基于基因组survey数据的疣吻沙蚕微卫星特征分析及多态标记开发

杨尉, 司圆圆, 许瑞雯, 陈兴汉

杨尉, 司圆圆, 许瑞雯, 陈兴汉. 基于基因组survey数据的疣吻沙蚕微卫星特征分析及多态标记开发[J]. 南方水产科学, 2023, 19(5): 123-133. DOI: 10.12131/20230086
引用本文: 杨尉, 司圆圆, 许瑞雯, 陈兴汉. 基于基因组survey数据的疣吻沙蚕微卫星特征分析及多态标记开发[J]. 南方水产科学, 2023, 19(5): 123-133. DOI: 10.12131/20230086
YANG Wei, SI Yuanyuan, XU Ruiwen, CHEN Xinghan. Characterization of microsatellites and polymorphic marker development in ragworm (Tylorrhynchus heterochaetus) based on genome survey data[J]. South China Fisheries Science, 2023, 19(5): 123-133. DOI: 10.12131/20230086
Citation: YANG Wei, SI Yuanyuan, XU Ruiwen, CHEN Xinghan. Characterization of microsatellites and polymorphic marker development in ragworm (Tylorrhynchus heterochaetus) based on genome survey data[J]. South China Fisheries Science, 2023, 19(5): 123-133. DOI: 10.12131/20230086

基于基因组survey数据的疣吻沙蚕微卫星特征分析及多态标记开发

基金项目: 广东省自然科学基金项目 (2022A1515011231);广东省普通高校创新团队项目 (2021KCXTD054);广东省农业科技社会化服务与成果集成示范项目 (2023B0202010011);广东省农业农村厅农业科研类及技术推广示范类项目 (0202020014);阳江职业技术学院自然科学重点项目 (2022kjzd01)
详细信息
    作者简介:

    杨 尉 (1984—),男,讲师,博士,研究方向为水产动物种质资源创新。E-mail: yangwei516@163.com

    通讯作者:

    陈兴汉 (1978—),男,教授,博士,研究方向为海洋河口渔业资源保护与利用。E-mail: chenxh1978@163.com

  • 中图分类号: S 917.4

Characterization of microsatellites and polymorphic marker development in ragworm (Tylorrhynchus heterochaetus) based on genome survey data

  • 摘要:

    为了解疣吻沙蚕 (Tylorrhynchus heterochaetus) 基因组信息并高效地开发微卫星标记,指导其种质资源保护与新品种的遗传改良研究,采用低深度高通量测序开展全基因组survey,k-mer分析估计疣吻沙蚕基因组大小为759.53 Mb,杂合率1.41%,重复序列比例45.92%;初步组装获得2 181 621条scaffold,全长为840 375 821 bp。在基因组序列中检测到130 216个微卫星位点,丰度为154.9 个·Mb−1。微卫星重复次数集中在4~18拷贝;单碱基重复比例最高 (35.00%),二碱基 (32.48%)、三碱基 (14.42%) 次之;二碱基、三碱基优势基序分别是AT/AT、AAT/ATT,表现出A/T碱基优势。从随机挑选的50对引物中筛选到15对多态标记,在30尾样本中共检测到87个等位基因,等位基因数 (Na) 为2.000~12.000 (平均5.800),有效等位基因数 (Ne) 为1.164~6.713 (平均3.328),期望杂合度 (He) 为0.141~0.789 (平均0.561),多态信息含量 (PIC) 为0.136~0.776 (平均0.511);其中13个为高度或中度多态性位点,在遗传分析中有较高的实用价值。结果表明,疣吻沙蚕基因组为复杂基因组,其微卫星位点类型丰富且具备良好的多态性潜能,可为种质资源评价、群体遗传学及分子育种研究提供有效的标记资源。

    Abstract:

    In order to understand the genomic information of Tylorrhynchus heterochaetus and efficiently develop microsatellite markers, so as to guide the conservation of its germplasm resources and genetic improvement of new varieties, we conducted a whole-genome survey by using low depth high-throughput sequencing. A total of 57.48 Gb of clean data were generated after the quality control of raw data. K-mer analysis estimates that the genome size of T. heterochaetus was 759.53 Mb; the heterozygosity rate was 1.41%; the proportion of repetitive sequences was 45.92%. Preliminary assembly obtained 2 181 621 scaffolds with a total length of 840 375 821 bp. A total of 130 216 microsatellite loci were detected with a density of 154.9 loci per Mb. The repeated number of microsatellite units largely ranged from 4 to 18. The ratio of mononucleotide loci was the highest (35.00%), followed by those of dinucleotide (32.48%) and trinucleotide (14.42%) loci. AT/AT and AAT/ATT motifs were dominant in dinucleotide and trinucleotide loci, respectively, indicating an A/T dominance. Fifteen polymorphic loci were identified from 50 randomly selected primers, and 87 alleles were amplified in a T. heterochaetus population containing 30 individuals. The number of alleles per locus ranged from 2.000 to 12.000, with an mean of 5.800. The effective allele number (Ne) and expected heterozygosity (He) ranged from 1.164 to 6.713 and from 0.141 to 0.789, with means of 3.328 and 0.561, respectively. The polymorphic information content (PIC) ranged from 0.136 to 0.776, with a mean of 0.511. Thirteen loci were found to be highly or moderately polymorphic, having high practical value in genetic analysis. In conclusion, T. heterochaetus genome is a complex genome, and its microsatellites have a rich variety and high polymorphic potential. The results can provide effective marker resources for germplasm resource evaluation, population genetics and molecular breeding research.

  • 鸢乌贼(Sthenoteuthis oualaniensis)隶属于头足纲、柔鱼科、鸢乌贼属,在印度洋、太平洋热带和亚热带海域广泛分布[1]。南海鸢乌贼资源量较丰富,声学方法评估其资源量达2.36×106 t[2],是当前中国南海外海最具开发潜力的大洋性渔业资源之一。国内外学者对鸢乌贼的研究主要集中在日龄生长[3-4]、渔场资源状况[5-6]和种群结构[7-8]等方面。耳石是位于头足类平衡囊内的一对钙化组织,起着感应加速度和控制身体平衡的作用[9]。通过分析栖息水环境因子和耳石微量元素的关系,可以了解头足类不同物种间的生长差异[10]以及洄游、产卵[11]等生活史状况,划分种群结构[12],进一步可以重建温度、盐度等环境因子[13]。耳石微量元素组成受栖息环境物理和化学性质的影响,例如通常情况下锶(Sr)/钙(Ca)[14]和钡(Ba)/Ca[15]与温度呈负相关,所以Sr/Ca和Ba/Ca常用作栖息环境的温度指标。目前,有关南海鸢乌贼的耳石微化学研究较少,对不同群体间的微量元素差异性分析未见报道,耳石微量元素与环境因子之间的关系尚未明确。本文通过激光剥蚀电感耦合等离子体质谱法(laser ablation inductively coupled plasma mass spectrometry,LA-ICP-MS),测定南海鸢乌贼耳石微量元素的浓度、量化微量元素在耳石中的组成及在不同耳石区域中的分布、计算耳石微量元素浓度与Ca元素的比值及变化、比较不同产卵季节和地理区域鸢乌贼耳石微量元素的差异、结合微量元素与环境因子间的关系推测其栖息环境的变化,从而为更好地利用和开发南海鸢乌贼资源提供参考资料。

    鸢乌贼样本采集时间及海区,东沙海域(2017年3—5月) 17°50'N~19°10'N、112°44'E~116°10'E;西沙海域(2017年4月) 17°20'N~17°40'N、110°50'E~111°10'E;南沙海域(2016年10—11月和2017年3—5月) 9°30'N~13°40'N、110°40'E~116°10'E (图1)。作业方式为灯光罩网,每个站位随机抽取鸢乌贼100~200尾,冷冻保存。运至实验室后进行生物学测定及相关实验处理,记录各取样站位的地理坐标和采集时间。

    图  1  样品采集站位示意图
    Figure  1.  Sampling sites in South China Sea

    样品解冻后对鸢乌贼进行生物学测定,包括胴长(mantle length,ML,精确至1 mm)、体质量(body weight,BW,精确至1 g)、性别、性成熟度等参数。中型群鸢乌贼背部具有发光器,微型群鸢乌贼背部无发光器,结合性腺发育的快慢,将鸢乌贼分成中型和微型2个种群[7]

    将耳石从平衡囊内轻轻取出,置于1.5 mL的离心管中编号,加入95%的乙醇后冷冻保存。耳石研磨的具体方法参考刘必林等[9],共选取耳石切片103枚(东沙海域40枚、西沙海域36枚、南沙海域27枚)。耳石切片抛光后在Olympus EX51显微镜(×400)下拍照,图像经PhotoShop 5.0软件叠加处理。轮纹数由2人分别读取,计数值与均值的差值低于5%,则认为计数准确,否则再计数2次求平均值[16]。通过读取样本耳石的轮纹数,结合捕捞时间,推算孵化时间,并划分不同季节的产卵群体 (表1)。

    表  1  鸢乌贼样本生物学信息
    Table  1.  Biological information of S. oualaniensis
    站位
    station
    胴长/mm
    ML
    体质量/g
    BW
    性成熟度
    maturity stage
    日龄/d
    age
    孵化时间
    hatching month
    季节
    season
    1 95 26 56 2017.01
    2 121~189 67~344 Ⅱ~Ⅳ 71~125 2016.11—2017.01 秋、冬
    3 89~154 18~153 Ⅱ~Ⅲ 62~80 2017.01—02
    4 131~175 107~256 Ⅱ~Ⅲ 77~84 2017.01
    5 110~139 35~104 Ⅰ~Ⅲ 69~91 2016.12—2017.01
    6 130~157 95~149 74~90 2016.11
    7 122~133 63~96 Ⅰ~Ⅱ 73~84 2017.01
    8 112~159 53~184 Ⅰ~Ⅳ 74~119 2016.12—2017.01
    9 111~155 44~159 Ⅰ~Ⅲ 64~84 2017.01—02
    10 110~171 40~166 Ⅰ~Ⅳ 70~92 2017.01
    11 87~182 7~199 Ⅰ~Ⅳ 63~99 2016.12—2017.02
    12 80~117 16~51 Ⅱ~Ⅳ 55~68 2016.08—09 夏、秋
    13 81~100 17~38 Ⅱ~Ⅲ 60~73 2016.08—09 夏、秋
    14 66~92 10~24 Ⅰ~Ⅳ 52~65 2016.08
    15 86~110 19~48 Ⅰ~Ⅲ 66~73 2016.08
    16 96~112 23~43 Ⅰ~Ⅲ 69~73 2016.08
    17 141 128 84 2017.01
    18 117~120 55~71 Ⅰ~Ⅱ 65~69 2017.02
    19 120~128 74~91 Ⅱ~Ⅲ 80~83 2016.08
    20 117~135 66~103 Ⅱ~Ⅳ 75~87 2016.08
    下载: 导出CSV 
    | 显示表格

    测定前将研磨好的耳石切片置于超声波震荡仪中清洗5 min,以清除切片上的污染物。在耳石研磨平面的核心区(N)、后核心区(PN)、暗区(DZ)、外围区(PZ)以及边缘区(EZ)分别各选取1个取样点(图2),这些区域依次代表着鸢乌贼发育的胚胎期、幼虫期、幼年期、亚成体和成体期。耳石微量元素浓度测定在上海海洋大学元素分析实验室完成。激光剥蚀系统为NEW WAVE 213,ICP-MS为Agilent 7700x。激光能量密度16~20 MJ·cm–3,频率5 Hz,激光束斑直径40 μm。激光剥蚀过程中以氦气为载气、氩气为补偿气调节灵敏度,两者在1个T型接头中混合后进入ICP。该系统配置了1个信号平滑装置,当激光脉冲频率低达1 Hz时,采用该装置也能获得光滑的分析信号。每个数据分析的时间段包括20~30 s的空白信号和50 s的样品信号[17]。采用多外标,无内标法对元素浓度进行定量计算,对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、元素浓度)采用软件ICPMS Data Cal完成[18]。微量元素校正标准样品有NIST 610、BHVO-2G、BIR-1G和MACS-3,以上样品均为国际标准物质。测定完成后,对取样点的日龄时间段进行估算,获取不同时间段的耳石微量元素浓度。以20 d间隔为一组对鸢乌贼日龄进行划分,并在各年龄段中随机选取一定尾数的鸢乌贼分析耳石微量元素浓度与日龄间的变化趋势。

    图  2  鸢乌贼耳石微量元素采集点
    1~5分别代表核心、后核心区、暗区、外围区、边缘区
    Figure  2.  Collection points in statolith of S. oualaniensis
    1−5. N, PN, DZ, PZ and EZ, respectively.

    不同水层温度和盐度数据采集仪器为RBR concert (configuration:C.T.D;depth rating:500 m;serial number:60481),测定水深0~100 m,选取表层、50 m、100 m共3个水层,温盐数据采用入水和出水时测定的平均值(表2)。假设鸢乌贼早期主要生活在0~50 m的水层中,对应的生长阶段为胚胎期、幼虫期和幼体期,在此之后进行较远距离的垂直移动,对应的生长阶段为亚成体和成体期。分析幼虫期和幼体期耳石微量元素与0~50 m水层温度、盐度的关系以及亚成体和成体期与100 m水层温度、盐度的关系。

    表  2  不同水层温度和盐度数据
    Table  2.  Temperature and salinity data at different water layers
    站位
    station
    温度/℃ temperature 盐度 salinity
    表层 surface 50 m 100 m 表层 surface 50 m 100 m
    2 24.5 24.3 23.9 32.8 33 33.1
    3 27 25.5 22 31.8 32.3 32.9
    4 27.3 24.4 23.6 31.8 33.2 33.3
    5 25.3 24.3 24 32.7 33.1 33.2
    7 26.3 24.8 19.7 31.7 32.5 33
    8 24.9 24.1 20.5 32.2 32.5 33.2
    9 26.8 24.6 19.6 32.2 33 33.3
    10 26.5 25.5 20.4 32.3 32.4 33
    11 26.6 25.1 20.9 32.4 32.5 32.8
    下载: 导出CSV 
    | 显示表格

    1)统计南海鸢乌贼耳石主要微量元素组成和分布,选取变异系数较小(CV)和存在差异性的微量元素进行分析。

    2)利用多因素方差分析(MANOVA)分别比较南海鸢乌贼不同种群、性别及耳石区域间微量元素浓度及其与钙元素比值的差异。

    3)两两比较不同产卵群体和地理区域耳石微量元素与Ca元素比值的差异。

    4)分析耳石微量元素与钙元素比值和温度、盐度的关系。

    5)分析软件采用SPSS 21.0。

    耳石微量元素中Ca元素浓度最高[(3.77~3.94)×105 μmol·mol–1],不同耳石区域间的Ca元素浓度无显著性差异(P>0.05),约占元素总量的97%。其次是Sr和钠(Na),分别约占元素总量的1.5%和1.0%。此外,依次为铁(Fe)、Ba、锰(Mn,表3)。方差分析表明,南海鸢乌贼中型群和微型群及雌雄群体间耳石微量元素组成无显著性差异(P>0.05)。不同耳石区域间除Ca、Fe元素浓度无显著性差异外(P>0.05),其余微量元素皆存在显著性差异(P<0.01,表4)。

    表  3  南海鸢乌贼耳石微量元素浓度及与钙元素比值
    Table  3.  Element concentrations and element/Ca ratios in statoliths of S. oualaniensis
    元素
    element
    元素浓度/μmol·mol−1 element concentration 元素/Ca element/Ca
    范围
    range
    均值±标准差
    ${\overline X}\pm{\rm{SD}}$
    范围
    range
    均值±标准差
    ${\overline X}\pm{\rm{SD}}$
    钠 Na 370~5 501 4 115±474 (1~14.1)×10−3 (10.5±1.2)×10−3
    锰 Mn 0.03~21.6 2.8±2 (0.08~57.3)×10−6 (7.2±5.3)×10−6
    铁 Fe 2.3~189.5 39.7±31 (5.8~502)×10−6 (102±79.7)×10−6
    锶 Sr 443~7 475 6 076±595 (1.2~19.1)×10−3 (15.5±1.5)×10−3
    钡 Ba 2.4~30.8 6.1±2 (6.1~79.8)×10−6 (15.6±5.2)×10−6
    下载: 导出CSV 
    | 显示表格
    表  4  南海鸢乌贼耳石不同区域微量元素浓度及差异
    Table  4.  Difference of trace element concentrations at different growth zones of statoliths
    元素
    element
    元素浓度/μmol·mol−1 element concentration P
    核心区
    N
    后核心区
    PN
    暗区
    DZ
    外围区
    PZ
    边缘区
    EZ
    钠 Na 2 919~4 722 2 802~5 091 2 625~5 146 2 310~5 238 370~5 501 0
    锰 Mn 0.03~8.3 0.03~10.6 0.1~13.9 0.11~12.4 0.11~21.6 0
    铁 Fe 2.3~151.3 9.6~164.7 12.2~159.4 12~154 9~189.5 0.1
    锶 Sr 4 971~7 446 4 296~7 059 3 356~6 622 3 187~6 829 443~7 475 0
    钡 Ba 3.3~10.7 2.7~11.8 2.5~18.9 2.4~9.4 2.7~30.8 0
    下载: 导出CSV 
    | 显示表格

    Sr/Ca在核心区最高,随后不断下降,在边缘区最低(图3-a)。核心区和后核心区Sr/Ca明显高于其他区域,不同耳石区域Sr/Ca差异显著(P<0.05)。Na/Ca先增大后减小(图3-b),暗区最高,各相邻区域间差异极显著(P<0.01),而核心区和边缘区差异不显著(P>0.05)。Mn/Ca在核心区最高,随后减小,外围区最低,在边缘区增大(图3-c),核心区与后核心区和外围区差异显著,与边缘区差异不显著。Ba/Ca先减小后增大,在暗区最低,核心区与后核心区和边缘区无显著性差异(图3-d)。Fe/Ca在不同耳石区域无显著性差异(图3-e),两两比较发现,核心区、后核心区和暗区与边缘区存在显著差异(P<0.05)。耳石微量元素Sr/Ca、Na/Ca、Mn/Ca、Ba/Ca、Fe/Ca随着鸢乌贼日龄的增加其变化趋势与耳石区域的微量元素变化较一致(图4)。

    图  3  不同耳石区域耳石微量元素与钙的比值
    Figure  3.  Ratios of elements to Ca at different statolith zones of S. oualaniensis
    图  4  不同日龄阶段耳石微量元素与钙的比值
    Figure  4.  Ratios of elements to Ca of different ages of S. oualaniensis

    不同产卵群体鸢乌贼耳石微量元素除Na/Ca和Fe/Ca有显著性差异外(P<0.01),其余元素无显著性差异(P>0.05)。在不同耳石区域,夏季和冬季产卵群体Fe/Ca差异显著,冬季最高、秋季次之、夏季最低(图5-e)。Na/Ca先增大后减小,夏季和冬季产卵群体的Na/Ca在耳石核心区与后核心区差异性显著,其他区域差异性不显著(图5-b)。耳石微量元素Sr/Ca、Mn/Ca、Ba/Ca在不同耳石区域间不存在季节性差异(图5-acd)。

    图  5  不同产卵群体耳石元素与钙的比值
    Figure  5.  Ratios of elements to Ca in different hatching groups

    根据采样站位,将南海鸢乌贼划分为东沙、西沙和南沙3个地理群体。耳石Fe/Ca在东沙海域最高、西沙海域次之、南沙海域最低。东沙与南沙海域存在显著性差异(P<0.01),与西沙海域不存在显著性差异;西沙和南沙海域不存在显著性差异(P>0.05)。耳石Sr/Ca、Na/Ca、Ba/Ca和Mn/Ca在不同海域间差异性不显著(图6)。

    图  6  不同地理区域耳石微量元素与钙的比值
    Figure  6.  Ratios of elements to Ca in different geographical areas

    在0~50 m水层中,幼虫和幼体期的鸢乌贼耳石Sr/Ca与温度呈正相关、与盐度呈负相关(图7),其余微量元素/Ca与温度、盐度无明显的相关性。线性方程为RSr/Ca=0.40T+5.86 (R2=0.50);RSr/Ca=−0.57x+34.51 (R2=0.21)。亚成体和成体期的鸢乌贼耳石微量元素Ba/Ca与盐度有微弱的正相关性(图8),其余元素/Ca与温度、盐度无明显的相关性。线性方程为RBa/Ca=2.65x–72.66 (R2=0.20)。

    图  7  幼体期鸢乌贼耳石微量元素比值与温度、盐度的关系
    Figure  7.  Relationship trace element ratio and temperature and salinity of statolith of larvae
    图  8  成体期耳石微量元素比值与温度、盐度的关系
    Figure  8.  Relationship among trace element ratio and temperature and salinity of statolith of adult

    鸢乌贼耳石微结构一般划分为核心区、后核心区、暗区和外围区[19]。这些生长区对应着不同的个体发育阶段,其中耳石零轮以内的为核心区,代表胚胎期,后核心区代表幼虫期,暗区代表幼年期,外围区则代表亚成体和成体期[20]。耳石核心区的微量元素浓度与其他区域有很大差别。Yatsu等[21]研究认为头足类Sr/Ca在胚胎期可能受到不同方式的影响,在胚胎期,由于胚胎外膜的保护,卵内的发育环境与外界的水环境隔离开,其营养物质主要来源于自身携带的卵黄囊。Bustamante等[22]研究表明墨鱼(Sepia officinalis)卵外的保护膜可以使胚胎免受痕量金属如锌(Zn)和镉(Cd)的影响。分析卵黄囊以及卵内液体的微量元素组成,可以进一步了解耳石核心区微量元素与它们之间的关系。Sr元素在耳石微量元素中的浓度仅次于Ca元素,是耳石发育过程中不可或缺的元素之一,在头足类的耳石生物矿化过程中扮演着重要的角色[13]。南海鸢乌贼耳石Sr/Ca在核心区最高,随后逐渐降低,在边缘区最低,Na/Ca在暗区最高,呈倒置“U”型分布,Ba/Ca在暗区最低,呈“U”型分布。哥斯达黎加外海茎柔鱼不同耳石区域的微量元素均值变化与本研究相同[17],而迪斯科湾黵乌贼(Gonatus fabricii)[23]和北太平洋柔鱼(Ommastrephes bartrami)[21]核心区至外围区耳石Sr/Ca均值呈“U”型分布。南海鸢乌贼Mn/Ca核心区最高,随后逐渐降低,在边缘区增大。智利外海茎柔鱼耳石Mn/Ca从核心到外围区先减少后增加[24],而迪斯科湾黵乌贼耳石Mn/Ca呈倒“U”型分布[23]。Arkhipkin等[25]分析认为Mn/Ca产生差异的原因可能来源于物种特定的吸收机制或仪器误差,而非环境因素,并观察发现随着鱿鱼胴长的增加,Mn/Ca减小,本研究中Mn/Ca随着个体日龄的增加整体呈减小趋势。

    3个产卵群体中,耳石核心区、后核心区和暗区的Sr/Ca几乎相同,在外围区及边缘区出现微小的变化,外围区夏季群体Sr/Ca较高,而在边缘区最低。虽然Sr/Ca在不同产卵群体中无显著差异,但是可以得出鸢乌贼在亚成体和成体期经历了不同的水环境变化,因为此时的鸢乌贼具有较强的游泳能力。

    南海鸢乌贼耳石Na/Ca为(10.5±1.2)×10–3、茎柔鱼Na/Ca为(8.6~12.8)×10–3 [26],两者相近,低于迪斯科湾黵乌贼 [(15~22)×10–3] [23]。耳石Na/Ca先增大后减小,在幼体期到成体期不断下降,在耳石核心区和后核心区,Na/Ca在夏季和冬季产卵群体中差异显著,可用于不同产卵群体的划分。而Liu等[26]分析认为茎柔鱼Na/Ca在不同产卵群体中无显著性差异,不能用于产卵群体的划分。

    Ba/Ca在不同产卵群体中无显著性差异。而Fe元素是海洋初级生产力高低的主要限制因子[27]。徐红云[28]研究表明南海北部海域海洋净初级生产力由北向南递减,在南部海域沿海区域较高,而在南部深水海盆存在低值中心。由此判断东沙海域的净初级生产力高于西沙海域、南沙海域较低,与耳石Fe/Ca在东沙海域最高、西沙海域次之、南沙海域最低相对应。Fe/Ca在不同群体中存在显著性差异,因此可用于南海鸢乌贼不同群体的划分。

    本研究表明南海海域鸢乌贼幼体期耳石Sr/Ca与温度呈正相关、与盐度呈负相关,但鸢乌贼成体期耳石Sr/Ca与温度和盐度均无相关性。耳石Sr/Ca在胚胎期最高,随后逐渐降低,这与鸢乌贼早期生活在海洋表层,随着个体发育和游泳能力的增强,不断向海洋水层下方移动相对应。成体期的柔鱼类昼夜垂直移动,白天生活在深层冷水区、晚上在表层暖水区活动,生活环境的温度变化较大[17]。南海鸢乌贼耳石Sr/Ca在不同地理区域差异不显著,可以排除水平迁移带来的环境变化。鸢乌贼的昼夜垂直移动可能是导致成体期耳石Sr/Ca与温度无相关性的原因。所以,鸢乌贼幼体期耳石Sr/Ca浓度可以作为温度的指示剂。而随着海水深度的增加,盐度也在增加,鸢乌贼幼体期耳石Sr/Ca与盐度存在微弱的负相关性,进一步佐证了鸢乌贼早期生活阶段栖息环境的变化。

    Ba浓度随着海水深度增加而升高[23],南海鸢乌贼耳石Ba/Ca在成体期与盐度呈弱相关,而深水层的盐度值高,可以推断鸢乌贼成体期生活在较深的海域。南海鸢乌贼耳石Ba/Ca在幼体期最低,成体期最高,这与幼体生活在海洋表层、成体生活在深水层相对应。因而,可以把Ba/Ca作为头足类垂直移动的有效指标。

    致谢:中国水产科学研究院南海水产研究所江艳娥在耳石提取方面给予的指导,钟智辉和陈盟基等在样品采集方面提供的帮助,徐亮、王守信和柯兰香等在实验过程中的协作,广东海洋大学侯刚老师在论文写作方面给予的启发和建议,谨此致谢!

  • 图  1   疣吻沙蚕基因组 k-mer 种类频率分布

    Figure  1.   Frequency distribution of k-mer species in genome of T. heterochaetus

    图  2   疣吻沙蚕基因组 6 种类型微卫星的数量与比例

    Figure  2.   Number and proportion of six motif types of microsatellite loci in genome of T. heterochaetus

    图  3   疣吻沙蚕基因组微卫星重复数分布特征

    Figure  3.   Distribution pattern of microsatellite repeat number in genome of T. heterochaetus

    图  4   疣吻沙蚕基因组微卫星重复基序类型分布特征

    Figure  4.   Distribution pattern of microsatellite motif types in genome of T. heterochaetus

    图  5   疣吻沙蚕基因组微卫星长度分布特征

    注:a. 不同长度区间微卫星数量及比例;b. 不同类型微卫星长度分布特征。

    Figure  5.   Distribution pattern of length of microsatellite loci genome of T. heterochaetus

    Note: a. Number and percentage of microsatellite loci at different length intervals; b. Length distribution of the six motif types of microsatellite loci.

    图  6   部分多态微卫星标记的毛细管电泳分型结果

    Figure  6.   A set of polymorphic microsatellite loci visualized by high-resolution capillary electrophoresis

    表  1   疣吻沙蚕基因组 survey 测序数据统计

    Table  1   Statistics of genomic survey sequencing data of T. heterochaetus

    测序文库
    Sequencing library
    原始数据量
    Raw base/Gb
    有效数据比
    Effective rate/%
    有效数据量
    Clean base/Gb
    碱基错误率
    Error rate/%
    Q20/%Q30/%GC 含量
    GC content/%
    L133.1299.6833.010.0496.2390.7739.13
    L224.5399.7524.470.0594.8888.6339.00
    总计 Total57.6557.48
    均值 Mean99.720.0595.5689.7039.07
    下载: 导出CSV

    表  2   疣吻沙蚕 15 对多态微卫星引物信息

    Table  2   Information of 15 polymorphic microsatellite loci in genome of T. heterochaetus

    位点
    Locus
    引物序列 (5'—3')
    Primer sequence (5'–3')
    重复单元
    Repeat unit
    产物大小
    Size/bp
    退火温度
    Annealing temperature/℃
    ThGM004 F: TGCTGCTACTGCTACAGCTACTATG (TAC)18 289 60.0
    R: CTGACAAAGTTTGGTGGCTG
    ThGM006 F: TGAAAATTAGTGTGATTTTGTCCC (CA)11 260 59.0
    R: AGCCAACCAGAACATGAACA
    ThGM011 F: AACTTGGACTAAGGCTATCAAAAA (AG)17 220 59.0
    R: CTTGGGGTTCATGCATCATT
    ThGM015 F: TTGGTTGTTATCCATGCACC (TAT)12 279 59.5
    R: AGACAGCAGTGAAATAGCACCA
    ThGM017 F: ATTCGATAAGCATTCCACCG (ATGG)8 215 60.0
    R: CTTGGTAGCTGGCCTGTCTC
    ThGM021 F: TGCGAAATGAGAAGTGAGCA (TA)10 277 60.0
    R: TGCCTGTGTGGAATACCAAG
    ThGM024 F: ACCTGTCCACCCGTCATTTA (TAT)14 294 59.5
    R: CCTTTAGGGGATGGCTACAA
    ThGM029 F: GAGCAAAATATTCAAGTTGGCA (ATT)12 243 59.0
    R: TTGTTTGTCATATCTTCTAAAGAGCA
    ThGM033 F: GGAGTGGGGAGGATTTTAGC (TG)18 277 60.0
    R: CCATGTACAGCATTCAGCCA
    ThGM035 F: GTAAGGGCAAGGGTTGTGAA (AG)13 226 60.0
    R: ACCGTTACCCTAACCCCAAC
    ThGM038 F: TTACCCTGCCATCCTACCAG (TG)20 157 60.0
    R: CTATTCTGCCAGTGGTCGCT
    ThGM040 F: GGATCCAGAAGGGGTAAAGC (TTA)11 239 59.5
    R: GTTGGTCATGTTCCTGTTGC
    ThGM041 F: ACCAGCTGCTAGAGGCAGAC (ATG)7 260 60.0
    R: TTAGGTCCTCACCCAGGGAT
    ThGM043 F: AAAAGCAAGTGGTAACACAAAATG (TCAT)11 272 59.5
    R: CATTGGGCTCTGGGAATAAA
    ThGM047 F: CGACCTGCGGATTTAATTTG (TGG)12 148 60.0
    R: ATATCTTGGCGGCGGATAG
    注:F. 正向引物;R. 反向引物。 Note: F. Forward primer; R. Reverse primer.
    下载: 导出CSV

    表  3   15 个多态微卫星位点在疣吻沙蚕群体中的遗传特征

    Table  3   Genetic characteristics of 15 polymorphic microsatellite loci in a T. heterochaetus population

    位点 Locus等位基因数 Na有效等位基因数 Ne观测杂合度 Ho期望杂合度 He多态信息含量 PIC哈迪-温伯格平衡的PPHWE
    ThGM004126.6720.6970.7750.7260.275
    ThGM00641.6420.3670.3880.3720.001*
    ThGM01151.6080.2570.3490.3770.026*
    ThGM01584.9330.4380.7890.7760.225
    ThGM01731.5210.0660.2710.2450.148
    ThGM02121.5930.3670.5080.3751.000
    ThGM024116.7130.8790.7420.6820.541
    ThGM029105.6470.6970.6580.5990.140
    ThGM03353.1020.1670.7720.7200.069
    ThGM03532.1640.0500.1410.1360.086
    ThGM03884.8780.5760.5450.4890.221
    ThGM04042.4410.7330.7180.6520.008*
    ThGM04132.1550.4170.4310.3360.503
    ThGM04352.7270.7240.6820.6170.148
    ThGM04742.2240.8670.6420.5690.267
    均值 Mean5.8003.3280.4870.5610.511
    注:*. Bonferroni法校正后显著偏离哈迪-温伯格平衡(P<0.05);n=30。 Note: *. Significant departure from Hardy-Weinberg equilibrium after Bonferroni's correction (P<0.05); n=30.
    下载: 导出CSV
  • [1]

    YANG Z Q, SUNIL C, JAYACHANDRAN M, et al. Anti-fatigue effect of aqueous extract of Hechong (Tylorrhynchus heterochaetus) via AMPK linked pathway[J]. Food Chem Toxicol, 2020, 135: 111043. doi: 10.1016/j.fct.2019.111043

    [2] 苏跃朋, 黄啟, 崔阔鹏. 珠江河口区禾虫产业技术现状及增养殖效益分析[J]. 海洋与渔业, 2016(10): 64-67.
    [3]

    ZHANG W X, WANG Z X, GANESAN K, et al. Antioxidant activities of aqueous extracts and protein hydrolysates from marine worm Hechong (Tylorrhynchus heterochaeta)[J]. Foods, 2022, 11(13): 1837. doi: 10.3390/foods11131837

    [4] 杨尉, 陈兴汉. 疣吻沙蚕-水稻生态复合种养技术要点及效益分析[J]. 南方农业, 2022, 16(20): 17-20, 24.
    [5]

    CHEN X H, YANG S, YANG W, et al. First genetic assessment of brackish water polychaete Tylorrhynchus heterochaetus: mitochondrial COI sequences reveal strong genetic differentiation and population expansion in samples collected from southeast China and north Vietnam[J]. Zool Res, 2020, 41(1): 61-69. doi: 10.24272/j.issn.2095-8137.2020.006

    [6]

    CHEN X H, LI M M, LIU H P, et al. Mitochondrial genome of the polychaete Tylorrhynchus heterochaetus (Phyllodocida, Nereididae)[J]. Mitochondrial DNA A, 2016, 27(5): 3372-3373. doi: 10.3109/19401736.2015.1018226

    [7]

    CHEN H, LI X, WANG Y, et al. De novo transcriptomic characterization enables novel microsatellite identification and marker development in Betta splendens[J]. Life, 2021, 11(8): 803. doi: 10.3390/life11080803

    [8] 孙效文, 张晓锋, 赵莹莹, 等. 水产生物微卫星标记技术研究进展及其应用[J]. 中国水产科学, 2008, 15(4): 689-703.
    [9] 张永德, 文露婷, 罗洪林, 等. 卵形鲳鲹基因组调研及其SSR分子标记的开发应用[J]. 南方农业学报, 2020, 51(5): 983-994.
    [10] 上官清, 陈昆慈, 刘海洋, 等. 斑鳢基因组中微卫星分布特征及野生种群遗传结构分析[J]. 南方水产科学, 2020, 16(3): 47-60.
    [11]

    LIU B H, SHI Y J, YUAN J Y, et al. Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects[J]. Quant Biol, 2013, 35(s1-3): 62-67.

    [12]

    LUO R B, LIU B H, XIE Y L, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler[J]. GigaScience, 2012, 1(1): 18. doi: 10.1186/2047-217X-1-18

    [13]

    LALITHA S. Primer premier 5[J]. Biotech Softw Internet Rep, 2000, 1(6): 270-272. doi: 10.1089/152791600459894

    [14] 刘玉萍, 王棋, 黄新芯, 等. 基于高通量测序的带鱼肌肉组织转录组微卫星信息分析[J]. 南方农业学报, 2022, 53(3): 725-734.
    [15]

    PEAKALL R, SMOUSE P E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research: an update[J]. Bioinformatics, 2012, 28(19): 2537-2539. doi: 10.1093/bioinformatics/bts460

    [16]

    TEMNYKH S, DECLERCK G, LUKASHOVA A, et al. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential[J]. Genome Res, 2001, 11(8): 1441-1452. doi: 10.1101/gr.184001

    [17]

    SIMAKOV O, MARLETAZ F, CHO S J, et al. Insights into bilaterian evolution from three spiralian genomes[J]. Nature, 2013, 493(7433): 526-531. doi: 10.1038/nature11696

    [18]

    TONG L, DAI S X, KONG D J, et al. The genome of medicinal leech (Whitmania pigra) and comparative genomic study for exploration of bioactive ingredients[J]. BMC Genom, 2022, 23(1): 76. doi: 10.1186/s12864-022-08290-5

    [19]

    MARTÍN-ZAMORA F M, LIANG Y, GUYNES K, et al. Annelid functional genomics reveal the origins of bilaterian life cycles[J]. Nature, 2023, 615(7950): 105-110. doi: 10.1038/s41586-022-05636-7

    [20]

    de OLIVEIRA A L, MITCHELL J, GIRGUIS P, et al. Novel insights on obligate symbiont lifestyle and adaptation to chemosynthetic environment as revealed by the giant tubeworm genome[J]. Mol Biol Evol, 2022, 39(1): msab347. doi: 10.1093/molbev/msab347

    [21]

    LI Y, TASSIA M G, WAITS D S, et al. Genomic adaptations to chemosymbiosis in the deep-sea seep-dwelling tubeworm Lamellibrachia luymesi[J]. BMC Biol, 2019, 17(1): 91. doi: 10.1186/s12915-019-0713-x

    [22]

    JIN F, ZHOU Z L, GUO Q, et al. High-quality genome assembly of Metaphire vulgaris[J]. PeerJ, 2020, 8: e10313. doi: 10.7717/peerj.10313

    [23]

    ZAKAS C, HARRY N D, SCHOLL E H, et al. The genome of the poecilogonous Annelid Streblospio benedicti[J]. Genome Biol Evol, 2022, 14(2): evac008. doi: 10.1093/gbe/evac008

    [24]

    SHAO Y, WANG X B, ZHANG J J, et al. Genome and single-cell RNA-sequencing of the earthworm Eisenia andrei identifies cellular mechanisms underlying regeneration[J]. Nat Commun, 2020, 11(1): 2656. doi: 10.1038/s41467-020-16454-8

    [25]

    ZWARYCZ A S, NOSSA C W, PUTNAM N H, et al. Timing and scope of genomic expansion within Annelida: evidence from homeoboxes in the genome of the earthworm Eisenia fetida[J]. Genome Biol Evol, 2016, 8(1): 271-281. doi: 10.1093/gbe/evv243

    [26]

    KENNY N J, NAMIGAI E K O, MARLÉTAZ F, et al. Draft genome assemblies and predicted microRNA complements of the intertidal lophotrochozoans Patella vulgata (Mollusca, Patellogastropoda) and Spirobranchus (Pomatoceros) lamarcki (Annelida, Serpulida)[J]. Mar Genom, 2015, 24(2): 139-146.

    [27]

    SUN Y N, SUN J, YANG Y, et al. Genomic signatures supporting the symbiosis and formation of chitinous tube in the deep-sea tubeworm Paraescarpia echinospica[J]. Mol Biol Evol, 2021, 38(10): 4116-4134. doi: 10.1093/molbev/msab203

    [28] 高胜寒, 禹海英, 吴双阳, 等. 复杂基因组测序技术研究进展[J]. 遗传, 2018, 40(11): 944-963.
    [29] 徐杰杰, 毕宜慧, 程景颢, 等. 中华绒螯蟹 (Eriocheir sinensis) 全基因组微卫星分布特征研究[J]. 基因组学与应用生物学, 2021, 40(Z2): 2422-2429.
    [30] 梁霞, 王慧琪, 马宇璇, 等. 鲤鱼(Cyprinus carpio)全基因组微卫星分布特征研究[J]. 南京师大学报 (自然科学版), 2021, 44(3): 103-111.
    [31]

    ZHANG Q, ZHANG C S, YU Y, et al. Characteristic analysis of simple sequence repeats in the ridgetail white prawn Exopalaemon carinicauda genome and its application in parentage assignment[J]. J World Aquacult Soc, 2020, 51(3): 690-701. doi: 10.1111/jwas.12650

    [32]

    SRIVASTAVA S, KUSHWAHA B, PRAKASH J, et al. Development and characterization of genic SSR markers from low depth genome sequence of Clarias batrachus (Magur)[J]. J Genet, 2016, 95(3): 603-609. doi: 10.1007/s12041-016-0672-8

    [33] 彭冶, 李杰, 王涛, 等. 瓦氏黄颡鱼全基因组微卫星的分布特征及其定位的初步研究[J]. 南方水产科学, 2022, 18(1): 90-98.
    [34]

    XU S Y, SONG N, XIAO S J, et al. Whole genome survey analysis and microsatellite motif identification of Sebastiscus marmoratus[J]. Biosci Rep, 2020, 40(2): BSR20192252. doi: 10.1042/BSR20192252

    [35] 王九龙, 李洪莉, 尹硕, 等. 绿鳍马面鲀全基因组微卫星分布特征[J]. 烟台大学学报 (自然科学与工程版), 2022, 35(3): 285-293.
    [36] 王佳佳, 王琼, 秦桢, 等. 凡纳滨对虾全基因组SSR标记开发及不同养殖群体的遗传多样性分析[J]. 水产学报, 2023, 47(6): 64-74.
    [37]

    SUN J X, PENG G H, XIONG L J, et al. Genome-wide SSR marker development and application in genetic diversity analysis of the red swamp crayfish, Procambarus clarkii (Girard, 1852) in China[J]. Crustaceana, 2021, 94(2): 189-205. doi: 10.1163/15685403-bja10076

    [38] 倪守胜, 杨钰, 柳淑芳, 等. 基于高通量测序的虾夷扇贝基因组微卫星特征分析[J]. 渔业科学进展, 2018, 39(1): 107-113.
    [39] 熊良伟, 王帅兵, 岳丽佳, 等. 宽体金线蛭基因组SSR序列特征分析及其分子标记开发[J]. 南方农业学报, 2018, 49(11): 2298-2303.
    [40]

    LIU H Y, ZHANG Y F, WANG G B, et al. Development and characterization of microsatellite markers in the earthworm Drawida gisti Michaelsen, 1931 and cross-amplification in two other congeners[J]. Mol Biol Rep, 2020, 47(10): 8265-8269. doi: 10.1007/s11033-020-05799-4

    [41] 王斌, 孙静, 刘凌云, 等. 蛭类转录组中EST-SSR分析及抗凝血相关分子标记的挖掘[J]. 中草药, 2017, 48(1): 172-178.
    [42]

    MADUNA S N, VIVIAN-SMITH A, JÓNSDÓTTIR Ó D B, et al. Genome- and transcriptome-derived microsatellite loci in lumpfish Cyclopterus lumpus: molecular tools for aquaculture, conservation and fisheries management[J]. Sci Rep, 2020, 10(1): 559. doi: 10.1038/s41598-019-57071-w

    [43] 李强勇, 李旻, 曾地刚, 等. 凡纳滨对虾微卫星分子标记的开发及不同养殖家系遗传多态性分析[J]. 南方农业学报, 2020, 51(2): 429-436.
    [44]

    WIERDL M, DOMINSKA M, PETES T D. Microsatellite instability in yeast: dependence on the length of the microsatellite[J]. Genetics, 1997, 146(3): 769-779. doi: 10.1093/genetics/146.3.769

    [45]

    JO E, LEE S J, CHOI E, et al. Whole genome survey and microsatellite motif identification of Artemia franciscana[J]. Biosci Rep, 2021, 41(3): BSR20203868. doi: 10.1042/BSR20203868

    [46]

    SCHLÖTTERER C, TAUTZ D. Slippage synthesis of simple sequence DNA[J]. Nucleic Acids Res, 1992, 20(2): 211-215. doi: 10.1093/nar/20.2.211

    [47] 马军, 刘嘉鑫, 江智景, 等. 基于RNA-seq数据的密斑刺鲀SSR分子标记开发及鉴定[J]. 南方水产科学, 2020, 16(1): 127-136.
    [48] 朱维岳, 周桃英, 钟明, 等. 基于遗传多样性和空间遗传结构的野生大豆居群采样策略[J]. 复旦学报 (自然科学版), 2006, 45(3): 321-327.
  • 期刊类型引用(3)

    1. 陆化杰,赵懋林,刘凯,任品. 中国南海南沙群岛海域鸢乌贼耳石微量元素组成特性. 水产学报. 2023(07): 174-183 . 百度学术
    2. 赵炎,王丛丛,刘必林,林龙山,李渊. 东印度洋、南海海域鸢乌贼种群遗传结构研究. 海洋渔业. 2022(04): 396-408 . 百度学术
    3. 金岳,李楠,俞骏,方舟,陈新军. 基于耳石微化学的南海北部海域两种枪乌贼洄游路线初步研究. 海洋与湖沼. 2021(06): 1540-1548 . 百度学术

    其他类型引用(3)

图(6)  /  表(3)
计量
  • 文章访问数:  288
  • HTML全文浏览量:  119
  • PDF下载量:  61
  • 被引次数: 6
出版历程
  • 收稿日期:  2023-04-24
  • 修回日期:  2023-06-28
  • 录用日期:  2023-07-19
  • 网络出版日期:  2023-08-12
  • 刊出日期:  2023-10-04

目录

/

返回文章
返回