牡蛎诺如病毒受体类Lewis抗原合成相关基因CgFUT5的克隆与表达鉴定

桂彬彬, 曲梦, 张蔚然, 李明玉, 江艳华, 姚琳, 王联珠

桂彬彬, 曲梦, 张蔚然, 李明玉, 江艳华, 姚琳, 王联珠. 牡蛎诺如病毒受体类Lewis抗原合成相关基因CgFUT5的克隆与表达鉴定[J]. 南方水产科学, 2023, 19(6): 150-157. DOI: 10.12131/20230060
引用本文: 桂彬彬, 曲梦, 张蔚然, 李明玉, 江艳华, 姚琳, 王联珠. 牡蛎诺如病毒受体类Lewis抗原合成相关基因CgFUT5的克隆与表达鉴定[J]. 南方水产科学, 2023, 19(6): 150-157. DOI: 10.12131/20230060
GUI Binbin, QU Meng, ZHANG Weiran, LI Mingyu, JIANG Yanhua, YAO Lin, WANG Lianzhu. Cloning, expression and identification of CgFUT5 gene associated with Lewis antigen synthesis of Oyster norovirus receptors[J]. South China Fisheries Science, 2023, 19(6): 150-157. DOI: 10.12131/20230060
Citation: GUI Binbin, QU Meng, ZHANG Weiran, LI Mingyu, JIANG Yanhua, YAO Lin, WANG Lianzhu. Cloning, expression and identification of CgFUT5 gene associated with Lewis antigen synthesis of Oyster norovirus receptors[J]. South China Fisheries Science, 2023, 19(6): 150-157. DOI: 10.12131/20230060

牡蛎诺如病毒受体类Lewis抗原合成相关基因CgFUT5的克隆与表达鉴定

基金项目: 国家重点研发计划项目 (2017YFC1600703);国家自然科学基金青年科学基金项目 (31101883);中国水产科学研究院基本科研业务费专项资金 (2023TD76);国家现代农业产业技术体系 (CARS-49)
详细信息
    作者简介:

    桂彬彬 (1996—),男,硕士研究生,研究方向为水产品质量安全与标准化。E-mail: guibinbingo@163.com

    通讯作者:

    姚 琳 (1980—),男,研究员,博士,研究方向为水产品质量安全与标准化。E-mail: yaolin@ysfri.ac.cn

    王联珠 (1963—),女,研究员,研究方向为水产品质量安全与标准化。E-mail: lianzhu_wang@aliyun.com

  • 中图分类号: TS 254.7

Cloning, expression and identification of CgFUT5 gene associated with Lewis antigen synthesis of Oyster norovirus receptors

  • 摘要:

    Lewis抗原被认为是诺如病毒特异性结合受体,作为诺如病毒传播载体,牡蛎中也存在着类Lewis抗原,但牡蛎合成这种碳水化合物的途径尚未阐明。为解析牡蛎中诺如病毒受体类Lewis抗原的合成路径,利用cDNA末端快速扩增 (Rapid amplification of cDNA ends, RACE) 技术克隆得到太平洋牡蛎 (Crassostrea gigas) 的CgFUT5基因全序列并进行生物信息学分析,通过实时荧光定量聚合酶链式反应 (RT-qPCR) 分析其在5种组织中的表达情况。构建原核表达质粒转化大肠杆菌 (Escherichia coli) 实现异源表达,并通过免疫印迹法 (Western blot) 鉴定免疫原性。克隆得到了具有1 173 bp开放阅读区的CgFUT5基因cDNA序列,系统发育树显示CgFUT5基因与多个物种具有合成Lewis抗原功能的岩藻糖基转移酶基因遗传学关系较近。重组CgFUT5蛋白可在大肠杆菌中过量表达,且表达的重组CgFUT5蛋白与抗人FUT5抗体及抗6×His标签抗体均能特异性结合。研究发现CgFUT5基因在牡蛎鳃组织中大量表达,CgFUT5蛋白与人FUT5蛋白具有相似的免疫原性,推测牡蛎中存在着类Lewis抗原的合成通路,并且调控牡蛎类Lewis抗原合成的基因还具有组织表达差异性。

    Abstract:

    Lewis antigen is regarded as a specific binding receptor for norovirus, and Lewis-like antigen is also present in oysters as a vehicle for norovirus transmission, but the pathway for synthesis of this carbohydrate in oysters has not been elucidated. To clarify the pathway of norovirus receptor-like Lewis antigen synthesis in oysters, we cloned the CgFUT5 gene from Pacific oyster (Crassostrea gigas) genome and analyzed the expression in five tissues. The full sequence of CgFUT5 gene was obtained by rapid amplification of cDNA ends (RACE) and bioinformatically analyzed by real-time quantitative polymerase chain reaction (RT-qPCR). A prokaryotic expression plasmid was constructed to transform Escherichia coli for heterologous expression, and immunogenicity was identified by immunoblotting (Western blot). The cDNA sequence of CgFUT5 gene with 1 173 bp open reading region was obtained by cloning, and phylogenetic tree shows that CgFUT5 gene was genetically related to the rockweed glycosyltransferase gene that had the function of synthesizing Lewis antigen in several species. The recombinant CgFUT5 protein could be overexpressed in E. coli, and the expressed recombinant CgFUT5 protein specifically bound to both anti-human FUT5 antibody and anti-6×His tag antibody. To sum up, CgFUT5 gene was successfully cloned and found to be abundantly expressed in oyster gill tissue, and CgFUT5 protein has similar immunogenicity to human FUT5 protein. It is hypothesized that a Lewis-like antigen synthesis pathway exists in oysters, and the genes regulating Lewis-like antigen synthesis in oysters also have differential tissue expression.

  • 弧菌广泛存在于养殖水体,是海水养殖动物的主要病原菌,弧菌病是目前为止对养殖鱼虾危害最大,造成损失最严重的细菌性疾病之一。弧菌病可以发生在养殖的各个时期,因此防治对虾弧菌病是养殖成败的关键因素。防治细菌性疾病最常用的方法是使用抗菌素,但频繁无节制的使用药物,导致耐药性菌株的产生并且造成环境的污染,因此,抗菌素的有效替代品的研究显得尤为迫切,应用生物及生态法防治疾病日益受到重视。大量的研究表明[1-7],乳酸菌能够调节机体肠道正常菌群,保持微生态平衡,提高食物消化率和生物价,增强机体的免疫功能,提高机体的抗病能力,产生抑菌活性代谢产物,如乳酸菌肽、细菌素、乳酸、过氧化氢、乙酸等,对许多革兰氏阳性菌李斯特氏菌、芽孢菌、梭菌等及革兰氏阴性菌大肠杆菌等有强烈的抑制作用,可抑制肠道内腐败菌的生长繁殖和腐败产物的产生,乳酸菌被作为饲料添加剂而广泛应用于禽畜养殖中,防治腹泻、下痢、肠炎等肠道功能紊乱的许多疾病。乳酸菌益生素作为鱼、虾饲料添加剂也受到广泛的研究,有提高养殖动物的免疫力,抵御病原菌的侵袭,提高养殖成活率的效果。体外拮抗实验是筛选益生菌的重要步骤,本实验通过乳酸菌体外对致病弧菌的拮抗作用研究,旨在筛选乳酸菌有益菌株,为进一步在养殖生产中应用益生素产品防治病害提供理论基础及水产养殖动物的病害防治提供一种生物防治方法。

    测试菌:乳酸杆菌L1是经点接种法初步筛选出的对弧菌有拮抗作用的菌株。

    指示菌:溶藻弧菌T1是由本所鱼病室提供的从患病军曹鱼中分离,并经回归感染确认有致病性的菌株。鲨鱼弧菌T2也是从患病军曹鱼中分离。

    乳酸菌培养基为改良的MRS培养基:蛋白胨10 g,酵母膏5 g,牛肉膏10 g,葡萄糖20 g,无水乙酸钠3 g,柠檬酸三铵2 g,K2HPO4 2 g,MgSO4 · 7H2O 0.2 g,MnSO4 · H2O 0.05 g,水1 000 mL,pH 6.8。

    弧菌培养基为2216E培养基。

    检测弧菌培养基为TCBS培养基。

    抑菌活性检测采用平板打孔抑菌圈测定法。

    平板打孔抑菌圈测定法:制作2216E培养基,无菌操作倒平板,每个平板的培养基厚度为6 mm,取指示菌弧菌菌悬液0.1 mL,涂布于2216E培养基表面,选择一定的位置,在无菌条件下,用无菌打孔器打孔,孔径为10 mm,将乳酸杆菌发酵液注入孔内(不能溢出),于30℃培养24 h,检测抑菌圈直径的大小。以相同pH值的HCl水作对照。

    表 1为L1接种MRS培养液,经24 h培养后的发酵液及发酵液经5 000 rpm,15 min离心后取得的上清液,采用平板打孔法测定抑菌圈的大小。

    表  1  L1菌发酵液及离心后上清液对指示菌T1、T2的抑菌圈大小
    Table  1  Size of zone plate inhibitory of fermentation liquid and supernatant liquid of L1 strain to indicator strains T1 and T2  (mm)
    指示菌
    indicator strains
    发酵液(pH 3.5)
    fermentation liquid
    上清液(pH 3.5)
    supernatant liquid
    对照HCl水组(pH 3.5)
    HCl diluted liquid
    T1 23 20 0
    T2 18 16 0
    下载: 导出CSV 
    | 显示表格

    表 1试验可看出发酵液与上清液对指示菌T1、T2都有抑菌圈,而相同pH值的HCl水却没有,可见发酵液与上清液的抑菌效果并不是pH值低造成的。试验结果表明发酵液比上清液对弧菌的抑菌圈大,说明发酵液的抑菌活性强于上清液,乳酸杆菌及其代谢产物对弧菌有协同抑制作用。发酵液对弧菌T1、T2的抑菌圈大小不同,上清液也是如此,表明L1发酵液的代谢产物对不同种类弧菌的抑菌活性不同。

    L1接种MRS,30℃培养24 h,发酵液用无菌生理盐水释稀1、2、3倍,其稀释液对弧菌的抑菌能力见表 2。其发酵液经5 000 rpm,15 min离心,取得上清液,上清液用无菌生理盐水释稀1、2、3倍,其稀释液对弧菌的抑菌能力见表 3

    表  2  不同稀释倍数L1菌发酵液对指示菌T1、T2的抑菌圈大小
    Table  2  Size of zone plate inhibitory of diluted fermentation liquid of L1 strain to indictor strains T1 and T2 (mm)
    指示菌
    indicator strains
    发酵液稀释倍数 times of dilution for fermentation liquid
    0 1 2 3
    T1 25 23 21.5 13.5
    T2 23 21 19
    下载: 导出CSV 
    | 显示表格
    表  3  不同稀释倍数L1菌发酵液对指示菌T1、T2的抑菌圈大小
    Table  3  Size of zone plate inhibitory of diluted supernatant liquid of L1 strain to indictor strains T1 and T2  (mm)
    指示菌
    indicator strains
    上清液稀释倍数 times of dilution for supernatant liquid
    0 1 2 3
    T1 18 14.5
    T2 15
    下载: 导出CSV 
    | 显示表格

    表 23可看出发酵液经3倍稀释对弧菌T1仍有抑制作用,上清液经1倍稀释后对弧菌T1的抑菌圈大小与发酵液3倍稀释液抑菌圈的大小相近。

    L1接种MRS培养基,30℃培养,培养18 h、24 h、36 h、48 h、72 h、5 d的发酵液的抑菌圈大小见表 4

    表  4  不同培养时间的L1菌发酵液对指示菌T1、T2的抑菌圈大小
    Table  4  Size of zone plate inhibitory to indictor strains T1 and T2 of fermentation liquid of L1 strain under different time  (mm)
    指示菌
    indicator strains
    不同培养时间的发酵液 fermentation liquid of different culture time
    18 h 24 h 36 h 48 h 72 h 5 d
    T1 22.5 24 24 25 28
    T2 20 22 23 24 25
    下载: 导出CSV 
    | 显示表格

    表 4可看出,在菌生长的对数期18 h时的发酵液对两种指示菌都无抑菌圈,随培养时间的延长,抑菌圈越来越大,生长衰退期(36 h)比稳定期(24 h)的抑菌圈大,5 d的陈培养液的抑菌圈最大。原因可能是随着培养时间的延长,乳酸杆菌的生长及代谢产物抑菌物质的积累提高了其杀菌作用;陈培养物和衰退期的发酵液的抑菌圈大于生长期及稳定期的抑菌圈,可能是一些抗菌活性物质在乳酸菌死亡后释放出来。

    将MRS 24 h的发酵液,于60、80℃恒温水浴中保温15 min,及沸水浴中保温5、10、15 min,与原发酵液一起作抑菌活性试验,试验结果见表 5

    表  5  不同温度及时间处理的L菌发酵液对指示菌T1、T2的抑菌圈大小
    Table  5  Size of zone plate inhibitory to indictor strains T1 and T2 of fermentation liquid of L1 strain treated under different temperature and time (mm)
    指示菌
    indictor strains
    60℃ 80℃ 100℃ 未处理组
    control group
    15 min 15 min 5 min 10 min 15 min
    T1 23 23 23 23 23 23
    T2 22 22 22 22 22 22
    下载: 导出CSV 
    | 显示表格

    表 5的试验结果可见,发酵液经60、80℃恒温水浴处理15 min,及沸水浴中处理5、10、15 min,其抑菌圈大小与未作温度处理的发酵液的抑菌圈大小无差异,可见代谢抑菌物质具有很好的耐热性。对虾饲料制作过程有高温制粒这一步骤,瞬间温度可达100℃,益生菌代谢抑菌物质具有良好的耐热性,可避免对虾饲料制作过程瞬间高温的破坏,而保持其活性。

    体外抑菌试验是筛选益生菌的手段,通过L1菌株体外对弧菌抑制试验,结果表明L1菌株对致病弧菌T1、T2有较强的抑制作用,而且生长速度快,有望成为微生态制剂的候选菌种,但能否成为益生菌,还需做一系列的的工作如进一步确定其对宿主有否致病作用,对被选菌株进行致病性评估;对宿主潜在效果的评价等。

    黄沧海等报导乳酸杆菌的代谢产物对不同血清型的大肠杆菌的抑制作用存在一定的差别,本试验的结果也表明,乳酸杆菌L1对不同的弧菌有不同的抑菌活性。水产养殖动物不同的疾病因病原不同,因此,实际在应用益生素制剂时,如果没有了解清楚益生菌的适用对象和范围就可能就会有不同的效果。Gatesoupe(1999)[8]通过每天添加乳杆菌在大菱鲆幼体活体食物的轮虫的培养基中,大大提高了鱼的成活率,当病原性弧菌侵袭幼体时,添加的乳杆菌能够大大降低幼体在9 d前的死亡率。因此认为乳杆菌可以防御病原菌-弧菌入侵大比目鱼的幼体。而Gildberg等(1997)[9-10]用添加了产乳酸细菌的饲料喂养大西洋鳕,将它们与经腹膜内感染了气单胞菌(Aeromonas salmonicida)的鱼苗一起养殖,在以后4周时间内记录鱼的死亡率,结果表明产乳酸细菌作为鱼苗饲料的添加成分可以促进肠微生物的定植,但未出现防止气单胞菌感染的现象,与预想相反,在饲料中添加了产乳酸细菌的鱼苗的死亡率最高。

    本试验的结果表明乳酸杆菌与代谢产物有协同抑菌作用。因此在评价乳酸菌的抑菌效果时,以乳酸杆菌与代谢产物的协同抑菌效果作为衡量指标应当是更科学合理。在使用乳酸菌益生素产品时,不应当只是利用其菌体,菌体及其代谢产物能一起使用效果可能会更好。

  • 图  1   太平洋牡蛎 FUT5 基因全长及氨基酸序列

    Figure  1.   Full length and amino acid sequence of FUT5 gene in C. gigas

    图  2   CgFUT5 蛋白跨膜结构分析

    Figure  2.   Transmembrane structure analysis of CgFUT5 protein

    图  3   FUTs 家族系统发育树

    Figure  3.   Phylogenetic tree of FUTs family

    图  4   CgFUT5 基因在太平洋牡蛎 5 种组织中的相对表达量

    注:不同字母代表组间极显著性差异 (P<0.01)。

    Figure  4.   Relative expression of CgFUT5 gene in five tissues of C. gigas

    Note: Different letters represent extremely significant differences among the groups (P<0.01).

    图  5   CgFUT5 重组蛋白的 SDS-PAGE 电泳分析

    Figure  5.   Analysis of recombinant protein CgFUT5 by SDS-PAGE electrophoresis

    图  6   以鼠抗 6×His 标签单克隆抗体为一抗分析CgFUT5 表达蛋白

    Figure  6.   Expression of CgFUT5 protein analyzed by mouse anti-6×His labelled monoclonal antibody as primary antibody

    图  7   以兔抗人 FUT5 单克隆抗体为一抗分析CgFUT5 表达蛋白

    Figure  7.   Expression protein of CgFUT5 analyzed by rabbit anti-human FUT5 monoclonal antibody as primary antibody

    表  1   实验中所用引物

    Table  1   Primers used in this experiment

    引物
    Primer
    序列 (5'—3')
    Sequence (5'−3')
    用途
    Function
    FT5-1 CCAGAGCCAAAAACCTCACTC 中间片段
    克隆
    RT5-1 TCCCAGCGAAATCTACTTCC
    RRT5 GATTACGCCAAGCTTGTAATGACTGGACACGACACTGTTCTTG RACE
    FRT5 GATTACGCCAAGCTTACGCATCTCCTGAAGAATTGGCTAAGG
    Q-FT5-A TCTGTATTCTGTAAGGCCGGAGTGG 荧光定量组
    织表达分析
    Q-RT5-A AGTTTCGGGACAATGGGATTTCTCG
    F-actin CTGTGCTACGTTGCCCTGGACTT
    R-actin TGGGCACCTGAATCGCTCGTT
    下载: 导出CSV
  • [1]

    FISCHER W C, PERIN J, ARYEE M J, et al. Diarrhea incidence in low- and middle-income countries in 1990 and 2010: a systematic review[J]. BMC Public Health, 2012, 12: 220. doi: 10.1186/1471-2458-12-220

    [2]

    NORDGREN J, SVENSSON L. Genetic susceptibility to human norovirus infection: an update[J]. Viruses, 2019, 11(3): 226. doi: 10.3390/v11030226

    [3]

    TEUNIS P F M, MOE C L, LIU P, et al. Norwalk virus: how infectious is it?[J]. J Med Virol, 2008, 80(8): 1468-1476. doi: 10.1002/jmv.21237

    [4]

    TAN M, JIANG X. Norovirus and its histo-blood group antigen receptors: an answer to a historical puzzle[J]. Trends Microbiol, 2005, 13(6): 285-293. doi: 10.1016/j.tim.2005.04.004

    [5]

    ATMAR R L, RAMANI S, ESTES M K. Human noroviruses: recent advances in a 50-year history[J]. Curr Opin Infect Dis, 2018, 31(5): 422-432. doi: 10.1097/QCO.0000000000000476

    [6]

    HUNT K, DORÉ B, KEAVENEY S, et al. A quantitative exposure assessment model for norovirus in oysters harvested from a classified production area[J]. Microb Risk Anal, 2023, 23: 100247. doi: 10.1016/j.mran.2023.100247

    [7]

    RAZAFIMAHEFA R M, LUDWIG-BEGALL L F, THIRY E. Cockles and mussels, alive, alive, oh: the role of bivalve molluscs as transmission vehicles for human norovirus infections[J]. Transbound Emerg Dis, 2020, 67(S2): 9-25. doi: 10.1111/tbed.13165

    [8]

    CAMPOS C J, LEES D N. Environmental transmission of human noroviruses in shellfish waters[J]. Appl Environ Microbiol, 2014, 80(12): 3552-3561. doi: 10.1128/AEM.04188-13

    [9]

    le GUYADER F, LOISY F, ATMAR R L, et al. Norwalk virus-specific binding to oyster digestive tissues[J]. Emerg Infect Dis, 2006, 12(6): 931-936. doi: 10.3201/eid1206.051519

    [10]

    HUANG P W, FARKAS T, MARIONNEAU S, et al. Noroviruses bind to human ABO, Lewis, and secretor histo-blood group antigens: identification of 4 distinct strain-specific patterns[J]. J Infect Dis, 2003, 188(1): 19-31. doi: 10.1086/375742

    [11]

    TIAN P, BATES A H, JENSEN H M, et al. Norovirus binds to blood group A-like antigens in oyster gastrointestinal cells[J]. Lett Appl Microbiol, 2006, 43(6): 645-651. doi: 10.1111/j.1472-765X.2006.02010.x

    [12]

    SAIKIA K, SAHARIA N, SINGH C S, et al. Association of histo-blood group antigens and predisposition to gastrointestinal diseases[J]. J Med Virol, 2022, 94(11): 5149-5162. doi: 10.1002/jmv.28028

    [13]

    SZLASA W, WILK K, KNECHT-GURWIN K, et al. Prognostic and therapeutic role of CD15 and CD15s in cancer[J]. Cancers, 2022, 14(9): 2203. doi: 10.3390/cancers14092203

    [14]

    AZIZ F, KHAN I, SHUKLA S, et al. Partners in crime: the Lewis Y antigen and fucosyltransferase IV in Helicobacter pylori-induced gastric cancer[J]. Pharmacol Ther, 2022, 232: 107994. doi: 10.1016/j.pharmthera.2021.107994

    [15]

    PEÑA-GIL N, SANTISO-BELLÓN C, GOZALBO-ROVIRA R, et al. The role of host glycobiology and gut microbiota in rotavirus and norovirus infection, an update[J]. Int J Mol Sci, 2021, 22(24): 13473. doi: 10.3390/ijms222413473

    [16]

    HARRINGTON P R, VINJE J, MOE C L, et al. Norovirus capture with histo-blood group antigens reveals novel virus-ligand interactions[J]. J Virol, 2004, 78(6): 3035-3045. doi: 10.1128/JVI.78.6.3035-3045.2004

    [17]

    ORIOL R. ABO, Hh, Lewis, and secretion[M]//CARTRON J, ROUGER P. Molecular basis of human blood group antigens. Boston: Springer US, 1995: 37-73.

    [18]

    COSTACHE M, CAILLEAU A, FERNANDEZ-MATEOS P, et al. Advances in molecular genetics of α-2- and α-3/4-fucosyltransferases[J]. Transfus Clin Biol, 1997, 4(4): 367-382. doi: 10.1016/S1246-7820(97)80042-0

    [19]

    KEELEY T S, YANG S Y, LAU E. The diverse contributions of fucose linkages in cancer[J]. Cancers, 2019, 11(9): 1241. doi: 10.3390/cancers11091241

    [20] 孙玥, 王晓非. 岩藻糖基转移酶的研究进展[J]. 医学综述, 2019, 25(1): 28-33.
    [21]

    HOLGERSSON J, LÖFLING J. Glycosyltransferases involved in type 1 chain and Lewis antigen biosynthesis exhibit glycan and core chain specificity[J]. Glycobiology, 2006, 16(7): 584-593. doi: 10.1093/glycob/cwj090

    [22]

    DERYA S M, SPIEGEL H, HANISCH F G, et al. Biotechnologically produced fucosylated oligosaccharides inhibit the binding of human noroviruses to their natural receptors[J]. J Biotechnol, 2020, 318: 31-38. doi: 10.1016/j.jbiotec.2020.05.001

    [23]

    ESHAGHI G M, TAN M T H, LI D. Influence of fucosidase-producing bifidobacteria on the HBGA antigenicity of oyster digestive tissue and the associated norovirus binding[J]. Int J Food Microbiol, 2021, 340: 109058. doi: 10.1016/j.ijfoodmicro.2021.109058

    [24]

    MA L P, SU L J, LIU H, et al. Norovirus contamination and the glycosphingolipid biosynthesis pathway in Pacific oyster: a transcriptomics study[J]. Fish Shellfish Immunol, 2017, 66: 26-34. doi: 10.1016/j.fsi.2017.04.023

    [25] 姜薇. 太平洋牡蛎类FUT2基因的克隆与时空表达[D]. 青岛: 中国海洋大学, 2014: 39-57.
    [26] 李春勇. 敌百虫诱导近江牡蛎 (Crassostrea hongkongensis) HSC70基因表达的定量研究[D]. 广州: 暨南大学, 2007: 23-38.
    [27]

    LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−△△CT method[J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262

    [28] 教杨, 姚琳, 曲梦, 等. 牡蛎诺如病毒受体合成基因类FUT10的克隆与组织表达[J]. 食品安全质量检测学报, 2022, 13(1): 120-127. doi: 10.3969/j.issn.2095-0381.2022.1.spaqzljcjs202201016
    [29]

    TU Z, LIN Y N, LIN C H. Development of fucosyltransferase and fucosidase inhibitors[J]. Chem Soc Rev, 2013, 42(10): 4459-4475. doi: 10.1039/c3cs60056d

    [30]

    de VRIES T, KNEGTEL R M, HOLMES E H, et al. Fucosyltransferases: structure/function studies[J]. Glycobiology, 2001, 11(10): 119R-128R. doi: 10.1093/glycob/11.10.119R

    [31]

    NGUYEN K, van DIE I, GRUNDAHL K M, et al. Molecular cloning and characterization of the Caenorhabditis elegans α1, 3-fucosyltransferase family[J]. Glycobiology, 2007, 17(6): 586-599. doi: 10.1093/glycob/cwm023

    [32]

    le GUYADER F S, ATMAR R L, Le PENDU J. Transmission of viruses through shellfish: when specific ligands come into play[J]. Curr Opin Virol, 2012, 2(1): 103-110. doi: 10.1016/j.coviro.2011.10.029

    [33] 吴佳颖. 2011年-2021年诺如病毒在中国5岁以下急性胃肠炎儿童中的流行: 系统评价和荟萃分析[D]. 重庆: 重庆医科大学, 2022: 1-18.
    [34] 郎中凯, 甘雨露, 颜朝阳, 等. 2015—2021年重庆市万州区诺如病毒感染疫情流行特征分析[J]. 中国初级卫生保健, 2022, 36(11): 91-94.
    [35] 魏开心, 石安琪, 曹慜, 等. 宁夏地区2019-2020年诺如病毒所致感染性腹泻流行特征和病原学分析[J]. 病毒学报, 2023, 39(1): 96-104.
    [36] 赵金华, 龙江, 李得恩, 等. 青海省西宁市某幼儿园一起诺如病毒暴发疫情调查及分子流行特征分析[J]. 医学动物防制, 2023, 39(2): 116-119.
    [37]

    PAULSON J C, COLLEY K J. Glycosyltransferases: Structure, localization, and control of cell type-specific glycosylation[J]. J Biol Chem, 1989, 264(30): 17615-17618. doi: 10.1016/S0021-9258(19)84610-0

    [38]

    de VRIES T, STORM J, ROTTEVEEL F, et al. Production of soluble human alpha3-fucosyltransferase (FucT VII) by membrane targeting and in vivo proteolysis[J]. Glycobiology, 2001, 11(9): 711-717. doi: 10.1093/glycob/11.9.711

    [39]

    EL-BATTARI A, PROROK M, ANGATA K, et al. Different glycosyltransferases are differentially processed for secretion, dimerization, and autoglycosylation[J]. Glycobiology, 2003, 13(12): 941-953. doi: 10.1093/glycob/cwg117

    [40]

    CICERON F, ROCHA J, KOUSAR S, et al. Expression, purification and biochemical characterization of AtFUT1, a xyloglucan-specific fucosyltransferase from Arabidopsis thaliana[J]. Biochimie, 2016, 128/129: 183-192. doi: 10.1016/j.biochi.2016.08.012

    [41]

    PETSCHACHER B, NIDETZKY B. Biotechnological production of fucosylated human milk oligosaccharides: prokaryotic fucosyltransferases and their use in biocatalytic cascades or whole cell conversion systems[J]. J Biotechnol, 2016, 235: 61-83. doi: 10.1016/j.jbiotec.2016.03.052

  • 期刊类型引用(0)

    其他类型引用(1)

推荐阅读
芮氏刻肋海胆胚胎及幼体发育过程
余炜欢 et al., 南方水产科学, 2025
基于reca基因的qpcr与raa-lfd检测鳗败血假单胞菌方法的建立与应用
王一霖 et al., 南方水产科学, 2025
秦岭细鳞鲑子二代与野生群体肠道组织结构、消化酶、抗氧化酶及肠道菌群研究
宋荣群 et al., 南方水产科学, 2025
草鱼subfatin分子鉴定及表达特性分析
杨博雅 et al., 南方水产科学, 2024
黄连木变色期叶片色素变化规律及呈色机理
XU Zhizhao et al., JOURNAL OF NANJING FORESTRY UNIVERSITY NATURAL, SCIENCES EDITION, 2024
花鲈仔稚鱼视觉、消化和运动等器官发育组织学观察
HAN Feng et al., CHINESE JOURNAL OF FISHERIES, 2023
Influence of cell characteristics on the construction of structural color layers on wood surfaces
Hu, Jing et al., FORESTS, 2024
Skin pigmentation types, causes and treatment-a review
Thawabteh, Amin Mahmood et al., MOLECULES, 2023
Uniaxial cyclic stretch enhances osteogenic differentiation of opll-derived primary cells via the yap-wnt/β-catenin axis
EUROPEAN CELLS & MATERIALS, 2023
Micelles loaded with puerarin and modified with triphenylphosphonium cation possess mitochondrial targeting and demonstrate enhanced protective effect against isoprenaline-induced h9c2 cells apoptosis
INTERNATIONAL JOURNAL OF NANOMEDICINE
Powered by
图(7)  /  表(1)
计量
  • 文章访问数:  174
  • HTML全文浏览量:  41
  • PDF下载量:  31
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-03-24
  • 修回日期:  2023-06-28
  • 录用日期:  2023-07-19
  • 网络出版日期:  2023-08-03
  • 刊出日期:  2023-12-04

目录

/

返回文章
返回