基于水声学的阳宗海鱼类行为特征及其资源评估

张丽媛, 杨剑虹, 熊清海, 田敏, 王慧, 曲品, 蒋荣明, 寇春妮, 武智

张丽媛, 杨剑虹, 熊清海, 田敏, 王慧, 曲品, 蒋荣明, 寇春妮, 武智. 基于水声学的阳宗海鱼类行为特征及其资源评估[J]. 南方水产科学, 2024, 20(1): 110-119. DOI: 10.12131/20230082
引用本文: 张丽媛, 杨剑虹, 熊清海, 田敏, 王慧, 曲品, 蒋荣明, 寇春妮, 武智. 基于水声学的阳宗海鱼类行为特征及其资源评估[J]. 南方水产科学, 2024, 20(1): 110-119. DOI: 10.12131/20230082
ZHANG Liyuan, YANG Jianhong, XIONG Qinghai, TIAN Min, WANG Hui, QU Pin, JIANG Rongming, KOU Chunni, WU Zhi. Hydroacoustic estimates of fish abundance and behavior characteristics in Yangzonghai Lake[J]. South China Fisheries Science, 2024, 20(1): 110-119. DOI: 10.12131/20230082
Citation: ZHANG Liyuan, YANG Jianhong, XIONG Qinghai, TIAN Min, WANG Hui, QU Pin, JIANG Rongming, KOU Chunni, WU Zhi. Hydroacoustic estimates of fish abundance and behavior characteristics in Yangzonghai Lake[J]. South China Fisheries Science, 2024, 20(1): 110-119. DOI: 10.12131/20230082

基于水声学的阳宗海鱼类行为特征及其资源评估

基金项目: 昆明阳宗海渔业资源保护和种群修复项目(scs001);阳宗海智慧监管与智能决策平台研发及应用项目(202202AH210007);珠江渔业资源调查与评估创新团队项目 (2020ZJTD-10, 2020ZJTD-04)
详细信息
    作者简介:

    张丽媛 (1987—),女,高级农艺师,硕士,研究方向为淡水渔业资源与环境保护。E-mail: 276911667@qq.com

    通讯作者:

    武 智 (1988—),男,助理研究员,硕士,研究方向为渔业资源及渔业声学。E-mail: wz@prfri.ac.cn

  • 中图分类号: S 932.4

Hydroacoustic estimates of fish abundance and behavior characteristics in Yangzonghai Lake

  • 摘要:

    阳宗海是云南九大湖泊之一,为评估其鱼类分布特征及资源现状,分别于2022年3、5、8和10月采集渔获物,并于6月20—21日昼夜利用鱼探仪进行水声学探测。结果显示,阳宗海共采集鱼类24种,隶属于7目14科23属,太湖新银鱼 (Neosalanx taihuensis)、鲢 (Hypophthalmichthys molitrix)、鳙 (Aristichthys nobilis)、子陵吻鰕虎 (Rhinogobius giurinus)、䱗 (Hemiculter leucisculus)、间下鱵 (Hyporhamphus intermedius) 为阳宗海鱼类优势种。其中,太湖新银鱼、子陵吻鰕虎等小个体鱼类,数量占比超90%。整体来看,鱼类水平空间分布无明显昼夜差异,高密度区均分布在南北2个浅水区。鱼类垂直分布、行为特征存在显著昼夜差异,表现为夜间大量弱声信号聚集于5~10 m水层,白天则分散分布;夜间75%的鱼类向上游动而昼间则相反,中小型鱼类在夜间小幅上浮,而大型鱼类在夜间垂直迁移更为活跃。初步估算,阳宗海鱼类昼夜平均密度分别为0.033和0.038 尾·m−3。结果表明,目前阳宗海已形成了以外来鱼类为优势种、土著鱼类种类和数量不断减少的新群落结构。建议加大对太湖新银鱼等小型鱼类的捕捞,继续开展鲢、鳙和中上层土著肉食性鱼类的增殖放流来调整鱼类群落结构,以达到调控水质的目的。

    Abstract:

    Yangzonghai Lake is one of the nine major lakes in Yunnan plateau. In order to evaluate the distribution characteristics and resource status of fish, we had carried out four catch investigations in March, May, August and October in 2022 and conducted two hydroacoustic detections (Split beam echosounder, EY60) in June 20−21, 2022. The results show that a total of 24 fish species were collected, belonging to 23 genera, 14 families and 7 orders. Among them, Neosalanx taihuensis, Hypophthalmichthys molitrix, Aristichthys nobilis, Rhinogobius giurinus, Hemiculter leucisculus and Hyporhamphus intermedius were the dominant fish species in Yangzonghai Lake. Small fish such as N. taihuensis and R. giurinus accounted for more than 90% of the total number of fish species. Overall, the spatial distribution of fish had no significant differences between day and night. High-density areas were all distributed in two shallow water areas to the north and south of the lake. The vertical distribution and behavioral characteristics of fish showed significant differences between day and night. In the nighttime, a large amount of weak sound signals were concentrated at 5−10 m water layer, while they are scattered in the daytime. Besides, 75% of fish swam upstream in the nighttime, while vice verse in the daytime. The number of small and medium-sized fish tended to rise slightly in the nighttime, while larger fish were more active in vertical migration in the nighttime. The average densities of fish in Yangzonghai Lake in the daytime and in the nighttime were estimated as 0.033 and 0.038, respectively. The results show that a new community structure has been formed in Yangzonghai Lake, with exotic fish species as dominant and decreasing variety and quantity of indigenous fish species. It is recommended to increase the fishing of small fish such as N. taihuensis, and continue to carry out proliferation and release of silver carp, bighead and pelagic indigenous carnivorous fish to adjust the fish community structure, so as to achieve the goal of water quality regulation.

  • 河流栖息地是对水生生物有直接或间接影响的多种尺度下物理化学条件的组合[1],随着人类涉水活动的增加,鱼类等水生生物的栖息地正遭受严重破坏。河流生物栖息地评估在河流生态修复中具有重要作用,通过栖息地评估可为河流生态修复提供基础信息和依据[2]。针对不同水动力条件下鱼类生境的变化,国内外学者进行了大量研究[3-5]。小尺度产卵场的地形特征是研究产卵场水动力特征的基础。河流的水动力特征与水下地形、地貌存在密切关系。特殊的河床形态决定了特殊的水力学特征,如坡度与底部流速存在正相关关系[6],这些因素决定了鱼类的产卵条件[7]。河流地形地貌在河流水量和水质不变的基础上,与生物群落的多样性存在正相关性,可影响其功能和结构[8]。河流地形地貌方面的研究集中在河道和河段尺度上,多为定性描述[9]。定量的、微尺度的高程、高程变异系数、地形复杂度、坡度、坡向等地形因子,多应用于海洋河口或中华鲟 (Acipenser sinensis) 等珍稀濒危鱼类的产卵场研究,而在“四大家鱼”产卵场方面的研究运用较少[7,10-12],珠江流域尚未见报道。

    西江水系约有70多处经济鱼类产卵场,尤其以郁、黔、浔三江最为集中。东塔产卵场是珠江流域最大的产卵场,也是斑鳠 (Mystus guttatus)、卷口鱼 (Ptychidio jordani) 等珠江众多珍稀特有鱼类的重要栖息地,具有重要的生态功能 [13-14]。近年来受水利水电开发、航道整治、挖沙等涉水活动影响,鱼类栖息地遭到严重破坏,表现为生境丧失、破碎化和同质化,导致鱼类多样性降低、个体小型化,鱼类群落组成发生巨大变化[15-16]。主要渔业对象由80年代的鲥 (Tenualosa reevesii)、花鰶 (Clupanodon thrissa)、青鱼 (Mylopharyngodon piceus)、草鱼 (Ctenopharyngodon idella)、赤眼鳟 (Squaliobarbus curriculus) 等变为目前的广东鲂 (Megalobrama terminalis)、赤眼鳟、鲮 (Cirrhinus molitorella)、䱗 (Hemicculter Leucisculus),“四大家鱼”仔鱼资源在总鱼苗量中所占比例从46.6%下降至4.51%[17-18]

    大藤峡水利枢纽位于东塔产卵场上游约8 km,于2020年建成。该电站的运行,势必会改变下游江段的水下地形结构,导致鱼类栖息地的生境发生变化,从而影响其生存和繁衍[19-20]。要准确认识工程对鱼类栖息地的影响,必须对自然条件下栖息地状况,鱼类与栖息地地形、地貌间的关系有清楚而充分的认识。因此,有必要对该江段水下地形特征进行研究,评估水坝建设及运行对下游鱼类栖息地的影响。

    目前,珠江流域关于鱼类微观栖息地地形、地貌的研究尚未见报道,相关研究仅限于定性描述[21],栖息地功能现状缺少科学评估。本研究首次采用声学方法对东塔产卵场栖息地现状进行评估,并构建了栖息地适宜性指数 (Habitat suitability index, HSI) 模型,以期为江河鱼类栖息地功能评价、生态修复提供技术支撑。

    东塔产卵场位于浔江上游,自黔、郁两江汇合口起至东塔村止,长约7 km,为珠江最大“四大家鱼”产卵场。该研究区域上起大藤峡水利枢纽下游,下至石咀镇 (图1),具体地理位置为 110.057°E—110.16°E、23.432°N—23.467°N。研究区域长约14 km,水深介于1.5~32.0 m。采用ArcGIS 10.1软件绘制地图,数据来源于全国地理信息资源目录服务系统 (https://www.webmap.cn/,1∶25 万全国基础地理数据库,2019公众版) 。

    图  1  调查区域水深分布图
    Figure  1.  Distribution of water depth in survey area

    分别于2016年4月、2017年6月、2018年4月和2019年4月对该江段进行了声学走航探测。使用仪器为分裂波束渔探仪EY60 (Simrad,挪威),换能器中心频率120 kHz,发射功率200 W,−3 dB波束宽7.0°,脉冲宽度256 μs。在每次调查前,参照校准流程,使用碳化钨校准球 (Φ23 mm) 对系统收发增益进行校准[22]。调查船只使用当地渔船,长约8 m,换能器垂直向下固定于船舷,吃水约0.5 m。船速约4.4~5.5 kn,走航方向为顺流而下,设计航线为“之”字形,在实际航程中根据调查江段情况进行实时调整。

    2019年4月使用声学多普勒流速剖面仪 (ADCP,WHR600,美国) 对产卵场进行流场、地形同步监测。在测量前,记录待测量区域内上下游断面中心点的坐标,以及弯道处断面中心点坐标,通过配置引导物,画出测量区域的计划线。在实际测量时,根据导航测量软件,记录、校正测船航迹,使测船沿着计划线依次测量。该次测量断面间距为150 m,共94个断面,通过ADCP实测,监测期间浔江流量约5 000 m3·s−1

    测量的原始数据在ADCP辅助测量软件WinRiver以ASCII码文件导出,读取每个测量断面、流速矢量、水深、经纬度等数据,使用ArcGIS 10.1 软件构建河床不规则三角网和数字高程模型,提取产卵场高程、坡度、坡向、地形起伏度、高程变异系数、地表粗糙度共6个地形因子[11]

    地形因子之间可能存在共线性关系,分析数据时,采用 Pearson相关系数判定两者之间的相关性,当两者存在共线性关系时,仅选取其中一个变量为解释变量。

    热点分析用于识别具有统计显著性的高值 (热点) 和低值 (冷点) 的空间聚类,是根据在一定分析规模内的所有要素,计算每个要素Getis-Ord Gi*统计值,得到每个要素的z得分和P值。统计学上的显著性正值z得分表示热点,z得分越高,表示热点聚集越紧密;负值表示冷点,z得分越低,冷点聚集就越紧密。通过z得分和P值,可以得到产卵场鱼类资源密度高值或低值在空间上发生聚类的位置[23]

    与传统的鱼类空间分布相关研究不同,本研究侧重从地理空间视角去解释鱼类的空间聚类。首先使用声学数据后处理软件Echoview 5.4 (Myriax Pty Ltd. 澳大利亚) 对原始数据进行处理,获得不同调查时间的鱼类密度信息。其次利用ArcGIS 10.1软件中的不等边三角形TIN方法建立密度数据范围,通过建立TIN能够剔除无数据的水域;然后利用空间统计分析模块中的空间自相关和热点分析对鱼类密度数据进行分析和结果可视化输出。

    2016、2018和2019年采样时间均为4月,2017年为6月。为降低在热点分析和模型建立中季节变化造成的影响,本文利用2016、2018和2019年数据构建模型,以2017年数据验证模型。

    本文假设2年及以上鱼类热点分布重叠区域 (网格) 为鱼类适宜分布区域,提取热点区域中的地形因子。根据频率分布法,统计各因子分布范围,然后对结果进行归一化处理,估算适宜度指数值 (Suitability index, SI),出现频次最高的值赋予SI=1,SI∈[0, 1]。

    由于几何平均值考虑了各因子之间的补偿影响,对生境适宜性的估计更为保守,因此HSI模型采用几何平均法建立,计算公式为[4]:

    $$ S_{\mathrm{HSI},i}=\left(\mathrm{SI}_{1 i} \times \mathrm{SI}_{2 i} \times \ldots \times \mathrm{SI}_{n i}\right)^{{}^{1} \diagup {}_{n}\;} $$ (1)

    式中:$S_{\mathrm{HSI},i}$为第i个网格的栖息地适宜性指数值;i为研究区域网格序号;${\mathrm{S}\mathrm{I}}_{{n}{i}}$为第n个地形因子第i个网格的SI值。

    利用2017年6月的声学调查数据及水深数据,分析该江段鱼类资源密度分布情况,验证是否HIS值越高的网格鱼类密度越高。

    2016—2019年鱼类平均密度见表1,鱼类密度呈逐年下降趋势,使用非参数检验进行分析,Kurskal-Wallis结果显示,不同调查时间鱼类密度存在显著性差异 (P<0.05)。 从偏度值可以看出数据左偏,表明低密度单元格较多。

    表  1  东塔产卵场不同调查时间鱼类密度分布信息
    Table  1.  Fish density distribution in Dongta spawning ground in different periods
    调查时间
    Survey year
    鱼类密度
    Fish density/(尾·m−3)
    范围
    Range
    偏度
    Skewness
    峰度
    Kurtosis
    变异系数
    Coefficient of variance
    2016年0.057 4±0.128 7(0.000 3, 1.018 4)6.14641.2692.24
    2017年0.043 4±0.056 5(0.007 2, 0.405 3)3.74417.1851.30
    2018年0.031 6±0.037 7(0.000 4, 0.196 7)2.0044.2651.19
    2019年0.009 4±0.007 1(0.000 4, 0.035 6)1.4922.5360.75
    下载: 导出CSV 
    | 显示表格

    将鱼类密度导入GIS中进行空间自相关和热点分析,得到鱼类在东塔产卵场的热点分布图 (图2)。空间上,研究区域鱼类资源的空间分布具有一定的聚集特征,即不同年份均出现“热点区域”(红色区域),标志为z>+1.65 (P<0.1),如东塔产卵场部分区域3年结果均为“热点区域”;而大藤峡下游及石咀段出现“冷点区域”(蓝色区域);其他江段绝大部分z值介于−1.65~+1.65,这些区域内渔业资源密度高值和低值之间的空间自相关性弱,为随机性分布。总体来看,东塔产卵场部分区域局部自相关性强,整体自相关性表现并不强烈,鱼类资源密度呈现“热”“冷”不均的局部性分布特征。

    图  2  不同年份东塔产卵场鱼类资源空间热点分布图
    Figure  2.  Hotspots of fsh resources in Dongta spawning ground in different years

    根据上述方法,从鱼类“热点分布”区域中选取2年及以上重合区域网格,共80个,提取各网格地形因子,利用频度分布,拟合建立地形因子的单因子适宜度曲线。

    本文共获取了6个解释变量,包括高程、坡度、坡向、地形起伏度、高程变异系数、地表粗糙度。高程变异系数、地形起伏度和坡度的相关系数大于0.85,因高程变异系数和地形起伏度是基于高程 (水深) 计算得出的,因此只保留坡度进行分析;地表粗糙度数据主要集中在1左右,无法拟合。因此选择水深、坡度、坡向3个地形因子作为预测变量参与分析。由图3可见,热点区域水深介于1.5~25.0 m,鱼类适宜水深为5.0~8.0 m;坡度介于0°~27°,鱼类适宜范围介于1°~1.5°,依据坡度等级,鱼类适宜区域为微斜坡;鱼类适宜的坡向介于90°~180°,即东南方向。

    图  3  不同地形因子的适宜曲线
    Figure  3.  Suitability index curve of different terrain factors

    根据公式 (1) 计算得出鱼类密度的HSI值。5 000 m3·s−1流量下HSI值分布介于0.02~0.95,平均值为0.31±0.22。其中,HSI值大于0.5的区域占总数的26.67%。由图4可知,研究江段HSI最大值出现在产卵场沙洲两侧,河流两侧也有零星分布;另外,主航道基本上为HSI低值区域。

    图  4  东塔产卵场鱼类栖息地适宜性指数分布图
    Figure  4.  Habitat suitability index distribution of Dongta spawning ground

    使用2017年6月声学数据对HSI模型进行验证。通过Pearson相关性分析可知,鱼类密度与HSI值呈正相关关系 (R=0.794, P=0.011)。拟合结果显示,HSI与鱼类密度的关系为:$ y=0.02x+ 0.04 $ (R2=0.63, RMSE=0.005),符合本文假设。

    东塔产卵场位于郁江、黔江和浔江三江交汇口,鱼类种类丰富,物种多样性高。文献资料显示,该江段鱼类优势种为䱗、鲤 (Cyprinus carpio)、鲮、赤眼鳟、广东鲂、卷口鱼等[15-16]。河流物种多样性和河床特征存在着一定程度的响应关系,同时生物群落的结构和功能受之影响。然而,目前尚不清楚地形因子如何影响鱼类[24]。本研究提取了水深、坡度、坡向、地形粗糙度、高程变异系数、曲率等地形因子进行分析,通过判定各因子之间的相关性及各因子取值的分布情况,筛选出了水深、坡度、坡向作为构建适宜性模型的因子。

    水深是鱼类生活空间的反映,鱼的体型大小、生活习性等决定了鱼类对水深的需求[25]。Miranda和Killgore [26]研究表明,鱼类分布与水深呈非随机关系,约75%的物种分布在12 m以浅。Sheldon[27]认为鱼类分布与水深有着紧密联系,随季节和种类的不同而变化。本研究区域最大水深为31.0 m,鱼类适宜水深介于5.0~8.0 m。从图1可以看出,深水区主要为航道,航道在扩能升级过程中改变了河床结构,破坏了鱼类栖息地;另外,鱼类会对航道中的行船噪声产生回避行为[28-29],因此深水区基本为HSI低值区。

    水下地形结构影响着鱼类的分布和多样性[24]。相关研究表明,疏浚通过改变水下地形,显著影响鱼类群落及空间分布。鱼类丰度和多样性从与自然河口陡峭的坡度相关,转变为与疏浚河口平缓的坡度相关[12]。西江航道经过二次扩能升级,河流水下地形地貌已发生了变化[30],因此鱼类偏好栖息于坡度较缓的区域[31]

    坡向是坡度所面对的方向,用于识别表面上某一位置处的最陡下坡方向。相关研究表明,中华鲟产卵场平均坡向分别为219.92°和207.63°,长江四大家鱼产卵场平均坡向介于150.16°~200.6°[10-11],本研究中栖息地坡向适宜范围介于90°~180°。上述产卵场坡向分布范围不同,但根据河流地形走势来看,坡向均为水流方向;因此推测鱼类偏好栖息于河流中向着水流方向的微斜坡。

    HSI模型是通过适宜度方程评价各个生态因子对某一特定物种的适宜度值和综合值,以此来评价环境对这个特定物种生存和繁殖的适合程度。以往研究使用的生物因子来源于专家经验或者室内实验[3]。近年来,相关研究越来越重视探讨在自然状态下鱼类分布与生境因子之间的关系,以此来确定鱼类适宜栖息地范围[31]。本研究根据鱼类对生境的利用情况来绘制适宜度曲线,鱼类时空分布及水下地形数据均为实测,地形因子的频率分布是基于3年声学调查结果,利用局部空间自相关方法对鱼类空间分布进行分析,定位到鱼类分布的高密度区域,能较为准确地反映野外实际情况。因此栖息地适宜性指数具有较高的可靠度。另外,模型验证结果显示,HSI值较高的区域,鱼类密度较大,表明该模型适用于东塔江段鱼类栖息地适宜性评价。

    在数据分析中,经常会遇到少量的鱼类高密度值,这些值是研究者关注的热点;但从经典统计学角度讲,这些值却是造成评估不确定性的原因[32]。鱼类以个体、种群、群落的形式分布在特定空间上,具有高度的空间自相关性。经典统计学受基本假设的限制,在研究个体、种群和群落空间自相关方面具有较多缺陷[23]。热点分析可划分鱼类资源高低属性值的空间聚集,能够直观清晰地表现渔业资源分布情况,结果具有统计学意义。在渔业生态学中,热点分析已应用于栖息地变动趋势、物种丰富度等方面[33-35]。本研究尝试应用该法来识别鱼类适宜栖息地,取得了较好的效果。由于能够较为直接清晰地表现渔业资源分布情况,热点分析的应用前景将会被不断拓展。

    本研究以河流地形特征作为变量研究鱼类栖息地适宜情况。坡度、坡向为常量,不会随流量的变化而改变。水深作为表征高程的因子,会随径流量的变化而增减。随着流量增大,水深加深,河流两岸漫滩及中心沙洲会被淹没,适宜鱼类栖息的区域也会发生改变。但是本研究区域边界是基于5 000 m3·s−1流量建立的,河流边界无法随流量的增加而变化。因此本文所建模型无法模拟高流量下的河流栖息地状况。

    未来在开展此类工作时,野外采样应选择在水位较高时,尽可能将河流两岸漫滩及中心沙洲淹没。漫滩作为河流生态系统的重要组成部分,为鱼类提供了多样化的栖息生境,具有高生产力和微生境异质性,对维持区域鱼类生物多样性具有重要作用[36-37]。本研究探明了大藤峡水利枢纽蓄水前东塔产卵场水下地形特征及鱼类时空分布,今后仍需持续监测,以评估该电站运行对坝下江段鱼类栖息地的影响。

  • 图  1   阳宗海水深分布图

    Figure  1.   Contour map with water depth interpolation of Yangzonghai Lake

    图  2   同一区域夜间 (a) 和昼间 (b) 典型声学映像回波图

    Figure  2.   Tipical acoustic echogram of same survey area in nighttime (a) and daytime (b)

    图  3   阳宗海鱼类密度昼夜分布图

    Figure  3.   Longitudinal distribution of fish densities in two hydroacoustic detections

    图  4   阳宗海昼夜鱼类密度与水深的线性回归图

    Figure  4.   Linear regression diagram of diurnal fish density and water depth in Yangzonghai Lake

    图  5   阳宗海不同尺寸鱼类水深分布昼夜差异

    Figure  5.   Diurnal variation of water depth distribution of fishes of different sizes in Yangzonghai Lake

    图  6   阳宗海鱼类昼夜行为特征

    Figure  6.   Violin plot of fish behaviors characteristics in Yangzonghai Lake in daytime and nighttime

    表  1   阳宗海鱼类种类组成

    Table  1   Composition of fish species in Yangzonghai Lake

    种类
    Species
    数量百分比
    Quantity
    proportion/%
    体质量量百分比
    Body mass
    ratio/%
    体长范围
    Range of body
    length/mm
    体质量范围
    Range of body
    mass/g
    相对重要
    性指数
    IRI
    栖息水层
    Habitat
    太湖新银鱼 Neosalanx taihuensis 65.18 1.19 25~61 0.16~0.99 6 637 中上层
    子陵吻鰕虎 Rhinogobius giurinus 15.43 0.37 20~62 0.10~3.57 1 580 底层
    间下鱵 Hyporhamphus intermedius 4.85 0.84 85~170 1.72~11.28 569 上层
    Hemiculter leucisculus 2.88 4.39 45~195 1.20~145.34 727 上层
    黄颡鱼 Pelteobagrus fulvidraco 2.43 2.36 33~195 0.71~90.76 479 底层
    黄䱂 Hypseleotris swinhonis 2.22 0.06 23~53 0.13~2.35 228 底层
    高体鳑鲏 Rhodeus ocellatus 2.06 0.18 19~74 0.16~9.45 224 中下层
    瓦氏黄颡鱼 Pelteobagrus vachelli 1.26 1.10 33~165 0.85~72.1 236 底层
    Hypophthalmichthys molitrix 1.23 64.99 77~600 2.34~3 930.00 6 622 中上层
    麦穗鱼 Pseudorasbora parva 0.72 0.14 35~94 0.60~15.22 86 底层
    Carasius auratus 0.47 2.09 47~245 3.73~496.18 256 中下层
    Aristichthys nobilis 0.31 17.84 77~620 10.00~4 950.00 1 815 中上层
    尼罗罗非鱼 Oreochromis nilotica 0.29 1.55 25~270 0.55~680.00 147 中下层
    粘皮鲻鰕虎 Mugilogobius myxodermus 0.17 0.00 20~35 0.20~0.60 5 底层
    花䱻 Hemibarbus maculatus 0.14 0.40 103~220 16.61~172.67 43 中下层
    大鳞副泥鳅 Paramisgurnus dabryanus 0.09 0.06 87~150 3.47~28.70 12 底层
    云南光唇鱼 Acrossocheilus yunnanensis 0.08 0.09 65~141 4.34~130.00 17 中下层
    泥鳅 Misgurrnus anguillicaudatus 0.05 0.02 85~130 3.61~21.40 4 底层
    青鱼 Mylopharyngodon piceus 0.04 0.64 220~395 138.07~430.70 34 中下层
    Cyprinus carpio 0.04 0.43 173~270 137.94~605.00 24 中下层
    草鱼 Ctenopharyngodon idellus 0.04 0.70 137~490 45.90~2 660.00 22 中上层
    Silurus asotus 0.04 0.54 220~500 120.00~2 000.00 12 底层
    食蚊鱼 Gambusia affinis 0.01 <0.01 3.4 0.70~0.76 0.2 上层
    黄鳝 Monopterus albus <0.01 <0.01 210 9.00 0.01 底层
    下载: 导出CSV

    表  2   不同时间鱼类密度分布

    Table  2   Fish density distribution in different periods

    变量
    Variable
    鱼类平均密度
    Average fish density/(尾·m−3)
    95%置信区间
    95% confidence interval/(尾·m−3)
    偏度
    Skewness
    峰度
    Kurtosis
    资源量
    Abundance/(107 尾)
    夜间 Nighttime 0.0378±0.153 0.020~0.045 7.964 71.824 2.25
    昼间 Daytime 0.0329±0.064 0.001~0.066 2.683 6.849 1.96
    下载: 导出CSV
  • [1] 胡文渊, 赵帅营, 张涛, 等. 砷污染下阳宗海浮游动物群落特征及其影响因素[J]. 生态学杂志, 2021, 40(10): 3195-3204.
    [2] 陈瑞娟, 李明, 周思辰, 等. 2019—2020年阳宗海水质现状及特征[J]. 环境科学导刊, 2022, 41(1): 5-9.
    [3] 蔡娜, 张虎才, 常风琴, 等. 阳宗海水质参数季节性变化特征及趋势[J]. 地球科学前沿, 2017, 7(4): 500-512.
    [4] 连玉喜, 李昌, 叶少文, 等. 云南高原渔洞水库鱼类空间分布格局及主要影响因子[J]. 湖泊科学, 2018, 30(6): 1755-1765.
    [5] 安莉, 杨剑虹, 张丽媛, 等. 阳宗海鱼类资源现状调查[C]//中国科学技术协会. 湖泊湿地与绿色发展: 第五届中国湖泊论坛论文集. 长春: 吉林人民出版社, 2015: 383-386.
    [6] 董春燕, 李君轶, 张辉, 等. 长江中游鱼类资源量的估算[J]. 动物学杂志, 2021, 56(1): 73-79.
    [7]

    ZHOU S J, PUNT A E, SMITH A, et al. An optimized catch-only assessment method for data poor fisheries[J]. ICES J Mar Sci, 2018, 75(3): 964-976. doi: 10.1093/icesjms/fsx226

    [8]

    RUDD M B, THORSON J T. Accounting for variable recruitment and fishing mortality in length-based stock assessments for data-limited fisheries[J]. Can J Fish Aquat Sci, 2017, 75(7): 1019-1035.

    [9] 薛绍伟, 梁祥, 王静, 等. 云龙水库鱼类资源分布特征与鲢资源量估算[J]. 云南农业大学学报(自然科学), 2021, 36(3): 424-429.
    [10] 曾雷, 陈国宝, 于杰. 南澳岛海域渔业资源声学评估与空间分布[J]. 南方水产科学, 2018, 14(2): 26-35.
    [11] 武智, 李新辉, 李捷, 等. 红水河岩滩水库鱼类资源声学评估[J]. 南方水产科学, 2017, 13(3): 20-25.
    [12] 武智, 李新辉, 谭细畅, 等. 淡水水体气泡的声学信号特征与识别研究: 以乐昌峡水库为例[J]. 水生态学杂志, 2021, 42(4): 32-39.
    [13]

    RECHENCQ M, VIGLIANO P, MACCHI P, et al. Fish distribution patterns and habitat availability in lakes Moreno Este and Moreno Oeste, Patagonia, Argentina[J]. Limnologica, 2014, 49: 73-83. doi: 10.1016/j.limno.2014.09.003

    [14] 梁祥, 薛绍伟, 武智, 等. 云龙水库鱼类资源声学评估[J]. 西南农业学报, 2021, 34(9): 2057-2062.
    [15]

    ZHANG J, CHEN G B, CHEN Z Z, et al. Application of hydroacoustics to investigate the distribution, diel movement, and abundance of fish on Zhubi Reef, Nansha Islands, South China Sea[J]. Chin J Oceanol Limnol, 2016, 5: 964-976.

    [16] 王靖, 张超, 王丹, 等. 清河水库鲢鳙鱼类资源声学评估: 回波计数与回波积分法的比较[J]. 南方水产, 2010, 6(5): 50-55.
    [17] 郑慈英. 珠江鱼类志[M]. 北京: 科学出版社, 1989: 26-367.
    [18] 陈小勇. 云南鱼类名录[J]. 动物学研究, 2013, 34(4): 281-343.
    [19] 陈银瑞, 褚新洛. 云南鱼类志: 上册[M]. 北京: 科学出版社, 1989: 37-350.
    [20] 褚新洛. 云南鱼类志: 下册[M]. 北京: 科学出版社, 1990: 5-264.
    [21]

    FOOTE K, KNUDSEN H, VESTNES G, et al. Calibration of acoustic instruments for fish density estimation: a practical guide[J]. ICES Coop Res Rep, 1987, 144: 1-69.

    [22]

    AGLEN A. Random errors of acoustic fish abuneance estimates in relation to the survey grid density applied[J]. FAO Fish Rep, 1983, 300: 293-298.

    [23] 朱书礼, 陈蔚涛, 李新辉, 等. 柳江鱼类群落结构及多样性研究[J]. 水生生物学报, 2022, 46(3): 375-384.
    [24]

    SIMMONDS J, MACLENNAN D N. Fisheries acoustics: theory and practice[M]. Oxford: John Wiley & Sons, 2008: 176-177.

    [25]

    RUDSTAM L G, PARKER-STETTER S L, SULLIVAN P J, et al. Towards a standard operating procedure for fishery acoustic surveys in the Laurentian Great Lakes, North America[J]. ICES J Mar Sci, 2009, 66: 1391-1397. doi: 10.1093/icesjms/fsp014

    [26]

    KIESER R, MULLIGAN T J. Analysis of echo counting data: a model[J]. Can J Fish Aquat Sci, 1984, 41(3): 451-458. doi: 10.1139/f84-054

    [27] 吴晛天, 胡忠军, 葛航, 等. 基于基尔霍夫近似模型的鲢和鳙目标强度测量 [J/OL]. 水产学报, 1-14[2023-11-10] http://kns.cnki.net/kcms/detail/31.1283.S.20220721.1344.002.html.
    [28] 李树深. 云南湖泊鱼类的区系及其类型分化[J]. 动物学报, 1982(2): 169-176.
    [29] 王伟营, 杨君兴, 陈小勇. 云南境内南盘江水系鱼类种质资源现状及保护对策[J]. 水生态学杂志, 2011, 32(5): 19-29.
    [30] 陈自明, 杨君兴, 苏瑞凤, 等. 滇池土著鱼类现状[J]. 生物多样性杂志, 2001, 9(4): 407-413.
    [31] 熊飞, 李文朝, 潘继征, 等. 云南抚仙湖鱼类资源现状与变化[J]. 湖泊科学, 2006, 18(3): 305-311.
    [32] 宁晓雨, 陶贻亮, 张磊, 等. 异龙湖鱼类群落结构及多样性[J]. 湖南城市学院学报(自然科学版), 2022, 31(6): 53-57.
    [33]

    BELYEA L R, LANCASTER J. Assembly rules within a contingent ecology[J]. Oikos, 1999, 86(3): 402-416. doi: 10.2307/3546646

    [34] 万安, 张晓可, 谢枫, 等. 低头坝养鱼对上下游局域栖息地和鱼类群落时空格局的影响[J]. 湖泊科学, 2016(1): 178-186.
    [35] 李翀. 长江上游保护区干流鱼类栖息地地貌及水文特征研究[D]. 北京: 中国水利水电科学研究院, 2013: 5-6.
    [36]

    MIRANDA L E, KILLGORE K J. Fish depth distributions in the lower Mississippi River[J]. River Res Appl, 2014, 30(3): 347-359. doi: 10.1002/rra.2652

    [37] 周起超, 杨炫, 王玮璐, 等. 云南程海和阳宗海季节性分层及其消退对冬季水华的潜在影响[J]. 湖泊科学, 2020, 32(3): 701-712.
    [38] 袁琳娜, 杨常亮, 李晓铭, 等. 高原深水湖泊水温日成层对溶解氧、酸碱度、总磷浓度和藻类密度的影响: 以云南阳宗海为例[J]. 湖泊科学, 2014, 26(1): 161-168.
    [39] 杨正健, 刘德富, 易仲强, 等. 三峡水库香溪河库湾拟多甲藻的昼夜垂直迁移特性[J]. 环境科学研究, 2010, 23(1): 26-32.
    [40]

    YE S W, LIAN Y X, GODLEWSKA M, et al. Day-night differences in hydroacoustic estimates of fish abundance and distribution in Lake Laojianghe, China[J]. J Appl Ichthyol, 2013, 29(6): 1423-1429. doi: 10.1111/jai.12367

    [41]

    DJEMALI I, LAOUAR H. Acoustic fish biomass assessment in a deep Tunisian reservoir: effects of season and diel rhythm on survey results[J]. Afr J Aquat Sci, 2017, 42(1): 35-43. doi: 10.2989/16085914.2016.1277181

    [42]

    DJEMALI I, TOUJANI R, GUILLARD J. Hydroacoustic fish biomass assessment in man-made lakes in Tunisia: horizontal beaming importance and diel effect[J]. Aquat Ecol, 2008, 43(4): 1121-1131.

    [43] 陈国宝, 李永振, 赵宪勇, 等. 南海北部海域重要经济鱼类资源声学评估[J]. 中国水产科学, 2005, 12(4): 445-451.
    [44]

    TONG J F, XUE M H, ZHU Z H, et al. Impacts of morphological characteristics on target strength of chub mackerel (Scomber japonicus) in the Northwest Pacific Ocean[J]. Front Mar Sci, 2022, 9: 856483. doi: 10.3389/fmars.2022.856483

    [45] 田思泉, 薛铭华, 童剑锋, 等. 北太平洋渔业资源种类目标强度研究进展[J]. 中国水产科学, 2021, 28(3): 371-379.
    [46] 刘家寿, 王齐东, 解绶启, 等. 内陆大水面生态牧场化管理: 群落调控、生物多样性恢复与资源利用[J]. 科技促进发展, 2020(2): 237-242.
    [47] 于谨磊, 夏曼莉, 关保华, 等. 鳑鲏与河蚌交互作用对浮游生物和底栖生物的影响分析[J]. 湖泊科学, 2021, 33(4): 1230-1240.
    [48] 刘建康, 谢平. 揭开武汉东湖蓝藻水华消失之谜[J]. 长江流域资源与环境, 1999, 8(3): 312-319.
    [49]

    YIN C J, HE W C, GUO L G, et al. Can top-down effects of planktivorous fish removal be used to mitigate cyanobacterial blooms in large subtropical highland lakes?[J]. Water Res, 2022, 218: 118483. doi: 10.1016/j.watres.2022.118483

图(6)  /  表(2)
计量
  • 文章访问数:  170
  • HTML全文浏览量:  51
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-20
  • 修回日期:  2023-09-07
  • 录用日期:  2023-09-21
  • 网络出版日期:  2023-09-27
  • 刊出日期:  2024-02-04

目录

/

返回文章
返回