 3-6. [6] 马跃岗, 朱杰, 陈元坤, 等. 大鳍鳠的人工繁殖与苗种培育研究[J]. 重庆水产, 2012(2): 20-22. [7] 李晓莉, 朱永久, 杨德国, 等. 大鳍鳠人工繁殖研究进展及前景展望[J]. 水产科技情报, 2023, 50(2): 128-132. [8] 殷名称. 鱼类早期生活史研究与其进展[J]. 水产学报, 1991, 15(4): 348-358. [9] PUVANESWARI S, MARIMUTHU K, KARUPPASAMY R, et al. Early embryonic and larval development of Indian catfish, Heteropneustes fossilis[J]. Eurasian J Biosic, 2009, 3: 84-96.
[10] 王德寿, 杨松林. 大鳍鳠的可量性状、长重关系和肥满度[J]. 西南师范大学学报(自然科学版), 1992, 17(4): 510-515. doi: 10.13718/j.cnki.xsxb.1992.04.018 [11] CHATAKONDI N G, TORRANS E L. The influence of ovarian fluid pH of stripped unfertilized channel catfish, Ictalurus punctatus, eggs on the hatching success of channel catfish [female]×blue catfish, Ictalurus furcatus[male], hybrid catfish eggs[J]. J World Aquac Soc, 2012, 43(4): 585-593. doi: 10.1111/j.1749-7345.2012.00577.x
[12] NAHIDUZZAMANA M, HASSAN M M, ROY P K, et al. Sperm cryopreservation of the Indian major carp, Labeo calbasu: effects of cryoprotectants, cooling rates and thawing rates on egg fertilization[J]. Anim Report Sci, 2012, 136(1/2): 133-138.
[13] 林红军, 刘莎, 曾玲. 黄颡鱼人工授精及胚胎发育研究[J]. 黑龙江畜牧兽医, 2019(12): 138-140, 170. doi: 10.13881/j.cnki.hljxmsy.2018.09.0099 [14] 韩军军, 贺疆滔, 陈朋, 等. 扁吻鱼胚胎发育及仔稚鱼形态与生长观察研究[J]. 南方水产科学, 2021, 17(1): 59-66. [15] 许静, 谢从新, 邵俭, 等. 雅鲁藏布江尖裸鲤胚胎和仔稚鱼发育研究[J]. 水生态学杂志, 2011, 32(2): 86-95. doi: 10.15928/j.1674-3075.2011.02.019 [16] 王亚利, 刘玥, 田佳佳, 等. 温度对四川华鳊仔、稚鱼生长发育及存活率的影响[J]. 渔业科学进展, 2021, 42(5): 47-54. doi: 10.19663/j.issn2095-9869.20200308002 [17] 钟全福, 樊海平, 薛凌展, 等. 大刺鳅仔、稚鱼的生长及摄食节律[J]. 广东海洋大学学报, 2020, 40(2): 28-34. [18] 王令玲, 仇潜如, 邹世平, 等. 黄颡鱼胚胎和胚后发育的观察研究[J]. 淡水渔业, 1989(5): 9-12. [19] 苏良栋, 何学福, 张耀光, 等. 长吻鮠 Leiocassis longirostris Gunther胚胎发育的初步观察[J]. 淡水渔业, 1985, 15(4): 2-4. [20] 袁伦强. 温度对瓦氏黄颡鱼 (Pelteobagrus vachelli)胚胎和仔鱼发育的影响[D]. 重庆: 西南师范大学, 2005: 8-9. [21] 崔宽宽, 李贺密, 苗建春, 等. 乌苏里鮠胚胎发育观察[J]. 河北渔业, 2012(2): 32-36, 44. doi: 10.3969/j.issn.1004-6755.2012.02.013 [22] 焦宗垚, 陈赛, 陈昆慈, 等. 珠江斑鳠的早期胚胎发育观察[J]. 广东海洋大学学报, 2007, 27(3): 20-23. doi: 10.3969/j.issn.1673-9159.2007.03.005 [23] 吴旭东, 李力, 张锋, 等. 兰州鲇胚胎发育初步研究[J]. 当代水产, 2011, 36(1): 65-67. doi: 10.3969/j.issn.1674-9049.2011.01.021 [24] 谢小军. 南方大口鲶的胚胎发育[J]. 西南师范大学学报 (自然科学版), 1986, 13(3): 72-78. [25] 魏刚, 罗学成. 鲶胚胎和幼鱼发育的研究[J]. 四川师范学院学报 (自然科学版), 1994, 15(4): 350-355. [26] 潘炯华, 郑文彪. 胡子鲶的胚胎和幼鱼发育的研究[J]. 水生生物学集刊, 1982, 7(4): 437-444. [27] 潘炯华, 郑文彪. 革胡子鲇的胚胎和仔、稚鱼发育的研究[J]. 华南师范大学学报 (自然科学版), 1987(1): 19-28. [28] 张耀光, 王德寿, 罗泉笙. 大鳍鳠的胚胎发育[J]. 西南师范大学学报 (自然科学版), 1991, 16(2): 223-229. [29] 牛建功, 张涛, 沙文军, 等. 斑重唇鱼胚胎及早期仔鱼发育的初步观察[J]. 河北渔业, 2021(11): 7-12. doi: 10.3969/j.issn.1004-6755.2021.11.003 [30] HANSE T K, FALK-PETERSEN I B. The influence of rearing temperature on early development and growth of spotted wolffish Anarhichas minor (Olafsen)[J]. Aquac Res, 2002, 32(5): 369-378.
[31] THORN M W, MORBEY Y E. Egg size and the adaptive capacity of early life history traits in chinook salmon (Oncorhynchus tshawytscha)[J]. Evol Appl, 2018, 11(2): 205-219. doi: 10.1111/eva.12531
[32] HAN M Y, LUO M, YANG R, et al. Impact of temperature on survival and spinal development of golden pompano Trachinotus ovatus (Linnaeus 1758)[J]. Aquac Rep, 2020, 18: 100556. doi: 10.1016/j.aqrep.2020.100556
[33] TSUJI M, ABE H, HANYUU K, et al. Effect of temperature on survival, growth and malformation of cultured larvae and juveniles of the seven-band grouper Epinephelus septemfasciatus[J]. Fish Sci, 2014, 80(1): 69-81. doi: 10.1007/s12562-013-0680-z
[34] 王志强, 庞守忠. 黄颡鱼仔稚鱼发育和摄食习性研究[J]. 江苏农业科学, 2009(6): 311-313. doi: 10.3969/j.issn.1002-1302.2009.06.131 [35] 刘明鉴, 郭华阳, 高杰, 等. 尖翅燕鱼早期胚胎发育及仔稚鱼形态观察[J]. 南方水产科学, 2022, 18(4): 103-111. [36] 乔晔. 长江鱼类早期形态发育与种类鉴别[D]. 武汉: 中国科学院研究生院 (水生生物研究所), 2005: 13-17. [37] 徐滨, 朱祥云, 魏开金, 等. 拉萨裂腹鱼的胚胎及仔稚鱼发育特征[J]. 大连海洋大学学报, 2020, 35(5): 663-670. doi: 10.16535/j.cnki.dlhyxb.2019-215 [38] KAJIWARA K, NAKAYA M, SUZUKI K, et al. Effect of egg size on the growth rate and survival of wild walleye pollock Gadus chalcogrammus larvae[J]. Fish Oceanogr, 2022, 31(3): 238-254. doi: 10.1111/fog.12575
[39] RIDEOUT R M, TRIPPEL E A, LITVAK M K. Effects of egg size, food supply and spawning time on early life historysuccess of haddock Melanogrammus aeglefinus[J]. Mar Ecol Prog Ser, 2005, 285: 169-180. doi: 10.3354/meps285169
[40] 杨建, 耿龙武, 王雨, 等. 拟赤梢鱼的胚胎发育和仔稚鱼生长特性观察[J]. 水生生物学报, 2021, 45(3): 643-651. doi: 10.7541/2021.2020.017 [41] 张呈祥, 徐钢春, 徐跑, 等. 美洲鲥仔、稚、幼鱼的形态发育与生长特征[J]. 中国水产科学, 2010, 17(6): 1227-1235. [42] 赵红雪, 吴旭东, 李力, 等. 兰州鲇仔稚鱼发育的初步研究[J]. 当代水产, 2010, 35(12): 59-62. doi: 10.3969/j.issn.1674-9049.2010.12.014 [43] ÇELIK P, CIRILK Ş. Embryonic and larval development of serpae tetra Hyphessobrycon eques (Steindachner, 1882)[J]. Aquac Res, 2020, 51(1): 292-306. doi: 10.1111/are.14375
[44] 李晓莉, 朱永久, 杨德国, 等. 大规格大鳍鳠对隐蔽所的选择及其行为特征[J]. 中国水产科学, 2022, 29(12): 1768-1777. doi: 10.12264/JFSC2022-0270 [45] 张耀光, 何学福. 长吻鮠幼鱼发育的研究[J]. 水生生物学报, 1991, 15(2): 153-160. [46] 李萍, 庹云. 岩原鲤早期行为习性的初步观察[J]. 安徽农业科学, 2008, 36(2): 565-566. doi: 10.3969/j.issn.0517-6611.2008.02.078 [47] 黄小林, 杨育凯, 李涛, 等. 黄斑篮子鱼仔、稚、幼鱼形态观察与生长研究[J]. 南方水产科学, 2018, 14(5): 88-94. doi: 10.3969/j.issn.2095-0780.2018.05.011 [48] 施兆鸿, 彭士明, 罗海忠, 等. 人工育苗条件下舟山牙鲆仔稚鱼的摄食与生长[J]. 上海水产大学学报, 2007, 16(6): 566-557. [49] 王亚利, 刘玥, 田佳佳, 等. 四川华鳊仔稚鱼生长与形态发育研究[J]. 渔业科学进展, 2020, 41(4): 58-67. doi: 10.19663/j.issn2095-9869.20190627001 [50] 王雨福, 肖志忠, 刘清华, 等. 斑石鲷早期发育的异速生长模式[J]. 海洋科学, 2016, 40(5): 43-48. doi: 10.11759//hykx20141216005 -
期刊类型引用(2)
1. 巫旗生,宁岳,祁剑飞,郭香,罗辉玉,曾志南,葛辉. 和蔼巴非蛤人工育苗及稚贝培育技术. 福建农业科技. 2024(10): 9-14 . 百度学术
2. 杨凌,刘一鸣,徐炳杰,王超奇,吴韬,邢清淦,裴琨,韦朝民,曾尚伟,潘英. 钝缀锦蛤在北海、防城港、钦州海区的中培与养成实验. 南方水产科学. 2023(06): 38-50 . 本站查看
其他类型引用(1)